Multiplication of free random variables and the *S*-transform: the case of vanishing mean

Roland Speicher Queen's University Kingston, Canada

joint work with Raj Rao math 07060323

Definition [Voiculescu]: Let x be a random variable with $\varphi(x) \neq 0$. Then its *S*-transform S_x is defined as follows. Let χ denote the inverse under composition of the series

$$\psi(z) := \sum_{n=1}^{\infty} \varphi(x^n) z^n = \varphi(x) z + \varphi(x^2) z^2 + \cdots,$$

then

$$S_x(z) := \chi(z) \cdot \frac{1+z}{z}.$$

Definition [Voiculescu]: Let x be a random variable with $\varphi(x) \neq 0$. Then its *S*-transform S_x is defined as follows. Let χ denote the inverse under composition of the series

$$\psi(z) := \sum_{n=1}^{\infty} \varphi(x^n) z^n = \varphi(x) z + \varphi(x^2) z^2 + \cdots,$$

then

$$S_x(z) := \chi(z) \cdot \frac{1+z}{z}.$$

Note: We need $\varphi(x) \neq 0$ in order to be able to invert the formal power series ψ !

Alternative Characterization of S [Nica + Speicher]: Let

$$C(z) = \sum_{n=1}^{\infty} \kappa_n z^n = \kappa_1 z + \kappa_2 z^2 + \cdots$$

be the free cumulant generating series. Denote by $C^{<-1>}$ its inverse under composition. Then

$$S_x(z) = \frac{1}{z} \cdot C^{\langle -1 \rangle}(z).$$

Again, we need $\kappa_1 = \varphi(x) \neq 0$ in order to invert C(z).

Theorem [Voiculescu]:

If x and y are free random variables such that $\varphi(x) \neq 0$ and $\varphi(y) \neq 0$, then we have

$$S_{xy}(z) = S_x(z) \cdot S_y(z).$$

Note: we are interested in cases where the considered moments are actually moments of probability measures on \mathbb{R} .

Consider $x = x^*$ and $y = y^*$ then

$$\varphi(x^n) = \int t^n d\mu_x(t), \qquad \varphi(y^n) = \int t^n d\mu_y(t)$$

Note: we are interested in cases where the considered moments are actually moments of probability measures on \mathbb{R} .

Consider $x = x^*$ and $y = y^*$ then

$$\varphi(x^n) = \int t^n d\mu_x(t), \qquad \varphi(y^n) = \int t^n d\mu_y(t)$$

But how about xy? This is in general not selfadjoint, thus there is no apriori reason that there exists μ_{xy} with

$$\varphi((xy)^n) = \int t^n d\mu_{xy}(t).$$

However, if $x \ge 0$ then \sqrt{x} exists and

moments of xy = moments of $\sqrt{x}y\sqrt{x}$ Thus there exists $\mu_{\sqrt{x}y\sqrt{x}}$ with

$$\int t^n d\mu_{\sqrt{x}y\sqrt{x}} = \varphi(\sqrt{x}y\sqrt{x})^n) = \varphi((xy)^n).$$

We call

$$\mu_{\sqrt{x}y\sqrt{x}} =: \mu_x \boxtimes \mu_y$$

the multiplicative free convolution of μ_x and μ_y .

Thus

 \boxtimes : Prob(\mathbb{R}) × Prob(\mathbb{R}_+) → Prob(\mathbb{R}).

Thus

$$\boxtimes$$
: $\operatorname{Prob}(\mathbb{R}) \times \operatorname{Prob}(\mathbb{R}_+) \to \operatorname{Prob}(\mathbb{R}).$

Often one restricts to considering \boxtimes as binary operation

 \boxtimes : $\mathsf{Prob}(\mathbb{R}_+) \times \mathsf{Prob}(\mathbb{R}_+) \to \mathsf{Prob}(\mathbb{R}_+).$

In the latter case, we have $\varphi(x) = 0$ only for x = 0, i.e., $\mu_x = \delta_0$; thus if we exclude this uninteresting case, $S_x = S_{\mu_x}$ is always defined and we can use

$$S_{\mu\boxtimes\nu}(z) = S_{\mu}(z) \cdot S_{\nu}(z)$$

to calculate $\mu \boxtimes \nu$ for $\mu, \nu \in \operatorname{Prob}(\mathbb{R}_+)$.

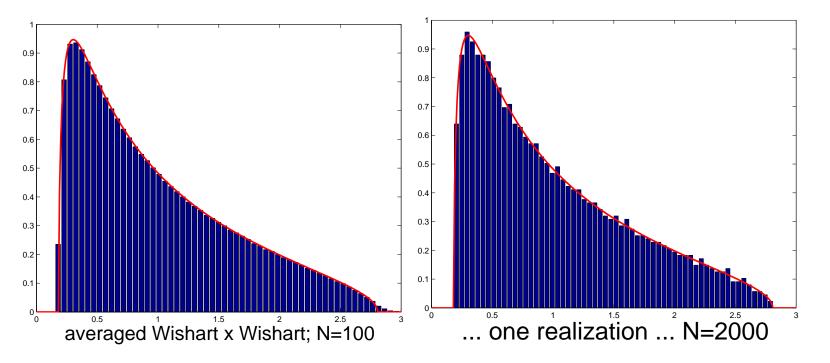
Note:

Many random matrices are becoming asymptotically free for $N \to \infty$, and thus *S*-transform is useful tool for calculating asymptotic eigenvalue distribution of product of random matrices.

Example

free Poisson \boxtimes free Poisson,

i.e., Wishart \times Wishart



But what about situations

$\mathsf{Prob}(\mathbb{R}) \boxtimes \mathsf{Prob}(\mathbb{R}_+)$

For example:

semicircle \boxtimes free Poisson

i.e., Gaussian \times Wishart

Problem: Usual formulation with S-transform does not apply, since

- the *S*-transform of the semicircle does not exist as power series in *z*!
- the formula $S_{xy}(z) = S_x(z)S_y(z)$ is only proved for $\varphi(x) \neq 0 \neq \varphi(y)$

Problem: Usual formulation with S-transform does not apply, since

- the S-transform of the semicircle does not exist as power series in z!
- the formula $S_{xy}(z) = S_x(z)S_y(z)$ is only proved for $\varphi(x) \neq 0 \neq \varphi(y)$

However: This is not really a problem!!

Consider μ =semicircle.

Then

$$\kappa_n = \begin{cases} 1, & n = 2 \\ 0, & n \neq 2 \end{cases} \quad \text{hence} \quad C(z) = z^2 \end{cases}$$

Thus $C^{<-1>}$ does not exist as power series in z,

Consider μ =semicircle.

Then

$$\kappa_n = \begin{cases} 1, & n = 2 \\ 0, & n \neq 2 \end{cases} \quad \text{hence} \quad C(z) = z^2 \end{cases}$$

Thus $C^{<-1>}$ does not exist as power series in z, but as a **power** series in \sqrt{z} ,

$$C^{<-1>}(z) = \sqrt{z}, \qquad S(z) = \frac{1}{z}\sqrt{z} = \frac{1}{\sqrt{z}}$$

Consider μ =semicircle.

Then

$$\kappa_n = \begin{cases}
1, & n = 2 \\
0, & n \neq 2
\end{cases}$$
 hence $C(z) = z^2$

Thus $C^{<-1>}$ does not exist as power series in z, but as a **power** series in \sqrt{z} ,

$$C^{<-1>}(z) = \sqrt{z}, \qquad S(z) = \frac{1}{z}\sqrt{z} = \frac{1}{\sqrt{z}}$$

Note: actually, we are loosing uniqueness, we could also take

$$S(z) = -\frac{1}{\sqrt{z}}$$

This is true in general for μ with vanishing mean, if we exclude $\mu = \delta_0$. Then $\kappa_2 = \varphi(x^2) \neq 0$, thus

$$C(z) = \kappa_2 z^2 + \kappa_3 z^3 + \cdots$$

and thus

$$C^{<-1>}(z) =$$
 power series in \sqrt{z} ,

$$S(z) = \frac{1}{\sqrt{z}} \times \text{power series in } \sqrt{z}$$

Again, we have two possible choices for $C^{\langle -1 \rangle}$ and thus for S.

Definition [Rao + Speicher]: Let x be a random variable with $\varphi(x) = 0$ and $\varphi(x^2) \neq 0$. Then its two *S*-transforms S_x and \tilde{S}_x are defined as follows. Let χ and $\tilde{\chi}$ denote the two inverses under composition of the series

$$\psi(z) := \sum_{n=1}^{\infty} \varphi(x^n) z^n = \varphi(x^2) z^2 + \varphi(x^3) z^3 + \cdots,$$

then

$$S_x(z) := \chi(z) \cdot \frac{1+z}{z}$$
 and $\tilde{S}_x(z) := \tilde{\chi}(z) \cdot \frac{1+z}{z}$.

Both S_x and \tilde{S}_x are formal series in \sqrt{z} of the form

$$\gamma_{-1}\frac{1}{\sqrt{z}} + \sum_{k=0}^{\infty} \gamma_k z^{k/2}$$

Theorem [Rao + Speicher]: Let x and y be free random variables such that $\varphi(x) = 0$, $\varphi(x^2) \neq 0$ and $\varphi(y) \neq 0$. By S_x and \tilde{S}_x we denote the two *S*-transforms of x. Then

 $S_{xy}(z) = S_x(z) \cdot S_y(z)$ and $\tilde{S}_{xy}(z) = \tilde{S}_x(z) \cdot S_y(z)$

are the two S-transforms of xy.

Theorem [Rao + Speicher]: Let x and y be free random variables such that $\varphi(x) = 0$, $\varphi(x^2) \neq 0$ and $\varphi(y) \neq 0$. By S_x and \tilde{S}_x we denote the two *S*-transforms of x. Then

 $S_{xy}(z) = S_x(z) \cdot S_y(z)$ and $\tilde{S}_{xy}(z) = \tilde{S}_x(z) \cdot S_y(z)$

are the two S-transforms of xy.

Proof: Modify the combinatorial proof of [Nica + Speicher] to adjust it to this situation.

```
Meaning: To calculate \mu \boxtimes \nu for
```

 $\mu \in \mathsf{Prob}(\mathbb{R}), \qquad \nu \in \mathsf{Prob}(\mathbb{R}_+)$

- just calculate with the S-transforms as usual;
- don't bother about the choice of the sign, it will not matter in the end!

Example: semicircle \boxtimes free Poisson

semicircle
$$\mu$$
: $S_{\mu}(z) = \frac{1}{\sqrt{z}}$
free Poisson γ : $S_{\gamma}(z) = \frac{1}{z+1}$.

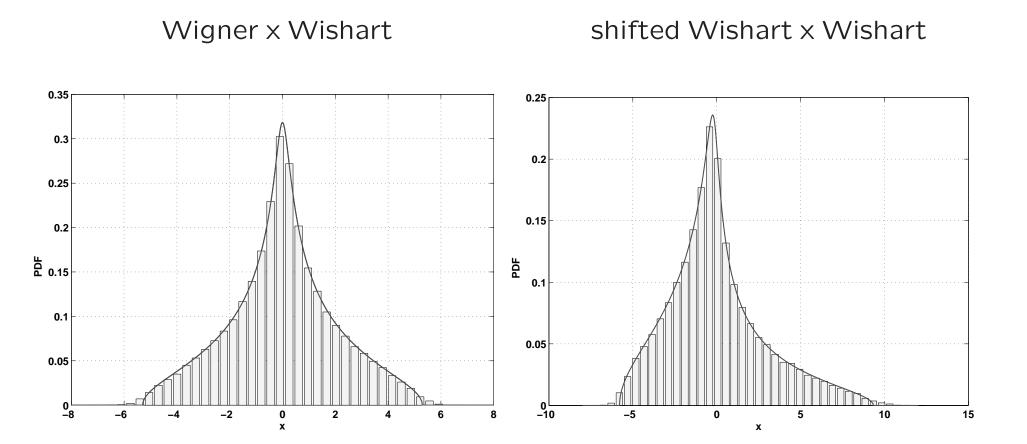
Thus

$$S_{\mu\boxtimes\gamma}(z) = \frac{1}{\sqrt{z(z+1)}},$$

which leads to the following algebraic equation for the Cauchy transform g of the probability measure $\mu\boxtimes\gamma$

$$g^4 \, z^2 - zg + 1 = 0.$$

Examples:



24

• $\mu \boxtimes \nu$ is not defined in this case

- $\mu \boxtimes \nu$ is not defined in this case
- note, however, that for all $n \in \mathbb{N}$

$$\varphi((xy)^n) = \varphi(xyxyxy\cdots xy) = 0 = \int t^n d\delta_0(t),$$

thus we could say formally

$$\mu \boxtimes \nu = \delta_0$$

- $\mu \boxtimes \nu$ is not defined in this case
- note, however, that for all $n \in \mathbb{N}$

$$\varphi((xy)^n) = \varphi(xyxyxy\cdots xy) = 0 = \int t^n d\delta_0(t),$$

thus we could say formally

$$\mu \boxtimes \nu = \delta_0$$

• but even this trivial statement is not captured correctly by the S-transform

Example: semicircle \boxtimes semicircle

$$S_{\mu}(z) = \frac{1}{\sqrt{z}},$$

• thus

$$S_{\mu}(z) \cdot S_{\mu}(z) = \frac{1}{z}$$
, which yields $\psi(z) = \frac{1}{z} - 1$.

This is not a moment series.

Example: semicircle \boxtimes semicircle

$$S_{\mu}(z) = \frac{1}{\sqrt{z}},$$

• thus

$$S_{\mu}(z) \cdot S_{\mu}(z) = \frac{1}{z}$$
, which yields $\psi(z) = \frac{1}{z} - 1$.

This is not a moment series.

• $\psi_{\delta_0}(z) = 0;$

thus there is no corresponding inverse and no $S\mbox{-transform}$

Summary: To calculate $\mu \boxtimes \nu$ for

 $\mu \in \mathsf{Prob}(\mathbb{R}), \quad \nu \in \mathsf{Prob}(\mathbb{R}_+)$

- just calculate with the *S*-transforms as usual;
- don't bother about the choice of the sign, it will not matter in the end!