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F(0) = F'(0) = 0, then

F(t) > O for any t € [0, 1].

Proof. F is convex = F’ is nondecreasing
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F(0)=0
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The Wasserstein Distance on IR”

[1(u,v) : probability measures on R"” X R"” with marginals u

and v.

e This is a distance for the topology of weak convergence
on the probability measures with second moment.
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The Wasserstein Distance on IR”

W(u,v) = \/neg}ftv)f x — yl*mt(dx, dy),

[I(u, v) : probability measures on R"” X IR"” with marginals u

and v.

e For given 1 and v, there is a “unique” transport map T
such that = = (T, Id).v is the minimizer for W(u,v) and

Wi = [ = TR

o 1 =((1-1t)x+tT(x)).vis the geodesic path for W with
W(‘thl 1/) — tW(‘U, V)'
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\
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Classical Talagrand Inequality

(f flog(fidv p<v,f=%

Relative entropy: H(ulv) = <
00 u K.

\
Theorem (Talagrand). Assume v(dx) = e~“"dx is a probability

measure on R" such that &(x) — plx|* is a convex function. Then
pW(u,v)* < H(ulv). (T(p))

The particular case of the Gaussian: &(x) = x]%/2 + C.
e Notice here the fact that n does not appear in T(p).

e T(p) extends to infinite dimensional case with the Wiener

measure in place of v.
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Proofs were given by Talagrand, Otto and Villani, D.
Cordero-Erausquin.

Proof. Take n = 1 and the (smooth) map T such that
u="T.w= fv. Then

T’ (x) f(T(x))e_é(T(x)) — <)
E(ulv)—pW(g, v = f (E(T() £ () -log(T” (x))—p(x—T(x)?)v(dx).
Take Ti(x) = (1 — t)x + tT(x), ur = (Tt).v and
F(t) = H[u¢lv] — pW(ut, v)

— [(&m) - £ - 1og(TI() - pta - TP,
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e Since &(x) — px? is conveyx, it follows that F(t) is convex.



F(t) = H{uslv] — pW(uz, vy’

— [ - 0 - tog(Ty) - plx - TP (e

e Since &(x) — px? is conveyx, it follows that F(t) is convex.

e F(0)=0and
F(0) = f (& ()e T (x) - x) = (T'(x) = 1)e™*™) dx
— f ((x - T(x))e_g(x))’ dx = 0.



F(t) = Huv] - pW(us, v)2
- f (E(T) - £() - 1og(T)()) — plx — Ty@)Pv(dw).

e Since &(x) — px? is conveyx, it follows that F(t) is convex.

e [(0)=0and
F(0) = f (& ()e T (x) - x) = (T'(x) = 1)e™*™) dx
— f ((x - T(x))e_‘g(x))’ dx = 0.

e Now, joke to get that F(f) > 0. In particular
H(ulv) — pW(u, v)> = F(1) > 0.
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Talagrand, Log Sobolev and HWI Inequalities

A measure v is said to satisty T(p) if for any probability u
pW(u, V)? < H(ulv).

v satisties Log Sobolev with constant p (LSI(p)) if for any L,

1
H(alv) < 1)

2
where [(u|v) = f'Vlog(Z—f/l) Zd‘U = 4f'v\/il:5

v satisties HWI(p) inequality if for any u:
H(ulv) < W(ulv) VI(ulv) — pW(ulv)*.

dv.
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Theorem (Otto and Villani). Assume v = ¢ *Ydxisa

probability measure on R".

1. If &(x) — plx|? is convex for some p € R, then HWI(p) holds
true.

2. If &(x) — plx|? is convex for a p > 0, then T(p) implies LSI(p).

3. If &(x) — Clx|* is convex for a certain C € R, then LSI(p)
implies T(p).

4. In particular for &(x) — plx|* is convex for p > 0, then T(p) is
equivalent with LSI(p).



The main idea

The proof is based on the geometric/PDE interpretation of the
gradient of the entropy functional H(ulv).

If v is a fixed measure and y is another measure, then
I(ulv) = llgrad, H(W)|

LSI(p) translates in this context

1 2
H(ulv) < 3 llgrad HEMI



The “gradient flow” p:
r = —grad, H([v) with uo = p.
This combined with LSI(p) implies that

a
dt
which yields that H(u;|v) converges exponentially fast to 0,

H(uulv) = (grad, H(Iv), ity = ~ligrad , HCW)I? < ~4pH(ulv)

lim; e y¢ = v and

g(t) = W(w, ur) + VH(uelv)/p

is nonincreasing in t. Therefore, 0 = g(c0) < ¢(0) results with

T(p):

W(w,v) < VH(uv)/p.



The Free Counterpart

Free entropy with potential Q for probability measures on IR:

E(u) = f 0()u(x) - f f log bx — ylu(dx)u(dy).

There is a unique probability measure (1o such that

E(uo) = ifule(M)-
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The Free Counterpart

Free entropy with potential Q for probability measures on IR:

E(u) = f Q()u(x) - f f log Ix — ylu(dx)u(dy).

T'here is a unique probability measure 1 such that

E(ug) = il;}fE(M)-

The variational characterization of j1o: for a.e. x € suppu

2
r—Y

O(x) =2 flog x — yluodx) = Q'(x) = f Lo(dx).



If O(x) = x*/2 the minimizer for the free entropy is
1
Lo(dx) = s(dx) = 5 V4 — x2dx.

The analog of the relative entropy is played by

E(ulpg) = E(u) — E(ug)-

The relative free information:
() = f (Hu(x) — O () u(dx)

where Hpu(x) = f % u(dx).



Free Talagrand:
Theorem (Biane and Voiculescu). For Q(x) = x*/2,

1

W, )" < E(uls).

The technique of the proof is similar to the one of Otto and
Villani for the classical case.

The Idea: If S is a semicircular free with X, then

X(H) = e X + (1 — e HY2S, %H(X(t)lS) = I[(X(t)|S)

t — W(X(t),S) — v2H(X(t)|S) is nondecreasing

lim (W(X(t), S) - y2H(X(t)IS)) = 0.



Random Matrices and Free Entropy

On M (C) consider the probability measure

Pl (dA) =

1

e M QA) A
Zn(Q)

The distribution of the eigenvalues is given by

n

Ay(dx) =

1
n(Q)

e
7 P

(

—Nn

2

1<i<j<n

~ Z Qlxi) — — Z log |x; — x]

1<1¢]<n




B. Arous and A. Guionnet:

Take A, to be the distribution on of 77,, = % 2?21 Oy, under A,,.
Then A, satisfies a “Large Deviation Principle” with rate
function given by H(u|up) i.e. for any measurable set A of
probability measures on R,

— inf E(ulug) < 11m mf — log(Ax(A))
‘LlG

< lim sup — log(/\ (A)) < —inf E(u|up)

n— 00 UeA

In particular 17,, — pp.



Hiai, Petz and Ueda:

! e
Zn(Q)

For a given , take Q,,(x) = flog x — ylu(dy).

PLAA) = QA A

If O(x) — px* is a convex function, then A — nTr,Q(A) — np|AJ?
is convex, and from classical Talagrand:

npW(PG PO < HPG, 1Ph)
W(u, tg)* < lim inf W(PY, , P In
lim H(P{, [P)/n* = E(ulpo)

pW(n, o) < E(ulug).
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Free Talagrand, Log Sobolev and HWI Inequalities

For a given potential O, the free Talagrand T(p):
pW(, 1o)* < E(ulug),  for any p.

Log Sobolev LSI(p) if for any L,
1
E(plug) = —I(ulug)
HiHQ 4p HIHQ

where I(u|pp) = f(H‘u(x) — Q' (x))*u(dx), Hu(x) = fxf—y‘u(dx).
HWI(p) inequality if for any u:

E(plug) = Wi, o) \/l(ulug) - PW(g, 1o)*



The Simpler Proof of T(p)

If Q(x) — px? is convex for a certain p > 0, then T(p) holds true.

Let T be the transport map of o into y,i.e. = T.up. T'is
nondecreasing. Set Ty(x) = (1 — t)x + tT(x), us = (Tt). o and

F(t) = E(utluo) — pW(ut, 1o)?



The Simpler Proof of T(p)

If Q(x) — px? is convex for a certain p > 0, then T(p) holds true.

Let T be the transport map of o into y,i.e. = T.up. T'is
nondecreasing. Set Ty(x) = (1 — t)x + tT(x), us = (Tt). o and

F(t) = E(utluo) — pW(ut, 1o)?

= —E(up) + f(Q(Tt(X)) — p(x — Tt(x))z) Lo(dx)

—2 f fx y log(Tt(x) — Te(y)) uo(dx)ug(dy)



e [ 1s convex;
o F(0) =
e From Q'(x) =2 | x}—yug(dx), it follows that

F(0) = f (T(x) - 2)Q (Dpodx) - f f 1) - ooy



e [ 1s convex;
e F(0) =
e From Q'(x)=2 [ x}—ny(dx), it follows that

F(0) = f (T(x) - 9)Q (o) - f f 1) - ooy

e Therefore, F(t) > 0 and then

E(ulpo) = pW(n, po)® = F(1) 2 0.



e [ 1s convex;
e F(0) =

e From Q'(x)=2 [ x}—yyg(dx), it follows that

F(0) = f (T(x) - 9)Q (o) - f f 1) - ooy

e Therefore, F(t) > 0 and then
E(ulpg) — pW(p, po)* = F(1) > 0.

Using these ideas and some from Erausquin, M. Ledoux
reproved LSI(p) and, for the first time, proved HWI(p).



The circle case
Q: T ~ (-7, ] — R is the potential and call V(x) = Q(e™).

E) = [ Veou@ - [ [ logle® - lu@otay

There is a measure (i such that Eg(u) is minimized. We
define then

E(ulug) = E(u) — E(ug)-

2
To() = f [Hy(x)—v«x)m(dx)—( f V’(x)u(dx))
where

Hu(x) = f cot(x — y)u(dy).



If Q(e™) — px? is convex on R, then T(p) is

(p + 1/4W(u, ug)” < Elulugl,

the LSI(p) is

1
Elplpol < 7— 4p1(u|ug)

and HWI(p) is

EQ(ulug) < W(w, uo)l(w)''* = (p + 1/HW(u, up)
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What Else?

e These are not really non-commutative.

e |s there a version of Talagrand’s inequality for a tuple of
non-commutative random variable with the logarithmic
entropy replaced by Voiculescu’s free entropy? Partial
result was proved using random matrix approximation

by Hiai and Ueda for the case

n

E(ay,a2,...,a,) = Z T(Qi(a) — x(a1,az, ..., ay).

=1



