CYCLE DECOMPOSITION OF QUANTUM MARKOV SEMIGROUPS AND

NON-EQUILIBRIUM PHENOMENA

Franco Fagnola

joint work with V. Umanità

http://www.mate.polimi.it/qp franco.fagnola@polimi.it

Free Probabilities, Operator Spaces and von Neumann Algebras

Sibiu, June 9-16, 2007

Outline

• irreversible evolution (Markov)

semigroup of (completely) positive maps

• stationary regime

 \searrow invariant state ho for c.p. maps \mathcal{T}_t

• equilibrium regime

 $\searrow \mathcal{T}_t$ symmetric $(\mathcal{T}_t = \widetilde{\mathcal{T}}_t \ \rho$ -dual)

• non-equilibrium regime

... lack of good characterisations

Outline - 2

Proposal: find good representations of

$$\mathcal{L}-\widetilde{\mathcal{L}}$$

generators of (\mathcal{T}_t) and $(\widetilde{\mathcal{T}}_t)$

Models:

- Spohn Lebowitz, CMP 54 (1977)
- Gallavotti Cohen, JSP 80 (1995)
- Rey-Bellet Thomas, CMP 215 (2000),
 CMP 225 (2002)
- Accardi Imafuku, quant-ph/0209088 (2002)

Common feature:

 $\mathcal{L}-\widetilde{\mathcal{L}}$ must show *micro-currents*.

Reversible Markov Chains

 $T = (T_{ij})_{i,j \in E}$ stochastic matrix

$$T_{ij} > 0, \qquad \sum_{j \in E} T_{ij} = 1,$$

E countable.

 $\pi = (\pi_j)_{j \in E}$ faithful invariant distribution

$$\pi_i > 0, \ \sum_{j \in E} \pi_j = 1, \quad \pi_j = \sum_{k \in E} \pi_k T_{kj}$$

Def. (T,π) is reversible (or π is an equilibrium distribution for T) if

$$\pi_i T_{ij} = \pi_j T_{ji}, \quad \forall i, j \quad (detailed balance)$$

Rem. Scalar product on $L^2(E;\pi)$

$$\langle g, f \rangle = \sum_{j \in E} \pi_j \bar{g}_j f_j$$

 (T,π) is reversible if and only if

$$\langle g, Tf \rangle = \langle Tg, f \rangle$$

Reversible MC - time continuous case

 $T(t) := (T_{ij}(t))_{i,j \in E}$ transition op. at time t

$$T_{ij}(t) \ge 0, \quad \sum_{j \in E} T_{ij}(t) = 1,$$

semigroup prop. $T(t+s) = T(t)T(s), t, s \ge 0$

Generator $Q = (q_{ij})_{i,j \in E}$

$$q_{ij} = \lim_{t \to 0^+} \frac{T_{ij}(t) - \delta_{ij}}{t}$$

$$\pi_i T_{ij}(t) = \pi_j T_{ji}(t) \ \forall t \quad \Leftrightarrow \quad \pi_i q_{ij} = \pi_j q_{ji}$$

 π -dual \widetilde{T}

$$\langle g, T(t)f \rangle = \sum_{j \in E} \pi_i \bar{g}_i T_{ij}(t) f_j = \langle \tilde{T}(t)g, f \rangle$$

$$\widetilde{T}(t)g = \pi^{-1}T^*(t)(\pi g)$$

Deviation from equilibrium

"distance" between T and \widetilde{T}

"distance" between $\,Q\,$ and $\,\widetilde{Q}\,$

$$M_{\pi}Q$$
 $M_{\pi}\widetilde{Q}=Q^*M_{\pi}$ $(i,j)
ightarrow \pi_i q_{ij}$ \uparrow \uparrow forward backward

probability densities on $E \times E$

Equilibrium-deviation can be "measured" by

- 1) numerical index: relative entropy,
- 2) currents $\pi_i q_{ij} \pi_j q_{ji} = (M_{\pi} Q Q^* M_{\pi})_{ij}$,
- 3) structure of $M_{\pi}Q Q^*M_{\pi}$.

Cycle decomp. of classical Markov chains

Finite Markov Chain, transition matrix (q_{ij})

Defn. A n-cycle is n-tuple of transitions

$$i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_n \rightarrow i_{n+1} = i_1$$

 i_1, \ldots, i_n distinct.

Thm. (Cycle decomposition)

$$\pi_i q_{ij} = \sum_{c \in \mathcal{C}} w_c J_c(i,j)$$

- ullet ${\cal C}$ family of cycles,
- J_c (shift $i_1 \to i_2 \to \cdots \to i_n$) passage matrix $J_c(h,k)=1$ if $h=i_\ell, k=i_{\ell+1}$ for some ℓ $J_c(h,k)=0$ otherwise
- $w_c > 0$ constants

Corollary

$$\pi_i q_{ij} - \pi_j q_{ji} = \sum_{c \in \mathcal{C}} w_c \left(J_c(i,j) - J_{c^-}(i,j) \right)$$

where c^- is the reverse of the cycle c.

Rem. Defining

$$ar{J}_c(h,k) = J_c(h,k) = 1$$
 if $h = i_\ell, k = i_{\ell+1}$ $ar{J}_c(h,k) = \delta_{hk}$ otherwise

(completion of J_c to a full permutation matrix) $\bar{J}_{c^-} = \bar{J}_c^{-1}$ and the unitary matrices \bar{J}_c define automorphisms of $\ell^{\infty}(E)$.

$$M_{\pi}Q - Q^*M_{\pi} = \sum_{c \in \mathcal{C}} w_c \left(\bar{J}_c - \bar{J}_{c^-} \right)$$

Non-equilibrium

Simplest model: $E = \{1, 2, 3\}$

$$Q = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}, \quad \tilde{Q} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$Q - \widetilde{Q} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

1 cycle, $Q-\widetilde{Q}=$ right shift - left shift, $w_c=1$

Further models:

"distance" from equilibrium related to: minimal number of cycles, values w_c , ...

noncommutative versions ...

Quantum Markov Semigroups

h complex separable Hilbert space

 $\mathcal{T} = (\mathcal{T}_t)_{t \geq 0}$ semigroup of completely positive, identity preserving maps on $\mathcal{B}(h)$.

 ρ faithful normal invariant state

$$\operatorname{tr}(\rho \mathcal{T}_t(x)) = \operatorname{tr}(\rho x) \quad \forall t \quad \text{i.e.} \quad \mathcal{T}_{*t}(\rho) = 0$$
 $\mathcal{T}_* = (\mathcal{T}_{*t})_{t \geq 0}$ predual semigroup.

Dual semigroup(s) $\widetilde{\mathcal{T}}$ with respect to ρ

$$\operatorname{tr}(\rho \widetilde{\mathcal{T}}_t(x)y) = \operatorname{tr}(\rho x \mathcal{T}_t(y))$$
 or $\operatorname{tr}(\rho^s \widetilde{\mathcal{T}}_t(x)\rho^{1-s}y) = \operatorname{tr}(\rho^s x \rho^{1-s} \mathcal{T}_t(y))$ $s \in [0,1]$

$$\widetilde{T}_t(x) = \rho^{-(1-s)} T_{*t}(\rho^{1-s} x \rho^s) \rho^{-s}$$

Contrary to comm. case \tilde{T} may not be *-map, i.e. $\tilde{T}_t(a)^* \neq \tilde{T}_t(a^*)$ for some a if $s \neq 1/2$.

When is \widetilde{T} a QMS for s = 0?

$$\widetilde{\mathcal{T}}_t(x) = \rho^{-1} \mathcal{T}_{*t}(\rho x)$$

$$(\widetilde{\mathcal{T}}_t(x))^* = \widetilde{\mathcal{T}}_t(x^*) \Rightarrow \widetilde{\mathcal{T}}_t(x) = \mathcal{T}_{*t}(x\rho)\rho^{-1}$$
$$\Rightarrow \rho^{-1}\mathcal{T}_{*t}(\rho x) = \mathcal{T}_{*t}(x\rho)\rho^{-1}$$
$$\Rightarrow \rho^{-1}\mathcal{T}_{*t}(\rho x\rho^{-1})\rho = \mathcal{T}_{*t}(x)$$

If
$$\sigma_t(a) := \rho^{it} a \rho^{-it}$$
 then
$$\mathcal{T}_{*t} \circ \sigma_{-i} = \sigma_{-i} \circ \mathcal{T}_{*t} \text{ and } \mathcal{T}_t \circ \sigma_{-i} = \sigma_{-i} \circ \mathcal{T}_t$$

Thm. (F-G-K-V) (under some assumptions) $\widetilde{\mathcal{T}}$ is a QMS if and only if $\mathcal{T}_t \circ \sigma_{-i} = \sigma_{-i} \circ \mathcal{T}_t$.

Thm. (Majewski-Streater, J Phys A **31** '88) $\widetilde{\mathcal{T}}$ is a QMS if and only if $\widetilde{\mathcal{T}}$ is a *-map. In this case $\mathcal{T}_t \circ \sigma_z = \sigma_z \circ \mathcal{T}_t$ ($|z| \leq 1/2$) and duals of \mathcal{T} for $s \in [0,1]$ coincide.

Quantum detailed balance (QDB)

QMS ${\mathcal T}$ with dual $\widetilde{{\mathcal T}}$ which is still a QMS and

$$\mathcal{L}(a) - \widetilde{\mathcal{L}}(a) = 2i [K, a], \qquad K = K^*.$$

Remark 1. ρ is invariant state for \mathcal{T} and $\widetilde{\mathcal{T}}$. Consequence $[K, \rho] = 0$.

Remark 2. In the commutative case there is no derivation $a \to i[K, a]$ because derivations $\delta: \ell^{\infty}(E) \to \ell^{\infty}(E)$ (E discrete!) are trivial.

$$\delta(1_{\{j\}}) = \delta(1_{\{j\}}^2) = 2\delta(1_{\{j\}})1_{\{j\}}$$

$$\Rightarrow \delta(1_{\{j\}}) = \varphi_j 1_{\{j\}}, \quad 0 = \delta(1) = \sum_j \varphi_j 1_{\{j\}}$$

Remark 3. $\widetilde{\mathcal{L}} = \mathcal{L} - 2i[K,\cdot]$ is conditionally completely positive $\Rightarrow \widetilde{\mathcal{T}}$ is a QMS and both $\widetilde{\mathcal{T}}_t$, $\widetilde{\mathcal{L}}$ commute with σ_{-i}

Generators commuting with σ_{-i}

Theorem (FF-VU, **IDAQP** '07) A generator \mathcal{L} commutes with σ_{-i} if and only if

$$\mathcal{L}(a) = G^*a + \Phi(a) + aG$$

- 1) $[G, \rho] = 0$,
- 2) Φ completely positive commuting with σ_{-i} ,
- 3) structure $\Phi(a) = \sum_{\ell} L_{\ell}^* a L_{\ell}$ where $\sigma_{-i}(L_{\ell}) = \lambda_{\ell} L_{\ell}, \lambda_{\ell} > 0$,
- 4) G and Φ with the above properties are unique.

Indeed, G is unique up to irI with $r \in \mathbb{R}$.

Corollary. If \mathcal{L} commutes with σ_{-i} then

$$\widetilde{\mathcal{L}}(a) = Ga + \widetilde{\Phi}(a) + aG^*$$

where

$$\widetilde{\Phi}(a) = \sum_{\ell} \lambda_{\ell}^{-1} L_{\ell} a L_{\ell}^{*}$$

Deviation from q-detailed balance

$$\mathcal{L}(a) = G^* a + \Phi(a) + aG$$

$$\widetilde{\mathcal{L}}(a) = Ga + \widetilde{\Phi}(a) + aG^*$$

$$\Phi(a) = \sum_{\ell} L_{\ell}^* a L_{\ell} \qquad \widetilde{\Phi}(a) = \sum_{\ell} \lambda_{\ell}^{-1} L_{\ell} a L_{\ell}^*$$

Putting
$$G - G^* = 2iK$$
, (K self-adjoint)

$$\mathcal{L}(a) - \widetilde{\mathcal{L}}(a) - 2i[K, a] = \Phi(a) - \widetilde{\Phi}(a)$$

Deviation from QDB: $\Phi - \widetilde{\Phi}$

Commutative inspiration:

write it as difference of automorphisms ...

Non commutative examples

Two-level systems

 $h=\mathbb{C}^2$. \mathcal{T} , $\widetilde{\mathcal{T}}$ are QMS iff

$$\mathcal{L}(a) = i[H, a] - \frac{\eta^2}{2} \left(L^2 a - 2LaL + aL^2 \right)$$
$$- \frac{\lambda^2}{2} \left(\sigma^- \sigma^+ a - 2\sigma^- a\sigma^+ + a\sigma^- \sigma^+ \right)$$
$$- \frac{\mu^2}{2} \left(\sigma^+ \sigma^- a - 2\sigma^+ a\sigma^- + a\sigma^+ \sigma^- \right),$$

with $[L,\rho]=0=[H,\rho]$, $\eta,\lambda,\mu\geq 0$ and

$$\sigma^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad \sigma^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

Consequence: QDB holds.

As in the commuative case!

Three-level system

 $\widetilde{\mathcal{T}}$ QMS; no q-detailed balance

$$h = \mathbb{C}^3$$
 (e_1, e_2, e_3) basis,

$$Se_j = e_{j+1} \qquad (\text{mod 3})$$

$$\mathcal{L}(a) = S^*aS - a$$

$$\rho = \frac{I}{3}$$
 (normalized trace)

$$\widetilde{\mathcal{L}}(a) = SaS^* - a$$

 \mathcal{T} , $\widetilde{\mathcal{T}}$ are QMSs, QDB does not hold

$$\mathcal{L}(a) - \widetilde{\mathcal{L}}(a) = S^*aS - SaS^*$$

Non-equilibrium (\mathcal{T}, ρ) : classification

Natural generalisation: for $x \in \mathcal{B}(h)$ write

$$\rho^{\frac{1}{2}} \left(\mathcal{L}(x) - \widetilde{\mathcal{L}}(x) - 2i[H, x] \right) \rho^{\frac{1}{2}}$$

equal to

$$\rho^{\frac{1}{2}} \left(\Phi(x) - \widetilde{\Phi}(x) \right) \rho^{\frac{1}{2}}$$

in the form

$$\sum_{c \in \mathcal{C}} w_c \left(U_c^* x U_c - U_c x U_c^* \right)$$

with

- ullet U_c unitary
- $w_c > 0$

Generic QMSs - d levels

$$\mathsf{h} = \mathbb{C}^d$$
, $(e_j)_{1 \leq j \leq d}$ o.n. basis, $E_k^j = |e_k\rangle\langle e_j|$

$$\mathcal{L}(x) = G^*x + \Phi(x) + xG$$

$$Ge_j = -\left(\frac{\mu_j}{2} + i\kappa_j\right)e_j, \qquad He_j = i\kappa_j e_j$$

$$\Phi(x) = \sum_{j,k} \varphi_{jk} |e_j\rangle\langle e_k | x |e_k\rangle\langle e_j |$$

where $\mu_j, \varphi_{jk} > 0$, $\kappa_j \in \mathbb{R}$

$$\mu_j = \sum_k \varphi_{jk} \quad \Rightarrow \quad \mathcal{L}(I) = 0$$

Invariant state

$$\rho = \sum_{j} \rho_{j} |e_{j}\rangle\langle e_{j}|$$

Rem. Generic QMSs form an open dense set in the class of QMSs obtained from the stochastic (weak-coupling) limit.

Generic QMSs - d levels (cont.)

Putting

$$w_{jk} := \rho_j \varphi_{jk} - \rho_k \varphi_{kj}$$

we can write $\rho^{\frac{1}{2}} \left(\varPhi(x) - \widetilde{\varPhi}(x) \right) \rho^{\frac{1}{2}}$ as

$$\sum_{j < k < d} w_{jk} \left(\frac{1}{d} \sum_{m=1}^{d} \left(U_m^{(jk)*} x U_m^{(jk)} - U_m^{(jk)} x U_m^{(jk)*} \right) \right)$$

where

$$U_m^{(jk)} = e^{\frac{2\pi i}{d}mj} |e_k\rangle\langle e_j| + e^{\frac{2\pi i}{d}mk} |e_d\rangle\langle e_k|$$

$$+ e^{\frac{2\pi i}{d}md} |e_k\rangle\langle e_d| + \sum_{h\neq j,k,d} e^{\frac{2\pi i}{d}mh} |e_h\rangle\langle e_h|$$

Impossible to write $\rho^{\frac{1}{2}}\left(\Phi(x)-\widetilde{\Phi}(x)\right)\rho^{\frac{1}{2}}$ as

$$\sum_{j < k < d} w_{jk} \left(V^{(jk)*} x V^{(jk)} - V^{(jk)} x V^{(jk)*} \right)$$

for unitaries $V^{(jk)}$.