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Subfactors NC M| — ON.M

Inclusions of infinite Group-like objects
dimensional factors generalizing:
with finite index: -f.g. groups
dimyM < oo -Hopf algebras

Jones’ Basic Construction
NCMCM; =<M,e > CB(L*M,71))

_ L2(M,T)
€1 — p"'“OJLQ(N,T)

e1 eo e3 eq
NCMCCM, CMyC MszC ...

The Standard Invariant Gy j

NNnNM c NNnNM; C¢ NnNnM, C
U U U
MM c M'NnM; C M'NnM, C

Roughly, Gy ps consists of two bipartite graphs and
some 'rules’ for fitting them.



Fact:| Gy v is @ complete invariant for amenable
subfactors (S.Popa '92).

Fact:| The squares of inclusions

A C B
U U
C C D

that show up in Gy js are extremely rigid!
AeC 1 DsC

Such a square is called a commuting square.

Conversely, one can construct subfactors from com-
muting squares:

A C B C Bi=<B,e1> C ... /M
U U U U
¢ ¢ D C Di=<D,e1> C ... /N

The factors M, N obtained are isomorphic to R,
the hyperfinite factor.



Examples of commuting squares.

e Commuting squares arising from finite groups G:

[*(G) c B(2(@®))
U U
C C ClG]

e When G = Z,, we obtain:

Dn C My(C)
U U
C C FnDnF}
where F;, is the Fourier matrix:
1 .
Frn= (™ ocpi1<n_1

NG

e Commuting squares from Hadamard matrices:

Dn C Myp(C)
U U
C c UDU*

Commuting square = /nU is a Hadamard matrix

(i.e. orthogonal rows, entries on the unit circle)



Examples of complex Hadamard matrices.

e For every n > 2: the Fourier matrix Fj,.

For example: Fo = G _11>

e (U. Haagerup '96, P. Dita '04) For every n = kl
non-prime there exist parametric families of non-
equivalent complex Hadamard matrices:

Let A = (ai’j) e M, (C) and Bjy,...,B;, € Mn(C) be
complex Hadamard matrices. Then:

(a11B1 a12B2 .. ayyBy)

ap1B1 a22B> ... ap DBy
H =

\ax,1B1 ag2B> ... ag;By)

is a Hadamard matrix.

e For example: n =4, A= F5, By = F», By ~ F>

1 1 1 1
1 -1 X =X
1 1 -1 -1
1 -1 —A A

1

Fa(h) = 3 A =1



(S. Popa '81) For n prime is Fy the only complex
Hadamard matrix of order n?

(De la Harpe-Jones + Munemasa-Watatani, '92)
For n > 7 prime there exists at least one non-
Fourier Hadamard matrix.

(U. Haagerup '94) For n = 5 the Fourier matrix is
the only complex Hadamard matrix.

(S. Popa) For n prime, is the number of complex
Hadamard matrices of size n finite?

(M. Petrescu '94) For n = 7,13,19,31 and 79
there exist parametric families of complex Hadamard
matrices.

(tw tw* w® w3 w3 w 1\

tw? tw wS w® w3 w 1

1 w? w3 tw wt w w3 1
Ut)=—| w3 w® wWw* tw w w3 1
VT w3 w3 w w wt w? 1

w w  wS wd w? w1

\1 1 1 1 1 1 1

it| = 1,w root of order 6 of unity



Classification results for Hadamard matrices.

(U. Haagerup '94).
n=3,4,5.

Complete classification for

(K. Beauchamp + R.N. '06). Classification of self-
adjoint Hadamard matrices of order 6.

(1 1 1 1 1 1)
1l -1 = —y —x vy
1 =z -1 t —t —x
HO =11 5 1t -1 5 -1
l -z -t vy 1 =z
\l § & —t =z 1)

where: 6 € [—, —arcos(#)]u[arcos(#g),w]

142y —y?
y(—=1+ 2y +y2)

y = exp(ib), z =

142y 42— V21 2y + 243 + o
B 142y —y?

T

_ 142y 4+ 12 — V214 2y + 253 + ¢4

¢ 2
—14+2y+4y




Classification of 6 x 6 self-adjoint Hadamard
matrices

e If the diagonal contains a —1:

1 1 1 1 1 1
1 —1 a b ¢ d

Orthogonality of rows 1,2 implies a+b+c+d = O,
hence a = —b Oor a = —c Or a = —d.

-If the third diagonal element is 1:

1 1 1 1 1 1
1l -1 a —a b -0
l a 1 = y =z

Orthogonality of rows 2,3 implies:

l—ax+by—bz=0, etc...

-If the third diagonal element is -1:

1 1 1 1 1 1
1 -1 a —a b —b
l a -1 =z y =z

a+zx+y—+z=0, etc...



e If the diagonal contains just 1's:
(111111
1 _

1
1
1

\l . . )
Using the orthogonality of rows 1,2,3:

1 1 1 1 1 1
1 1 Yy u v
1l x z s t

< Kl =
N =8
=

T
1
24+z+y=—(u+t+v)
24+z+z=—(5+1)

14+ 2x 4+ yz = —(us + vt)
Since
(u+v)(5+t)(us + vt) =2 4+ (uv + uv) + (st + st)
+ (utvs + utvs)
IS a real number, we have:

Q+z+y)Q2+z+2)(1+2x+yz) €R



(1
1
1
1
1 ..
\l . . )

QC4+z+yRR+z+2)(1+2x+yz) eR

NI S I i
N =8 =

Qt+y+2)2+y+z2)(1+2y+z2z)cR
Q+z+z2)2+2z+y)(Q1+2z2+2y) €R

If z,y, z are distinct, after some work we obtain:
1 1 1
ryz+ztytzt-+-+-=7
x Yy Z

Which implies x =y = z = 1, contradiction!



Subfactors associated to Hadamard Matrices.

€3 €4 €5
Dn C Mp(C) C P1 C Py C ... /Py
U U U U

€3 €4 €5

C c UDRU* C Q1 C 9y C ... Qg

Fact: | (Ocneanu Compactness). Computing GQrC Py
IS equivalent to computing the row of inclusions:

D, NQyCD,NQ1CD,NQ>CD,NQO3C ...

Formula for D), N Q1:
P1 = Mn(C) @ Dn, Q1 = U1 Mn(C)UT

Dy, N Q1 = D, N AdU1(Mn(C)))
= D, N AdU1 (e} N P1)
= D, N AdU1(P1) N AdU1 (eyq)’
= (Dn @ Dn) NAdU; (eg)’
The second relative commutant is thus determined

by the connected components of the graph of the
profile matrix:

_ d
AdU1(eq) = (Z Ua,iub,iuqiud,i)g,,b
)



Fact:| The five real Hadamard matrices of order

16 are classified by dim(D! N Q1)

Open questions: | (V. Jones '99)

e Calculation of Gg ., cp,”*

e example of H yielding a subfactor with no extra
structure in its standard invariant?



(W. Camp + R.N.'06). The known non-Dita, non-
Fourier matrices of dimension n < 10 have no extra
structure in the first three relative commutants.

(R.N.’06). Hadamard matrices of Dita type yield
subfactors with intermediate subfactors:

Dmn®D;, C Mnp(C)e M (C) C..,/ Py
U U U
Dn®l, C UMn(C)D,)U* C.. " Ry
U U U

C C U(Dpm ® D )U* C../ Qn

In particular, the second commutant has some ex-
tra structure.



