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F(0) = F′(0) = 0, then

F(t) ≥ 0 for any t ∈ [0, 1].

Proof. F is convex =⇒ F′ is nondecreasing �
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F(0) = F′(0) = 0, then

F(t) ≥ 0 for any t ∈ [0, 1].

Proof. F is convex =⇒ F′ is nondecreasing
F′(0)=0
=====⇒ F is

nondecreasing
F(0)=0
====⇒ F ≥ 0. �



The Wasserstein Distance on Rn

W(µ, ν) :=

√

inf
π∈Π(µ,ν)

"
|x − y|2π(dx, dy),

Π(µ, ν) : probability measures on Rn ×Rn with marginals µ
and ν.

• This is a distance for the topology of weak convergence
on the probability measures with second moment.



The Wasserstein Distance on Rn

W(µ, ν) :=

√

inf
π∈Π(µ,ν)

"
|x − y|2π(dx, dy),

Π(µ, ν) : probability measures on Rn ×Rn with marginals µ
and ν.

• For given µ and ν, there is a “unique” transport map T

such that π = (T, Id)∗ν is the minimizer for W(µ, ν) and

W(µ, ν)2 =

∫

|x − T(x)|2ν(dx).



The Wasserstein Distance on Rn

W(µ, ν) :=

√

inf
π∈Π(µ,ν)

"
|x − y|2π(dx, dy),

Π(µ, ν) : probability measures on Rn ×Rn with marginals µ
and ν.

• For given µ and ν, there is a “unique” transport map T

such that π = (T, Id)∗ν is the minimizer for W(µ, ν) and

W(µ, ν)2 =

∫

|x − T(x)|2ν(dx).

• µt = ((1 − t)x + tT(x))∗ν is the geodesic path for W with

W(µt, ν) = tW(µ, ν).



Classical Talagrand Inequality

Relative entropy: H(µ|ν) =



















∫

f log( f )dν µ≪ ν, f =
dµ
dν

∞ µ3 ν.

Theorem (Talagrand). Assume ν(dx) = e−ξ(x)dx is a probability

measure on Rn such that ξ(x) − ρ|x|2 is a convex function. Then

ρW(µ, ν)2 ≤ H(µ|ν). (T(ρ))
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Theorem (Talagrand). Assume ν(dx) = e−ξ(x)dx is a probability

measure on Rn such that ξ(x) − ρ|x|2 is a convex function. Then

ρW(µ, ν)2 ≤ H(µ|ν). (T(ρ))

The particular case of the Gaussian: ξ(x) = |x|2/2 + C.

• Notice here the fact that n does not appear in T(ρ).

• T(ρ) extends to infinite dimensional case with the Wiener
measure in place of ν.
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Proof. Take n = 1 and the (smooth) map T such that
µ = T∗ν = fν. Then

T′(x) f (T(x))e−ξ(T(x)) = e−ξ(x)

E(µ|ν)−ρW(µ, ν)2 =

∫

(ξ(T(x))−ξ(x)−log(T′(x))−ρ(x−T(x))2)ν(dx).
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Proof. Take n = 1 and the (smooth) map T such that
µ = T∗ν = fν. Then

T′(x) f (T(x))e−ξ(T(x)) = e−ξ(x)

E(µ|ν)−ρW(µ, ν)2 =

∫

(ξ(T(x))−ξ(x)−log(T′(x))−ρ(x−T(x))2)ν(dx).

Take Tt(x) = (1 − t)x + tT(x), µt = (Tt)∗ν and

F(t) = H[µt|ν] − ρW(µt, ν)

=

∫

(ξ(Tt) − ξ(x) − log(T′t(x)) − ρ(x − Tt(x))2)ν(dx).



F(t) = H[µt|ν] − ρW(µt, ν)2

=

∫

(ξ(Tt) − ξ(x) − log(T′t(x)) − ρ(x − Tt(x))2)ν(dx).

• Since ξ(x) − ρx2 is convex, it follows that F(t) is convex.



F(t) = H[µt|ν] − ρW(µt, ν)2

=

∫

(ξ(Tt) − ξ(x) − log(T′t(x)) − ρ(x − Tt(x))2)ν(dx).

• Since ξ(x) − ρx2 is convex, it follows that F(t) is convex.

• F(0) = 0 and

F′(0) =
∫

(

ξ′(x)e−ξ(x)(T(x) − x) − (T′(x) − 1)e−ξ(x)
)

dx

=

∫

(

(x − T(x))e−ξ(x)
)′

dx = 0.



F(t) = H[µt|ν] − ρW(µt, ν)2

=

∫

(ξ(Tt) − ξ(x) − log(T′t(x)) − ρ(x − Tt(x))2)ν(dx).

• Since ξ(x) − ρx2 is convex, it follows that F(t) is convex.

• F(0) = 0 and

F′(0) =
∫

(

ξ′(x)e−ξ(x)(T(x) − x) − (T′(x) − 1)e−ξ(x)
)

dx

=

∫

(

(x − T(x))e−ξ(x)
)′

dx = 0.

• Now, joke to get that F(t) ≥ 0. In particular

H(µ|ν) − ρW(µ, ν)2 = F(1) ≥ 0.
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ν satisfies HWI(ρ) inequality if for any µ:

H(µ|ν) ≤W(µ|ν)
√

I(µ|ν) − ρW(µ|ν)2.
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1. If ξ(x) − ρ|x|2 is convex for some ρ ∈ R, then HWI(ρ) holds

true.
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Theorem (Otto and Villani). Assume ν = e−ξ(x)dx is a

probability measure on Rn.

1. If ξ(x) − ρ|x|2 is convex for some ρ ∈ R, then HWI(ρ) holds

true.

2. If ξ(x) − ρ|x|2 is convex for a ρ > 0, then T(ρ) implies LSI(ρ).

3. If ξ(x) − C|x|2 is convex for a certain C ∈ R, then LSI(ρ)
implies T(ρ).

4. In particular for ξ(x) − ρ|x|2 is convex for ρ > 0, then T(ρ) is

equivalent with LSI(ρ).



The main idea

The proof is based on the geometric/PDE interpretation of the
gradient of the entropy functional H(µ|ν).

If ν is a fixed measure and µ is another measure, then

I(µ|ν) = ‖gradµH(·|ν)‖2.

LSI(ρ) translates in this context

H(µ|ν) ≤ 1
4ρ
‖gradµH(·|ν)‖2.



The “gradient flow” µt:

µ̇t = −gradµt
H(·|ν) with µ0 = µ.

This combined with LSI(ρ) implies that

d

dt
H(µt|ν) = 〈gradµt

H(·|ν), µ̇t〉 = −‖gradµt
H(·|ν)‖2 ≤ −4ρH(µt|ν)

which yields that H(µt|ν) converges exponentially fast to 0,
limt→∞ µt = ν and

g(t) =W(µ, µt) +
√

H(µt|ν)/ρ

is nonincreasing in t. Therefore, 0 = g(∞) ≤ g(0) results with
T(ρ):

W(µ, ν) ≤
√

H(µt|ν)/ρ.



The Free Counterpart

Free entropy with potential Q for probability measures on R:

E(µ) =
∫

Q(x)µ(x) −
"

log |x − y|µ(dx)µ(dy).

There is a unique probability measure µQ such that

E(µQ) = inf
µ

E(µ).
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The Free Counterpart

Free entropy with potential Q for probability measures on R:

E(µ) =
∫

Q(x)µ(x) −
"

log |x − y|µ(dx)µ(dy).

There is a unique probability measure µQ such that

E(µQ) = inf
µ

E(µ).

The variational characterization of µQ: for a.e. x ∈ suppµ

Q(x) = 2
∫

log |x − y|µQ(dx) ⇒ Q′(x) =
∫

2
x − y

µQ(dx).



If Q(x) = x2/2 the minimizer for the free entropy is

µQ(dx) = s(dx) =
1

2π

√
4 − x2dx.

The analog of the relative entropy is played by

E(µ|µQ) = E(µ) − E(µQ).

The relative free information:

I(µ|µQ) =
∫

(Hµ(x) −Q′(x))2µ(dx)

where Hµ(x) =
∫

2
x−yµ(dx).



Free Talagrand:

Theorem (Biane and Voiculescu). For Q(x) = x2/2,

1
2

W(µ, s)2 ≤ E(µ|s).

The technique of the proof is similar to the one of Otto and
Villani for the classical case.

The Idea: If S is a semicircular free with X, then

X(t) = e−t/2X + (1 − e−t)1/2S,
d

dt
H(X(t)|S) = I(X(t)|S)

t→W(X(t), S) −
√

2H(X(t)|S) is nondecreasing

lim
t→∞

(W(X(t), S) −
√

2H(X(t)|S)) = 0.



Random Matrices and Free Entropy

OnMsa
n (C) consider the probability measure

Pn
Q(dA) =

1
Zn(Q)

e−nTrnQ(A)dA.

The distribution of the eigenvalues is given by

Λn(dx) =
1

Zn(Q)
e−n

∑n
i=1 Q(xi)

∏

1≤i< j≤n

(xi − x j)2
n

∏

i=1

dxi

=
1
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1
n2
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


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
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

n
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B. Arous and A. Guionnet:

Take λn to be the distribution on of ηn =
1
n

∑n
i=1 δxi

under Λn.
Then λn satisfies a “Large Deviation Principle” with rate
function given by H(µ|µQ) i.e. for any measurable set A of
probability measures on R,

− inf
µ∈Å

E(µ|µQ) ≤ lim inf
n→∞

1
n2 log(λn(A))

≤ lim sup
n→∞

1
n2 log(λn(A)) ≤ − inf

µ∈A
E(µ|µQ)

In particular ηn → µQ.



Hiai, Petz and Ueda:

Pn
Q(dA) =

1
Zn(Q)

e−nTrnQ(A)dA.

For a given µ, take Qµ(x) =
∫

log |x − y|µ(dy).

If Q(x)−ρx2 is a convex function, then A→ nTrnQ(A)−nρ|A|2
is convex, and from classical Talagrand:

nρW(Pn
Qµ
,Pn

Q)2 ≤ H(Pn
Qµ
|Pn

Q)

W(µ, µQ)2 ≤ lim inf
n→∞

W(Pn
Qµ
,Pn

Q)2/n

lim
n→∞

H(Pn
Qµ
|Pn

Q)/n2 = E(µ|µQ)

ρW(µ, µQ)2 ≤ E(µ|µQ).
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where I(µ|µQ) =
∫
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∫

2
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HWI(ρ) inequality if for any µ:

E(µ|µQ) ≤W(µ, µQ)
√

I(µ|µQ) − ρW(µ, µQ)2.



The Simpler Proof of T(ρ)

If Q(x)−ρx2 is convex for a certain ρ > 0, then T(ρ) holds true.

Let T be the transport map of µQ into µ, i.e. µ = T∗µQ. T is
nondecreasing. Set Tt(x) = (1 − t)x + tT(x), µt = (Tt)∗µQ and

F(t) = E(µt|µQ) − ρW(µt, µQ)2



The Simpler Proof of T(ρ)

If Q(x)−ρx2 is convex for a certain ρ > 0, then T(ρ) holds true.

Let T be the transport map of µQ into µ, i.e. µ = T∗µQ. T is
nondecreasing. Set Tt(x) = (1 − t)x + tT(x), µt = (Tt)∗µQ and

F(t) = E(µt|µQ) − ρW(µt, µQ)2

= −E(µQ) +
∫

(

Q(Tt(x)) − ρ(x − Tt(x))2
)

µQ(dx)

−2
"

x>y

log(Tt(x) − Tt(y))µQ(dx)µQ(dy)



• F is convex;

• F(0) = 0;

• From Q′(x) = 2
∫

1
x−yµQ(dx), it follows that

F′(0) =
∫

(T(x) − x)Q′(x)µQ(dx) − 2
"

T(x) − x

x − y
µQ(dx)µQ(dy)

= 0.
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• F is convex;

• F(0) = 0;

• From Q′(x) = 2
∫

1
x−yµQ(dx), it follows that

F′(0) =
∫

(T(x) − x)Q′(x)µQ(dx) − 2
"

T(x) − x

x − y
µQ(dx)µQ(dy)

= 0.

• Therefore, F(t) ≥ 0 and then

E(µ|µQ) − ρW(µ, µQ)2 = F(1) ≥ 0.

Using these ideas and some from Erausquin, M. Ledoux
reproved LSI(ρ) and, for the first time, proved HWI(ρ).



The circle case

Q : T ≈ (−π, π]→ R is the potential and call V(x) = Q(eix).

E(µ) =
∫

V(x)µ(dx) −
"

log |eix − eiy|µ(dx)µ(dy)

There is a measure µQ such that EQ(µ) is minimized. We
define then

E(µ|µQ) = E(µ) − E(µQ).

IQ(µ) =
∫

[Hµ(x) − V′(x)]2µ(dx) −
(∫

V′(x)µ(dx)
)2

where

Hµ(x) =
∫

cot(x − y)µ(dy).



If Q(eix) − ρx2 is convex on R, then T(ρ) is

(ρ + 1/4)W(µ, µQ)2 ≤ E[µ|µQ],

the LSI(ρ) is

E[µ|µQ] ≤ 1
1 + 4ρ

I(µ|µQ)

and HWI(ρ) is

EQ(µ|µQ) ≤W(µ, µQ)I(µ)1/2 − (ρ + 1/4)W(µ, µQ)2
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What Else?

• These are not really non-commutative.

• Is there a version of Talagrand’s inequality for a tuple of
non-commutative random variable with the logarithmic
entropy replaced by Voiculescu’s free entropy? Partial
result was proved using random matrix approximation
by Hiai and Ueda for the case

E(a1, a2, . . . , an) =
n

∑

i=1

τ(Qi(ai)) − χ(a1, a2, . . . , an).


