Free Talagrand Inequality, a Simple Proof

Ionel Popescu Northwestern University & IMAR

A Joke

If $F : [0, 1] \rightarrow \mathbb{R}$ is a smooth convex function such that F(0) = F'(0) = 0, then

 $F(t) \ge 0$ for any $t \in [0, 1]$.

Proof. F is convex \implies *F*' is nondecreasing

A Joke

If $F : [0, 1] \rightarrow \mathbb{R}$ is a smooth convex function such that F(0) = F'(0) = 0, then

 $F(t) \ge 0$ for any $t \in [0, 1]$.

Proof. F is convex \implies *F'* is nondecreasing $\xrightarrow{F'(0)=0}$ *F* is nondecreasing

A Joke

If $F : [0, 1] \rightarrow \mathbb{R}$ is a smooth convex function such that F(0) = F'(0) = 0, then

 $F(t) \ge 0$ for any $t \in [0, 1]$.

Proof. F is convex \Longrightarrow *F'* is nondecreasing $\xrightarrow{F'(0)=0}$ *F* is nondecreasing $\xrightarrow{F(0)=0}$ *F* ≥ 0.

The Wasserstein Distance on \mathbb{R}^n

$$W(\mu,\nu):=\sqrt{\inf_{\pi\in\Pi(\mu,\nu)}\iint |x-y|^2\pi(dx,dy)},$$

 $\Pi(\mu, \nu)$: probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

• This is a distance for the topology of weak convergence on the probability measures with second moment.

The Wasserstein Distance on \mathbb{R}^n

$$W(\mu,\nu):=\sqrt{\inf_{\pi\in\Pi(\mu,\nu)}\iint |x-y|^2\pi(dx,dy)},$$

 $\Pi(\mu, \nu)$: probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

• For given μ and ν , there is a "unique" transport map T such that $\pi = (T, Id)_*\nu$ is the minimizer for $W(\mu, \nu)$ and

$$W(\mu, \nu)^2 = \int |x - T(x)|^2 \nu(dx).$$

The Wasserstein Distance on \mathbb{R}^n

$$W(\mu,\nu):=\sqrt{\inf_{\pi\in\Pi(\mu,\nu)}\iint |x-y|^2\pi(dx,dy)},$$

 $\Pi(\mu, \nu)$: probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

• For given μ and ν , there is a "unique" transport map T such that $\pi = (T, Id)_* \nu$ is the minimizer for $W(\mu, \nu)$ and

$$W(\mu,\nu)^2 = \int |x - T(x)|^2 \nu(dx).$$

• $\mu_t = ((1 - t)x + tT(x))_* \nu$ is the geodesic path for *W* with

 $W(\mu_t, \nu) = tW(\mu, \nu).$

Relative entropy:
$$H(\mu|\nu) = \begin{cases} \int f \log(f) d\nu & \mu \ll \nu, f = \frac{d\mu}{d\nu} \\ \infty & \mu \ll \nu. \end{cases}$$

Theorem (Talagrand). Assume $v(dx) = e^{-\xi(x)}dx$ is a probability measure on \mathbb{R}^n such that $\xi(x) - \rho |x|^2$ is a convex function. Then

$$\rho W(\mu, \nu)^2 \le H(\mu|\nu). \tag{T(\rho)}$$

Relative entropy:
$$H(\mu|\nu) = \begin{cases} \int f \log(f) d\nu & \mu \ll \nu, f = \frac{d\mu}{d\nu} \\ \infty & \mu \not\ll \nu. \end{cases}$$

Theorem (Talagrand). Assume $v(dx) = e^{-\xi(x)}dx$ is a probability measure on \mathbb{R}^n such that $\xi(x) - \rho |x|^2$ is a convex function. Then

$$\rho W(\mu, \nu)^2 \le H(\mu|\nu). \tag{T(\rho)}$$

The particular case of the Gaussian: $\xi(x) = |x|^2/2 + C$.

Relative entropy:
$$H(\mu|\nu) = \begin{cases} \int f \log(f) d\nu & \mu \ll \nu, f = \frac{d\mu}{d\nu} \\ \infty & \mu \ll \nu. \end{cases}$$

Theorem (Talagrand). Assume $v(dx) = e^{-\xi(x)}dx$ is a probability measure on \mathbb{R}^n such that $\xi(x) - \rho |x|^2$ is a convex function. Then

$$\rho W(\mu, \nu)^2 \le H(\mu|\nu). \tag{T(\rho)}$$

The particular case of the Gaussian: $\xi(x) = |x|^2/2 + C$.

• Notice here the fact that *n* does not appear in $T(\rho)$.

Relative entropy:
$$H(\mu|\nu) = \begin{cases} \int f \log(f) d\nu & \mu \ll \nu, f = \frac{d\mu}{d\nu} \\ \infty & \mu \ll \nu. \end{cases}$$

Theorem (Talagrand). Assume $v(dx) = e^{-\xi(x)}dx$ is a probability measure on \mathbb{R}^n such that $\xi(x) - \rho |x|^2$ is a convex function. Then

$$\rho W(\mu, \nu)^2 \le H(\mu|\nu). \tag{T(\rho)}$$

The particular case of the Gaussian: $\xi(x) = |x|^2/2 + C$.

- Notice here the fact that *n* does not appear in $T(\rho)$.
- *T*(*ρ*) extends to infinite dimensional case with the Wiener measure in place of *ν*.

Proofs were given by Talagrand, Otto and Villani, D. Cordero-Erausquin.

Proofs were given by Talagrand, Otto and Villani, D. Cordero-Erausquin.

Proof. Take n = 1 and the (smooth) map *T* such that $\mu = T_*\nu = f\nu$. Then

$$T'(x)f(T(x))e^{-\xi(T(x))} = e^{-\xi(x)}$$

$$E(\mu|\nu) - \rho W(\mu,\nu)^2 = \int (\xi(T(x)) - \xi(x) - \log(T'(x)) - \rho(x - T(x))^2) \nu(dx).$$

Proofs were given by Talagrand, Otto and Villani, D. Cordero-Erausquin.

Proof. Take n = 1 and the (smooth) map *T* such that $\mu = T_*\nu = f\nu$. Then

$$T'(x)f(T(x))e^{-\xi(T(x))} = e^{-\xi(x)}$$

$$E(\mu|\nu) - \rho W(\mu,\nu)^2 = \int (\xi(T(x)) - \xi(x) - \log(T'(x)) - \rho(x - T(x))^2) \nu(dx).$$

Take $T_t(x) = (1 - t)x + tT(x)$, $\mu_t = (T_t)_* v$ and

$$F(t) = H[\mu_t | \nu] - \rho W(\mu_t, \nu)$$

= $\int (\xi(T_t) - \xi(x) - \log(T'_t(x)) - \rho(x - T_t(x))^2)\nu(dx).$

$$F(t) = H[\mu_t | \nu] - \rho W(\mu_t, \nu)^2$$

= $\int (\xi(T_t) - \xi(x) - \log(T'_t(x)) - \rho(x - T_t(x))^2)\nu(dx).$

• Since $\xi(x) - \rho x^2$ is convex, it follows that F(t) is convex.

$$F(t) = H[\mu_t | \nu] - \rho W(\mu_t, \nu)^2$$

= $\int (\xi(T_t) - \xi(x) - \log(T'_t(x)) - \rho(x - T_t(x))^2)\nu(dx).$

- Since $\xi(x) \rho x^2$ is convex, it follows that F(t) is convex.
- F(0) = 0 and

$$F'(0) = \int \left(\xi'(x)e^{-\xi(x)}(T(x) - x) - (T'(x) - 1)e^{-\xi(x)}\right)dx$$
$$= \int \left((x - T(x))e^{-\xi(x)}\right)'dx = 0.$$

$$F(t) = H[\mu_t | \nu] - \rho W(\mu_t, \nu)^2$$

= $\int (\xi(T_t) - \xi(x) - \log(T'_t(x)) - \rho(x - T_t(x))^2)\nu(dx).$

• Since $\xi(x) - \rho x^2$ is convex, it follows that F(t) is convex.

• F(0) = 0 and

$$F'(0) = \int \left(\xi'(x)e^{-\xi(x)}(T(x) - x) - (T'(x) - 1)e^{-\xi(x)}\right)dx$$
$$= \int \left((x - T(x))e^{-\xi(x)}\right)'dx = 0.$$

• Now, joke to get that $F(t) \ge 0$. In particular

$$H(\mu|\nu) - \rho W(\mu, \nu)^2 = F(1) \ge 0.$$

Talagrand, Log Sobolev and HWI Inequalities

A measure ν is said to satisfy $T(\rho)$ if for any probability μ

 $\rho W(\mu, \nu)^2 \le H(\mu|\nu).$

Talagrand, Log Sobolev and HWI Inequalities

A measure ν is said to satisfy $T(\rho)$ if for any probability μ

$$\rho W(\mu, \nu)^2 \le H(\mu|\nu).$$

 ν satisfies Log Sobolev with constant ρ (*LSI*(ρ)) if for any μ ,

$$H(\mu|\nu) \le \frac{1}{4\rho} I(\mu|\nu)$$

where
$$I(\mu|\nu) = \int \left| \nabla \log\left(\frac{d\mu}{d\nu}\right) \right|^2 d\mu = 4 \int \left| \nabla \sqrt{\frac{d\mu}{d\nu}} \right|^2 d\nu.$$

Talagrand, Log Sobolev and HWI Inequalities

A measure v is said to satisfy $T(\rho)$ if for any probability μ $\rho W(\mu, v)^2 \le H(\mu|v).$

 ν satisfies Log Sobolev with constant ρ (*LSI*(ρ)) if for any μ ,

$$H(\mu|\nu) \le \frac{1}{4\rho}I(\mu|\nu)$$

where $I(\mu|\nu) = \int \left| \nabla \log\left(\frac{d\mu}{d\nu}\right) \right|^2 d\mu = 4 \int \left| \nabla \sqrt{\frac{d\mu}{d\nu}} \right|^2 d\nu.$

 ν satisfies $HWI(\rho)$ inequality if for any μ :

 $H(\mu|\nu) \le W(\mu|\nu) \sqrt{I(\mu|\nu)} - \rho W(\mu|\nu)^2.$

1. If $\xi(x) - \rho |x|^2$ is convex for some $\rho \in \mathbb{R}$, then $HWI(\rho)$ holds true.

- 1. If $\xi(x) \rho |x|^2$ is convex for some $\rho \in \mathbb{R}$, then $HWI(\rho)$ holds true.
- 2. If $\xi(x) \rho |x|^2$ is convex for a $\rho > 0$, then $T(\rho)$ implies $LSI(\rho)$.

- 1. If $\xi(x) \rho |x|^2$ is convex for some $\rho \in \mathbb{R}$, then HWI(ρ) holds true.
- 2. If $\xi(x) \rho |x|^2$ is convex for a $\rho > 0$, then $T(\rho)$ implies $LSI(\rho)$.
- 3. If $\xi(x) C|x|^2$ is convex for a certain $C \in \mathbb{R}$, then $LSI(\rho)$ implies $T(\rho)$.

- 1. If $\xi(x) \rho |x|^2$ is convex for some $\rho \in \mathbb{R}$, then HWI(ρ) holds true.
- 2. If $\xi(x) \rho |x|^2$ is convex for a $\rho > 0$, then $T(\rho)$ implies $LSI(\rho)$.
- 3. If $\xi(x) C|x|^2$ is convex for a certain $C \in \mathbb{R}$, then $LSI(\rho)$ implies $T(\rho)$.
- 4. In particular for $\xi(x) \rho |x|^2$ is convex for $\rho > 0$, then $T(\rho)$ is equivalent with LSI(ρ).

The main idea

The proof is based on the geometric/PDE interpretation of the gradient of the entropy functional $H(\mu|\nu)$.

If ν is a fixed measure and μ is another measure, then

 $I(\mu|\nu) = \|\operatorname{grad}_{\mu}H(\cdot|\nu)\|^{2}.$

LSI(ρ) translates in this context

$$H(\mu|\nu) \le \frac{1}{4\rho} \|\operatorname{grad}_{\mu} H(\cdot|\nu)\|^2$$

The "gradient flow" μ_t :

$$\dot{\mu}_t = -\operatorname{grad}_{\mu_t} H(\cdot|\nu) \quad \text{with} \quad \mu_0 = \mu.$$

This combined with $LSI(\rho)$ implies that

$$\frac{d}{dt}H(\mu_t|\nu) = \langle \operatorname{grad}_{\mu_t}H(\cdot|\nu), \dot{\mu}_t \rangle = -||\operatorname{grad}_{\mu_t}H(\cdot|\nu)||^2 \leq -4\rho H(\mu_t|\nu)$$

which yields that $H(\mu_t|\nu)$ converges exponentially fast to 0,
 $\lim_{t\to\infty}\mu_t = \nu$ and

$$g(t) = W(\mu, \mu_t) + \sqrt{H(\mu_t | \nu) / \rho}$$

is nonincreasing in *t*. Therefore, $0 = g(\infty) \le g(0)$ results with $T(\rho)$:

$$W(\mu, \nu) \leq \sqrt{H(\mu_t | \nu) / \rho}.$$

The Free Counterpart

Free entropy with potential Q for probability measures on \mathbb{R} :

$$E(\mu) = \int Q(x)\mu(x) - \iint \log |x - y|\mu(dx)\mu(dy).$$

There is a unique probability measure μ_Q such that

$$E(\mu_Q) = \inf_{\mu} E(\mu).$$

The Free Counterpart

Free entropy with potential Q for probability measures on \mathbb{R} :

$$E(\mu) = \int Q(x)\mu(x) - \iint \log |x - y|\mu(dx)\mu(dy).$$

There is a unique probability measure μ_Q such that

$$E(\mu_Q) = \inf_{\mu} E(\mu).$$

The variational characterization of μ_Q : for a.e. $x \in \text{supp}\mu$

$$Q(x) = 2 \int \log |x - y| \mu_Q(dx)$$

The Free Counterpart

Free entropy with potential Q for probability measures on \mathbb{R} :

$$E(\mu) = \int Q(x)\mu(x) - \iint \log |x - y|\mu(dx)\mu(dy).$$

There is a unique probability measure μ_Q such that

$$E(\mu_Q) = \inf_{\mu} E(\mu).$$

The variational characterization of μ_Q : for a.e. $x \in \text{supp}\mu$

$$Q(x) = 2 \int \log |x - y| \mu_Q(dx) \quad \Rightarrow Q'(x) = \int \frac{2}{x - y} \mu_Q(dx).$$

If $Q(x) = x^2/2$ the minimizer for the free entropy is

$$\mu_Q(dx) = s(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} dx.$$

The analog of the relative entropy is played by

$$E(\mu|\mu_Q) = E(\mu) - E(\mu_Q).$$

The relative free information:

$$I(\mu|\mu_Q) = \int (H\mu(x) - Q'(x))^2 \mu(dx)$$

where $H\mu(x) = \int \frac{2}{x-y} \mu(dx)$.

Free Talagrand:

Theorem (Biane and Voiculescu). For $Q(x) = x^2/2$,

$$\frac{1}{2}W(\mu,s)^2 \le E(\mu|s).$$

The technique of the proof is similar to the one of Otto and Villani for the classical case.

The Idea: If *S* is a semicircular free with *X*, then

$$\begin{aligned} X(t) &= e^{-t/2}X + (1 - e^{-t})^{1/2}S, \quad \frac{d}{dt}H(X(t)|S) = I(X(t)|S) \\ t &\to W(X(t), S) - \sqrt{2H(X(t)|S)} \text{ is nondecreasing} \\ \lim_{t \to \infty} (W(X(t), S) - \sqrt{2H(X(t)|S)}) = 0. \end{aligned}$$

Random Matrices and Free Entropy

On $\mathcal{M}_n^{sa}(\mathbb{C})$ consider the probability measure

$$\mathcal{P}_Q^n(dA) = \frac{1}{Z_n(Q)} e^{-n \operatorname{Tr}_n Q(A)} dA.$$

The distribution of the eigenvalues is given by

$$\begin{split} \Lambda_n(dx) &= \frac{1}{\overline{Z}_n(Q)} e^{-n\sum_{i=1}^n Q(x_i)} \prod_{1 \le i < j \le n} (x_i - x_j)^2 \prod_{i=1}^n dx_i \\ &= \frac{1}{\overline{Z}_n} \exp\left(-n^2 \left(\frac{1}{n} \sum_{i=1}^n Q(x_i) - \frac{1}{n^2} \sum_{1 \le i \ne j \le n} \log|x_i - x_j|\right)\right) \prod_{i=1}^n dx_i. \end{split}$$

...

B. Arous and A. Guionnet:

Take λ_n to be the distribution on of $\eta_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ under Λ_n . Then λ_n satisfies a "Large Deviation Principle" with rate function given by $H(\mu|\mu_Q)$ i.e. for any measurable set A of probability measures on \mathbb{R} ,

$$-\inf_{\mu\in\mathring{A}} E(\mu|\mu_Q) \le \liminf_{n\to\infty} \frac{1}{n^2} \log(\lambda_n(A))$$
$$\le \limsup_{n\to\infty} \frac{1}{n^2} \log(\lambda_n(A)) \le -\inf_{\mu\in\overline{A}} E(\mu|\mu_Q)$$

In particular $\eta_n \rightarrow \mu_Q$.

Hiai, Petz and Ueda:

$$\mathcal{P}_Q^n(dA) = \frac{1}{Z_n(Q)} e^{-n \operatorname{Tr}_n Q(A)} dA.$$

For a given μ , take $Q_{\mu}(x) = \int \log |x - y| \mu(dy)$.

If $Q(x) - \rho x^2$ is a convex function, then $A \rightarrow nTr_nQ(A) - n\rho|A|^2$ is convex, and from classical Talagrand:

$$\begin{split} n\rho W(\mathcal{P}_{Q_{\mu}}^{n}, \mathcal{P}_{Q}^{n})^{2} &\leq H(\mathcal{P}_{Q_{\mu}}^{n} | \mathcal{P}_{Q}^{n}) \\ W(\mu, \mu_{Q})^{2} &\leq \liminf_{n \to \infty} W(\mathcal{P}_{Q_{\mu}}^{n}, \mathcal{P}_{Q}^{n})^{2}/n \\ \lim_{n \to \infty} H(\mathcal{P}_{Q_{\mu}}^{n} | \mathcal{P}_{Q}^{n})/n^{2} &= E(\mu | \mu_{Q}) \\ \rho W(\mu, \mu_{Q})^{2} &\leq E(\mu | \mu_{Q}). \end{split}$$

Free Talagrand, Log Sobolev and HWI Inequalities

For a given potential Q, the free Talagrand $T(\rho)$:

$$\rho W(\mu, \mu_Q)^2 \le E(\mu | \mu_Q), \text{ for any } \mu_Q$$

Free Talagrand, Log Sobolev and HWI Inequalities

For a given potential Q, the free Talagrand $T(\rho)$:

$$\rho W(\mu, \mu_Q)^2 \le E(\mu|\mu_Q), \quad \text{for any } \mu.$$

Log Sobolev $LSI(\rho)$ if for any μ ,

$$E(\mu|\mu_Q) \le \frac{1}{4\rho} I(\mu|\mu_Q)$$

where $I(\mu|\mu_Q) = \int (H\mu(x) - Q'(x))^2 \mu(dx), H\mu(x) = \int \frac{2}{x-y} \mu(dx).$

Free Talagrand, Log Sobolev and HWI Inequalities

For a given potential Q, the free Talagrand $T(\rho)$: $\rho W(\mu, \mu_Q)^2 \le E(\mu|\mu_Q)$, for any μ .

Log Sobolev $LSI(\rho)$ if for any μ ,

$$E(\mu|\mu_Q) \le \frac{1}{4\rho} I(\mu|\mu_Q)$$

where $I(\mu|\mu_Q) = \int (H\mu(x) - Q'(x))^2 \mu(dx)$, $H\mu(x) = \int \frac{2}{x-y} \mu(dx)$. *HWI*(ρ) inequality if for any μ :

$$E(\boldsymbol{\mu}|\boldsymbol{\mu}_Q) \leq W(\boldsymbol{\mu},\boldsymbol{\mu}_Q) \sqrt{I(\boldsymbol{\mu}|\boldsymbol{\mu}_Q)} - \rho W(\boldsymbol{\mu},\boldsymbol{\mu}_Q)^2.$$

The Simpler Proof of $T(\rho)$

If $Q(x) - \rho x^2$ is convex for a certain $\rho > 0$, then $T(\rho)$ holds true. Let *T* be the transport map of μ_Q into μ , i.e. $\mu = T_*\mu_Q$. *T* is nondecreasing. Set $T_t(x) = (1 - t)x + tT(x)$, $\mu_t = (T_t)_*\mu_Q$ and

$$F(t) = E(\mu_t | \mu_Q) - \rho W(\mu_t, \mu_Q)^2$$

The Simpler Proof of $T(\rho)$

If $Q(x) - \rho x^2$ is convex for a certain $\rho > 0$, then $T(\rho)$ holds true. Let *T* be the transport map of μ_Q into μ , i.e. $\mu = T_*\mu_Q$. *T* is nondecreasing. Set $T_t(x) = (1 - t)x + tT(x)$, $\mu_t = (T_t)_*\mu_Q$ and

$$F(t) = E(\mu_t | \mu_Q) - \rho W(\mu_t, \mu_Q)^2$$

= $-E(\mu_Q) + \int (Q(T_t(x)) - \rho(x - T_t(x))^2) \mu_Q(dx)$
 $-2 \iint_{x>y} \log(T_t(x) - T_t(y)) \mu_Q(dx) \mu_Q(dy)$

- *F* is convex;
- F(0) = 0;
- From $Q'(x) = 2 \int \frac{1}{x-y} \mu_Q(dx)$, it follows that

$$F'(0) = \int (T(x) - x)Q'(x)\mu_Q(dx) - 2 \iint \frac{T(x) - x}{x - y}\mu_Q(dx)\mu_Q(dy)$$

= 0.

- *F* is convex;
- F(0) = 0;
- From $Q'(x) = 2 \int \frac{1}{x-y} \mu_Q(dx)$, it follows that

$$F'(0) = \int (T(x) - x)Q'(x)\mu_Q(dx) - 2 \iint \frac{T(x) - x}{x - y}\mu_Q(dx)\mu_Q(dy)$$

= 0.

• Therefore, $F(t) \ge 0$ and then

$$E(\mu|\mu_Q) - \rho W(\mu, \mu_Q)^2 = F(1) \ge 0.$$

- *F* is convex;
- F(0) = 0;
- From $Q'(x) = 2 \int \frac{1}{x-y} \mu_Q(dx)$, it follows that

$$F'(0) = \int (T(x) - x)Q'(x)\mu_Q(dx) - 2 \iint \frac{T(x) - x}{x - y}\mu_Q(dx)\mu_Q(dy)$$

= 0.

• Therefore, $F(t) \ge 0$ and then

$$E(\mu|\mu_Q) - \rho W(\mu, \mu_Q)^2 = F(1) \ge 0.$$

Using these ideas and some from Erausquin, M. Ledoux reproved $LSI(\rho)$ and, for the first time, proved $HWI(\rho)$.

The circle case

$$Q: \mathbf{T} \approx (-\pi, \pi] \to \mathbb{R} \text{ is the potential and call } V(x) = Q(e^{ix}).$$
$$E(\mu) = \int V(x)\mu(dx) - \iint \log |e^{ix} - e^{iy}|\mu(dx)\mu(dy)$$

There is a measure μ_Q such that $E_Q(\mu)$ is minimized. We define then

$$E(\mu|\mu_Q) = E(\mu) - E(\mu_Q).$$

$$I_Q(\mu) = \int [H\mu(x) - V'(x)]^2 \mu(dx) - \left(\int V'(x)\mu(dx)\right)^2$$

where

$$H\mu(x) = \int \cot(x-y)\mu(dy).$$

If $Q(e^{ix}) - \rho x^2$ is convex on \mathbb{R} , then $T(\rho)$ is $(\rho + 1/4)W(\mu, \mu_Q)^2 \le E[\mu|\mu_Q],$

the $LSI(\rho)$ is

$$E[\mu|\mu_Q] \le \frac{1}{1+4\rho} I(\mu|\mu_Q)$$

and $HWI(\rho)$ is

 $E^Q(\mu|\mu_Q) \le W(\mu,\mu_Q) I(\mu)^{1/2} - (\rho + 1/4) W(\mu,\mu_Q)^2$

What Else?

• These are not really non-commutative.

What Else?

- These are not really non-commutative.
- Is there a version of Talagrand's inequality for a tuple of non-commutative random variable with the logarithmic entropy replaced by Voiculescu's free entropy? Partial result was proved using random matrix approximation by Hiai and Ueda for the case

$$E(a_1, a_2, \ldots, a_n) = \sum_{i=1}^n \tau(Q_i(a_i)) - \chi(a_1, a_2, \ldots, a_n).$$