# A trace on the C\*-algebra of geometric operators on self-similar graphs

#### Daniele Guido, Università di Roma Tor Vergata

Sibiu, June 12th, 2007

ヘロト ヘアト ヘビト ヘビト

1

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs

# Outline

- Traces for geometric operators on graphs and CW-complexes
- Applications:
  - Geometric invariants for self-similar CW-complexes (joint work with F. Cipriani and T. Isola, [math.OA/0607603]).
  - Ihara Zeta functions (joint work with T. Isola and M. Lapidus, [math.OA/0605753, to appear on Proceedings of Bedlewo - math.OA/0608060, to appear on Transactions AMS - math.OA/0608229]).
  - Bose-Einstein condensation for pure-hopping Hamiltonian on graphs (joint work with F. Fidaleo and T. Isola, work in progress).

ヘロン ヘアン ヘビン ヘビン

æ

#### Graph: X = (VX, EX), VX vertices, EX edges.

Simple: an edge is an unordered pair of distinct vertices. Distance: Let  $\partial : \ell^2(EX) \to \ell^2(VX)$  the boundary operator, and say that for  $v_1 \neq v_2 \in VX$ ,  $d(v_1, v_2) = 1$  if  $(\partial^* v_1, \partial^* v_2) \neq 0$ . Then endow *VX* with the corresponding path distance. Amenable graph: An exhaustion  $\mathcal{K} = \{K_n\}_{n \in \mathbb{N}}$  by finite subgraphs of *X* is amenable if

$$\lim_{n}\frac{|V\mathcal{F}K_{n}|}{|VK_{n}|}=0,$$

where  $v \in V \mathcal{F} K_n$  if  $v \in V K_n$  and has distance 1 from a vertex in  $(V K_n)^c$ . A graph is amenable if it has an amenable exhaustion.

・ロト ・ 理 ト ・ ヨ ト ・

#### Graph: X = (VX, EX), VX vertices, EX edges. Simple: an edge is an unordered pair of distinct vertices.

Distance: Let  $\partial : \ell^2(EX) \to \ell^2(VX)$  the boundary operator, and say that for  $v_1 \neq v_2 \in VX$ ,  $d(v_1, v_2) = 1$  if  $(\partial^* v_1, \partial^* v_2) \neq 0$ . Then endow *VX* with the corresponding path distance. Amenable graph: An exhaustion  $\mathcal{K} = \{K_n\}_{n \in \mathbb{N}}$  by finite subgraphs of *X* is amenable if

$$\lim_{n}\frac{|V\mathcal{F}K_{n}|}{|VK_{n}|}=0,$$

where  $v \in V \mathcal{F} K_n$  if  $v \in V K_n$  and has distance 1 from a vertex in  $(V K_n)^c$ . A graph is amenable if it has an amenable exhaustion.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Graph: X = (VX, EX), VX vertices, EX edges. Simple: an edge is an unordered pair of distinct vertices. Distance: Let  $\partial : \ell^2(EX) \to \ell^2(VX)$  the boundary operator, and say that for  $v_1 \neq v_2 \in VX$ ,  $d(v_1, v_2) = 1$  if  $(\partial^* v_1, \partial^* v_2) \neq 0$ . Then endow VX with the corresponding path distance. Amenable graph: An exhaustion  $\mathcal{K} = \{K_n\}_{n \in \mathbb{N}}$  by finite subgraphs of X is amenable if

$$\lim_{n}\frac{|V\mathcal{F}K_{n}|}{|VK_{n}|}=0,$$

where  $v \in V \mathcal{F} K_n$  if  $v \in V K_n$  and has distance 1 from a vertex in  $(V K_n)^c$ . A graph is amenable if it has an amenable exhaustion.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Graph: X = (VX, EX), *VX* vertices, *EX* edges. Simple: an edge is an unordered pair of distinct vertices. Distance: Let  $\partial : \ell^2(EX) \to \ell^2(VX)$  the boundary operator, and say that for  $v_1 \neq v_2 \in VX$ ,  $d(v_1, v_2) = 1$  if  $(\partial^* v_1, \partial^* v_2) \neq 0$ . Then endow *VX* with the corresponding path distance. Amenable graph: An exhaustion  $\mathcal{K} = \{K_n\}_{n \in \mathbb{N}}$  by finite subgraphs of *X* is amenable if

$$\lim_{n}\frac{|V\mathcal{F}K_{n}|}{|VK_{n}|}=0,$$

where  $v \in V\mathcal{F}K_n$  if  $v \in VK_n$  and has distance 1 from a vertex in  $(VK_n)^c$ . A graph is amenable if it has an amenable exhaustion.

イロト 不得 とくほ とくほ とうほ

# A trace on finite propagation operators.

An operator  $T \in \mathcal{B}(\ell^2(VX))$  has finite propagation  $\rho$  if  $d(v_1, v_2) > \rho$  implies  $(\delta_{v_1}, T\delta_{v_2}) = 0$ .

#### Proposition

The norm closure  $\mathcal{A}_{X}^{FP}$  of finite propagation operators is a  $C^*$ -algebra.

 $(X, \mathcal{K})$  amenable graph,  $\mathcal{A} \subset \mathcal{A}_X^{FP} \mathbb{C}^*$ -algebra. <u>Limit condition</u>:  $\forall T \in \mathcal{A} \quad \exists \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}$ , where  $P_n$  denotes the orthogonal projection on  $\ell^2(VK_n)$ .

#### Theorem

In this case  $\tau(T) = \lim_{n} \frac{\operatorname{tr} TP_{n}}{\operatorname{tr} P_{n}}$  is a trace state on  $\mathcal{A}$ .

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs

# A trace on finite propagation operators.

An operator  $T \in \mathcal{B}(\ell^2(VX))$  has finite propagation  $\rho$  if  $d(v_1, v_2) > \rho$  implies  $(\delta_{v_1}, T\delta_{v_2}) = 0$ .

#### Proposition

The norm closure  $\mathcal{A}_{\chi}^{FP}$  of finite propagation operators is a  $C^*$ -algebra.

 $(X, \mathcal{K})$  amenable graph,  $\mathcal{A} \subset \mathcal{A}_X^{FP} \mathbb{C}^*$ -algebra. <u>Limit condition</u>:  $\forall T \in \mathcal{A} \quad \exists \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}$ , where  $P_n$  denotes the orthogonal projection on  $\ell^2(VK_n)$ .

#### Theorem

In this case 
$$\tau(T) = \lim_{n} \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}$$
 is a trace state on  $\mathcal{A}$ .

### Geometric operators.

A *local isomorphism* of the graph X is a triple  $(s(\gamma), r(\gamma), \gamma)$  where  $s(\gamma), r(\gamma)$  are subgraphs of X and  $\gamma : s(\gamma) \to r(\gamma)$  is a graph isomorphism.

Let  $\mathcal{G}$  be a family of local isomorphisms.  $T \in \mathcal{B}(\ell^2(VX))$  is  $\mathcal{G}$ -geometric if  $\exists \rho > 0$ :

• T has finite propagation  $\rho$ ,

• if 
$$\gamma \in \mathcal{G}$$
,  $B(v, \rho) \subset s(\gamma)$ ,  $B(\gamma v, \rho) \subset r(\gamma)$  then  
 $(T\lambda_{\gamma} - \lambda_{\gamma}T)\delta_{v} = 0$  and  $(T^{*}\lambda_{\gamma} - \lambda_{\gamma}T^{*})\delta_{v} = 0$ , where  $\lambda_{\gamma}$  is  
the partial isometry determined by  
 $\begin{cases} \lambda_{\gamma}\delta_{v} = \delta_{\gamma v} & \text{if } v \in s(\gamma) \\ \lambda_{\gamma}\delta_{v} = 0 & \text{if } v \notin s(\gamma) \end{cases}$ 

ヘロン 人間 とくほ とくほ とう

## Geometric operators.

A *local isomorphism* of the graph *X* is a triple  $(s(\gamma), r(\gamma), \gamma)$ where  $s(\gamma), r(\gamma)$  are subgraphs of *X* and  $\gamma : s(\gamma) \to r(\gamma)$  is a graph isomorphism. Let  $\mathcal{G}$  be a family of local isomorphisms.  $T \in \mathcal{B}(\ell^2(VX))$  is  $\mathcal{G}$ -geometric if  $\exists \rho > 0$ :

• T has finite propagation  $\rho$ ,

• if 
$$\gamma \in \mathcal{G}$$
,  $B(v, \rho) \subset s(\gamma)$ ,  $B(\gamma v, \rho) \subset r(\gamma)$  then  
 $(T\lambda_{\gamma} - \lambda_{\gamma}T)\delta_{v} = 0$  and  $(T^{*}\lambda_{\gamma} - \lambda_{\gamma}T^{*})\delta_{v} = 0$ , where  $\lambda_{\gamma}$  is  
the partial isometry determined by  
 $\begin{cases} \lambda_{\gamma}\delta_{v} = \delta_{\gamma v} & \text{if } v \in s(\gamma) \\ \lambda_{\gamma}\delta_{v} = 0 & \text{if } v \notin s(\gamma) \end{cases}$ 

ヘロン 人間 とくほ とくほ とう

## Geometric operators.

A *local isomorphism* of the graph *X* is a triple  $(s(\gamma), r(\gamma), \gamma)$ where  $s(\gamma), r(\gamma)$  are subgraphs of *X* and  $\gamma : s(\gamma) \rightarrow r(\gamma)$  is a graph isomorphism. Let *G* be a family of local isomorphisms.  $T \in \mathcal{B}(\ell^2(VX))$  is *G*-geometric if  $\exists \rho > 0$ :

• T has finite propagation  $\rho$ ,

• if 
$$\gamma \in \mathcal{G}$$
,  $\mathcal{B}(v, \rho) \subset s(\gamma)$ ,  $\mathcal{B}(\gamma v, \rho) \subset r(\gamma)$  then  
 $(T\lambda_{\gamma} - \lambda_{\gamma}T)\delta_{v} = 0$  and  $(T^{*}\lambda_{\gamma} - \lambda_{\gamma}T^{*})\delta_{v} = 0$ , where  $\lambda_{\gamma}$  is  
the partial isometry determined by  
 $\begin{cases} \lambda_{\gamma}\delta_{v} = \delta_{\gamma v} & \text{if } v \in s(\gamma) \\ \lambda_{\gamma}\delta_{v} = 0 & \text{if } v \notin s(\gamma) \end{cases}$ 

ヘロン 人間 とくほとく ほとう

#### Proposition

The norm closure  $A_{X,G}$  of the set of G-geometric operators is a  $C^*$ -algebra.

Recall that  $\Delta := \partial \partial^* = D - A$ , where *D* is the diagonal degree matrix and *A* is the adjacency matrix. Then *D* and *A* are geometric operators.

イロト イポト イヨト イヨト 三日

Let X be a (regular, bounded) CW-complex:

• 
$$\mathcal{E}_{j}(X)$$
 *j*-cells,  $\mathcal{E}(X) = \bigcup_{j=1}^{p} \mathcal{E}_{j}(X)$   
 $\ell^{2}(\mathcal{E}(X)) = \bigoplus_{j=1}^{p} \ell^{2}(\mathcal{E}_{j}(M)),$ 

• Boundary:  $\partial_j : \ell^2(\mathcal{E}_j(X)) \to \ell^2(\mathcal{E}_{j-1}(X))$ 

Distance: σ ∈ E<sub>j-1</sub>(M), τ ∈ E<sub>j</sub>(M), d(σ, τ) = 1 if
 (σ, ∂τ) ≠ 0. d is extended to a distance on E(X) via path length.

Amenable exhaustions, local isomorphisms, finite propagation operators and  $\mathcal{G}$ -geometric operators can be defined analogously.

ヘロン 人間 とくほとく ほとう

Let X be a (regular, bounded) CW-complex:

• 
$$\mathcal{E}_{j}(X)$$
 *j*-cells,  $\mathcal{E}(X) = \bigcup_{j=1}^{p} \mathcal{E}_{j}(X)$   
 $\ell^{2}(\mathcal{E}(X)) = \bigoplus_{j=1}^{p} \ell^{2}(\mathcal{E}_{j}(M)),$ 

- Boundary:  $\partial_j : \ell^2(\mathcal{E}_j(X)) \to \ell^2(\mathcal{E}_{j-1}(X))$
- Distance: σ ∈ ε<sub>j-1</sub>(M), τ ∈ ε<sub>j</sub>(M), d(σ, τ) = 1 if
   (σ, ∂τ) ≠ 0. d is extended to a distance on ε(X) via path length.

Amenable exhaustions, local isomorphisms, finite propagation operators and  $\mathcal{G}$ -geometric operators can be defined analogously.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Let X be a (regular, bounded) CW-complex:

• 
$$\mathcal{E}_{j}(X)$$
 *j*-cells,  $\mathcal{E}(X) = \bigcup_{j=1}^{p} \mathcal{E}_{j}(X)$   
 $\ell^{2}(\mathcal{E}(X)) = \bigoplus_{j=1}^{p} \ell^{2}(\mathcal{E}_{j}(M)),$ 

• Boundary: 
$$\partial_j : \ell^2(\mathcal{E}_j(X)) \to \ell^2(\mathcal{E}_{j-1}(X))$$

Distance: σ ∈ E<sub>j-1</sub>(M), τ ∈ E<sub>j</sub>(M), d(σ, τ) = 1 if
 (σ, ∂τ) ≠ 0. d is extended to a distance on E(X) via path length.

Amenable exhaustions, local isomorphisms, finite propagation operators and  $\mathcal{G}$ -geometric operators can be defined analogously.

イロト 不得 とくほ とくほ とうほ

Let X be a (regular, bounded) CW-complex:

• 
$$\mathcal{E}_{j}(X)$$
 *j*-cells,  $\mathcal{E}(X) = \bigcup_{j=1}^{p} \mathcal{E}_{j}(X)$   
 $\ell^{2}(\mathcal{E}(X)) = \bigoplus_{j=1}^{p} \ell^{2}(\mathcal{E}_{j}(M)),$ 

• Boundary: 
$$\partial_j : \ell^2(\mathcal{E}_j(X)) \to \ell^2(\mathcal{E}_{j-1}(X))$$

Distance: σ ∈ E<sub>j-1</sub>(M), τ ∈ E<sub>j</sub>(M), d(σ, τ) = 1 if
 (σ, ∂τ) ≠ 0. d is extended to a distance on E(X) via path length.

Amenable exhaustions, local isomorphisms, finite propagation operators and  $\mathcal{G}$ -geometric operators can be defined analogously.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

#### Theorem

The norm closure  $A_{X,\mathcal{G}}$  of the set of  $\mathcal{G}$ -geometric operators is a  $C^*$ -algebra. If  $A_{X,\mathcal{G}}$  satisfies the limit condition, with  $P_n$  the orthogonal projection on  $\bigoplus_j \ell^2(\mathcal{E}_j K_n)$ ,

$$\tau_{\mathcal{X},\mathcal{G},\mathcal{K}}(T) = \lim_{n} \frac{\operatorname{tr} TP_{n}}{\operatorname{tr} P_{n}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

is a trace state on  $\mathcal{A}_{X,\mathcal{G}}$ .

#### *X* a simple graph with bounded degree, *VX* countably infinite, $\Gamma < Aut(X)$ discrete group, acting freely [i.e. $\Gamma_v$ is trivial, $\forall v \in VX$ ], *X*/ $\Gamma$ finite graph.

Γ gives global isomorphisms for *X*, hence we may consider the Γ-geometric operators, and the corresponding C\*-algebra  $A_{X,\Gamma}$ . The weak closure of  $A_{X,\Gamma}$  is endowed with the trace state

$$\tau_{X,\Gamma}(T) = \frac{1}{|\mathcal{F}_0|} \sum_{v \in \mathcal{F}_0} (v, Tv),$$

where  $\mathcal{F}_0 \subset X$  contains one representative for any point of  $X/\Gamma$ . If  $\Gamma$  is amenable, Følner condition gives an amenable exhaustion. Then,  $\forall T \in \mathcal{A}_{X,\Gamma}$ ,

$$\tau_{X,\Gamma}(T) = \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}.$$

ヘロン ヘアン ヘビン ヘビン

*X* a simple graph with bounded degree, *VX* countably infinite,  $\Gamma < Aut(X)$  discrete group, acting freely [i.e.  $\Gamma_v$  is trivial,  $\forall v \in VX$ ], *X*/ $\Gamma$  finite graph.

Γ gives global isomorphisms for *X*, hence we may consider the Γ-geometric operators, and the corresponding C\*-algebra  $A_{X\Gamma}$ .

The weak closure of  $A_{X,\Gamma}$  is endowed with the trace state

$$\tau_{X,\Gamma}(T) = \frac{1}{|\mathcal{F}_0|} \sum_{v \in \mathcal{F}_0} (v, Tv),$$

where  $\mathcal{F}_0 \subset X$  contains one representative for any point of  $X/\Gamma$ . If  $\Gamma$  is amenable, Følner condition gives an amenable exhaustion. Then,  $\forall T \in \mathcal{A}_{X,\Gamma}$ ,

$$\tau_{X,\Gamma}(T) = \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}.$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

*X* a simple graph with bounded degree, *VX* countably infinite,  $\Gamma < Aut(X)$  discrete group, acting freely [i.e.  $\Gamma_v$  is trivial,  $\forall v \in VX$ ], *X*/ $\Gamma$  finite graph.

Γ gives global isomorphisms for *X*, hence we may consider the Γ-geometric operators, and the corresponding C\*-algebra  $A_{X,\Gamma}$ . The weak closure of  $A_{X,\Gamma}$  is endowed with the trace state

$$\tau_{X,\Gamma}(T) = \frac{1}{|\mathcal{F}_0|} \sum_{\boldsymbol{\nu}\in\mathcal{F}_0} (\boldsymbol{\nu},T\boldsymbol{\nu}),$$

where  $\mathcal{F}_0 \subset X$  contains one representative for any point of  $X/\Gamma$ . If  $\Gamma$  is amenable, Følner condition gives an amenable exhaustion. Then,  $\forall T \in \mathcal{A}_{X,\Gamma}$ ,

$$\tau_{X,\Gamma}(T) = \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}.$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

*X* a simple graph with bounded degree, *VX* countably infinite,  $\Gamma < Aut(X)$  discrete group, acting freely [i.e.  $\Gamma_v$  is trivial,  $\forall v \in VX$ ],  $X/\Gamma$  finite graph.

Γ gives global isomorphisms for *X*, hence we may consider the Γ-geometric operators, and the corresponding C\*-algebra  $A_{X,\Gamma}$ . The weak closure of  $A_{X,\Gamma}$  is endowed with the trace state

$$\tau_{X,\Gamma}(T) = \frac{1}{|\mathcal{F}_0|} \sum_{\boldsymbol{\nu}\in\mathcal{F}_0} (\boldsymbol{\nu},T\boldsymbol{\nu}),$$

where  $\mathcal{F}_0 \subset X$  contains one representative for any point of  $X/\Gamma$ . If  $\Gamma$  is amenable, Følner condition gives an amenable exhaustion. Then,  $\forall T \in \mathcal{A}_{X,\Gamma}$ ,

$$\tau_{X,\Gamma}(T) = \lim_n \frac{\operatorname{tr} TP_n}{\operatorname{tr} P_n}.$$

・ロト ・ 理 ト ・ ヨ ト ・

# Self-similar CW-complexes

#### An amenable CW-complex $(X, \mathcal{K})$ is *self-similar* if:

#### Theorem

# Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

**1**  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n, n+1)} \gamma_j \Big( \mathcal{E}_j(K_n) \Big) = \mathcal{E}_j(K_{n+1})$ ,

•  $\mathcal{E}_{j}\gamma(K_{n})\cap\mathcal{E}_{j}\gamma'(K_{n})=\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n}))\cap\mathcal{F}(\mathcal{E}_{j}\gamma'(K_{n}), \gamma\neq\gamma')$ 

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

$$S(\gamma) = \kappa_n,$$
  
$$\bigcup \qquad \gamma_j \Big( \mathcal{E}_j(K_n) \Big) = \mathcal{E}_j(K_{n+1})$$

• 
$$\mathcal{E}_{j}\gamma(K_{n})\cap\mathcal{E}_{j}\gamma'(K_{n})=\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n}))\cap\mathcal{F}(\mathcal{E}_{j}\gamma'(K_{n}),\gamma\neq 0)$$

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n,n+1)} \gamma_j (\mathcal{E}_j(K_n)) = \mathcal{E}_j(K_{n+1})$ ,

• 
$$\mathcal{E}_{j}\gamma(K_{n})\cap\mathcal{E}_{j}\gamma'(K_{n})=\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n}))\cap\mathcal{F}(\mathcal{E}_{j}\gamma'(K_{n}), \gamma\neq\gamma')$$

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n,n+1)} \gamma_j \Big( \mathcal{E}_j(K_n) \Big) = \mathcal{E}_j(K_{n+1})$ ,  
•  $\mathcal{E}_j \gamma(K_n) \cap \mathcal{E}_j \gamma'(K_n) = \mathcal{F}(\mathcal{E}_j \gamma(K_n)) \cap \mathcal{F}(\mathcal{E}_j \gamma'(K_n), \gamma \neq \gamma')$ 

② Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n,n+1)} \gamma_j \Big( \mathcal{E}_j(K_n) \Big) = \mathcal{E}_j(K_{n+1})$ ,  
•  $\mathcal{E}_j \gamma(K_n) \cap \mathcal{E}_j \gamma'(K_n) = \mathcal{F}(\mathcal{E}_j \gamma(K_n)) \cap \mathcal{F}(\mathcal{E}_j \gamma'(K_n), \gamma \neq \gamma')$ 

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

 $\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1} \mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$ 

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n,n+1)} \gamma_j (\mathcal{E}_j(K_n)) = \mathcal{E}_j(K_{n+1})$ ,  
•  $\mathcal{E}_j \gamma(K_n) \cap \mathcal{E}_j \gamma'(K_n) = \mathcal{F}(\mathcal{E}_j \gamma(K_n)) \cap \mathcal{F}(\mathcal{E}_j \gamma'(K_n), \gamma \neq \gamma')$ 

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

### Self-similar CW-complexes

An amenable CW-complex  $(X, \mathcal{K})$  is *self-similar* if:

•  $\mathcal{G}(n, n+1)$  finite set of local isomorphisms such that:

• 
$$s(\gamma) = K_n$$
,  
•  $\bigcup_{\gamma \in \mathcal{G}(n,n+1)} \gamma_j \Big( \mathcal{E}_j(K_n) \Big) = \mathcal{E}_j(K_{n+1})$ ,  
•  $\mathcal{E}_j \gamma(K_n) \cap \mathcal{E}_j \gamma'(K_n) = \mathcal{F}(\mathcal{E}_j \gamma(K_n)) \cap \mathcal{F}(\mathcal{E}_j \gamma'(K_n), \gamma \neq \gamma')$ 

2 Let  $\mathcal{G}$  denote the set of all admissible products of  $\gamma$ 's and  $\gamma^{-1}$ 's,  $\mathcal{G}(n) = \{\gamma \in \mathcal{G} : s(\gamma) = K_n\}$ . Then we ask that

$$\lim_{n} \frac{|\mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n})|}{|\mathcal{E}_{j}K_{n}|} = 0, \quad \mathcal{F}_{\mathcal{G}}(\mathcal{E}_{j}K_{n}) = \bigcup_{\gamma \in \mathcal{G}(n)} \gamma_{j}^{-1}\mathcal{F}(\mathcal{E}_{j}\gamma(K_{n})).$$

#### Theorem

| Selfsimilar fractal                                       | Selfsimilar prefractal                                                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $w_1, \ldots w_q$ contracting                             | with the same scaling                                                                       |
| similarities of $\mathbb{R}^p$                            | constant                                                                                    |
| $\mathcal{P}$ open, $w_i \mathcal{P} \subset \mathcal{P}$ | convex polyhedron,                                                                          |
| $w_i\mathcal{P}\cap w_j\mathcal{P}=\emptyset$             | $w_i\overline{\mathcal{P}}\cap w_j\overline{\mathcal{P}}$ =face of $\overline{\mathcal{P}}$ |
| $W\mathcal{P} = \bigcup_{i=1}^{q} w_i \mathcal{P}$        | $W_{I _{n}} := W_{I_{n}} \cdots W_{I_{1}}$                                                  |
| $\{W^n\mathcal{P}\}_{n\in\mathbb{N}}	o F$                 | $\{K_n := W_{l _n}^{-1} W^n \mathcal{P}\}_{n \in \mathbb{N}} \nearrow X$                    |
| w.r.t. Hausdorff metrics                                  | amenable exhaustion                                                                         |

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs

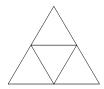
| Selfsimilar fractal                                       | Selfsimilar prefractal                                                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $w_1, \ldots w_q$ contracting                             | with the same scaling                                                                       |
| similarities of $\mathbb{R}^{p}$                          | constant                                                                                    |
| $\mathcal{P}$ open, $w_i \mathcal{P} \subset \mathcal{P}$ | convex polyhedron,                                                                          |
| $w_i \mathcal{P} \cap w_j \mathcal{P} = \emptyset$        | $w_i\overline{\mathcal{P}}\cap w_j\overline{\mathcal{P}}$ =face of $\overline{\mathcal{P}}$ |
| $W\mathcal{P} = \bigcup_{i=1}^{q} w_i \mathcal{P}$        | $W_{l _n} := W_{l_n} \cdots W_{l_1}$                                                        |
| $\{W^n\mathcal{P}\}_{n\in\mathbb{N}}	o F$                 | $\{K_n := w_{  _n}^{-1} W^n \mathcal{P}\}_{n \in \mathbb{N}} \nearrow X$                    |
| w.r.t. Hausdorff metrics                                  | amenable exhaustion                                                                         |

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs

| Selfsimilar fractal                                       | Selfsimilar prefractal                                                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $w_1, \ldots w_q$ contracting                             | with the same scaling                                                                       |
| similarities of $\mathbb{R}^{p}$                          | constant                                                                                    |
| $\mathcal{P}$ open, $w_i \mathcal{P} \subset \mathcal{P}$ | convex polyhedron,                                                                          |
| $w_i \mathcal{P} \cap w_j \mathcal{P} = \emptyset$        | $w_i\overline{\mathcal{P}}\cap w_j\overline{\mathcal{P}}$ =face of $\overline{\mathcal{P}}$ |
| $W\mathcal{P} = \bigcup_{i=1}^{q} w_i \mathcal{P}$        | $\boldsymbol{w}_{l _n} := \boldsymbol{w}_{l_n} \cdots \boldsymbol{w}_{l_1}$                 |
| $\{W^n\mathcal{P}\}_{n\in\mathbb{N}}\to F$                | $\{K_n := w_{I _n}^{-1} W^n \mathcal{P}\}_{n \in \mathbb{N}} \nearrow X$                    |
| w.r.t. Hausdorff metrics                                  | amenable exhaustion                                                                         |

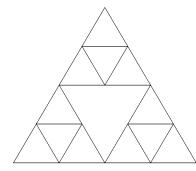


◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで





◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで





◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

# Small perturbations of graphs

Let  $(X, \mathcal{K})$  be an amenable graph,  $\mathcal{A}_X^{FP}$  the norm closure of the \*-algebra of finite propagation operators. tr  $TP_n$ 

Ess. zero: 
$$T \sim 0$$
 if  $\lim_{n} \frac{\operatorname{tr} T n}{\operatorname{tr} P_n} = 0, \ T \in \mathcal{A}_{X}^{FP}$ .

#### Proposition

 $\mathcal{I} := \{T \in \mathcal{A}_X^{FP} : T \sim 0\} \text{ is a closed two-sided ideal in } \mathcal{A}_X^{FP}.$ If  $\mathcal{A}_{X,\mathcal{G}}$  satisfies the limit condition for a given  $\mathcal{G}$ ,  $\tau_{X,\mathcal{G},\mathcal{K}}$  extends to a trace on  $\mathcal{A}_{X,\mathcal{G}} + \mathcal{I}.$ 

くロト (過) (目) (日)

#### Definition

Let  $(X_1, \mathcal{K}_1)$ ,  $(X_2, \mathcal{K}_2)$  be amenable graphs.  $X_1 \sim X_2$  if there exists  $(X, \mathcal{K})$  such that

- $X_i$  is a subgraph of X;
- $K_{n,i} = K_n \cap X_i;$
- $I_{X_1} \sim I_{X_2};$
- $A_{X_1} \sim A_{X_2}$ .

#### Theorem

Consider a graph  $(X, \mathcal{G}, \mathcal{K})$  for which  $\mathcal{A}_{X,\mathcal{G}}$  satisfies the limit condition and a graph  $(X', \mathcal{K}')$  such that  $X \sim X'$ . We get a  $C^*$ -algebra  $\mathcal{I}_{X'} \subset \mathcal{A}' \subset \mathcal{A}_{X'}^{FP}$  satisfying the limit condition, hence a trace  $\tau'$  on it. If  $T \in \mathcal{A}_{X,\mathcal{G}}$ ,  $T' \in \mathcal{A}'$ , and  $T \sim T'$ , then  $\tau(T) = \tau'(T')$ .

## Definition

Let  $(X_1, \mathcal{K}_1)$ ,  $(X_2, \mathcal{K}_2)$  be amenable graphs.  $X_1 \sim X_2$  if there exists  $(X, \mathcal{K})$  such that

- $X_i$  is a subgraph of X;
- $K_{n,i} = K_n \cap X_i;$
- $I_{X_1} \sim I_{X_2};$

• 
$$A_{X_1} \sim A_{X_2}$$
.

#### Theorem

Consider a graph  $(X, \mathcal{G}, \mathcal{K})$  for which  $\mathcal{A}_{X,\mathcal{G}}$  satisfies the limit condition and a graph  $(X', \mathcal{K}')$  such that  $X \sim X'$ . We get a  $C^*$ -algebra  $\mathcal{I}_{X'} \subset \mathcal{A}' \subset \mathcal{A}_{X'}^{FP}$  satisfying the limit condition, hence a trace  $\tau'$  on it. If  $T \in \mathcal{A}_{X,\mathcal{G}}$ ,  $T' \in \mathcal{A}'$ , and  $T \sim T'$ , then  $\tau(T) = \tau'(T')$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

<ロト <回 > < 注 > < 注 > 、

# Outline



## 2 Applications

#### • Geometric invariants for self-similar CW-complexes

- Ihara Zeta functions
- BE condensation for pure-hopping Hamiltonian on graphs

ヘロア 人間 アメヨア 人口 ア

# L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $\mathcal{L}^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ 

Novikov-Shubin numbers:  $\alpha_j, j = 1, ..., p$  such that

$$\mu_{\partial_i^*\partial_j}([0,t))-eta_j\sim t^{lpha_j/2},$$

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of  $\alpha$  for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

ヘロア 人間 アメヨア 人口 ア

# L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $L^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ 

Novikov-Shubin numbers:  $\alpha_j$ , j = 1, ..., p such that  $\mu_{\partial_i^* \partial_j}([0, t)) - \beta_j \sim t^{\alpha_j/2}$ .

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of  $\alpha$  for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

・ロト ・ 理 ト ・ ヨ ト ・

## L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $L^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ Novikov-Shubin numbers:  $\alpha_j, \ j = 1, \dots, p$  such that  $\mu_{\partial_j^*\partial_j}([0, t)) - \beta_j \sim t^{\alpha_j/2}.$ 

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of α for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

イロト 不得 とくほ とくほ とうほ

# L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $L^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ Novikov-Shubin numbers:  $\alpha_j, \ j = 1, \dots, p$  such that  $\mu_{\partial_j^*\partial_j}([0, t)) - \beta_j \sim t^{\alpha_j/2}.$ 

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of  $\alpha$  for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

イロト 不得 とくほ とくほ とうほ

# L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $L^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ Novikov-Shubin numbers:  $\alpha_j, \ j = 1, \dots, p$  such that  $\mu_{\partial_j^*\partial_j}([0, t)) - \beta_j \sim t^{\alpha_j/2}.$ 

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of α for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

イロト 不得 とくほ とくほ とうほ

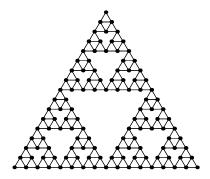
# L<sup>2</sup>-invariants for self-semilar CW-complexes.

Let  $(X, \mathcal{G}, \mathcal{K})$  a self-similar CW-complex,  $T \in \mathcal{A}_{X,\mathcal{G}}$  selfadjoint, set  $\mu_T : \int f \, d\mu_T = \tau(f(T)), \ f \in \mathcal{C}_0(\mathbb{R}).$  $L^2$ -Betti numbers:  $\beta_i = \mu_{\Delta_j}(\{0\}), \ j = 0, \dots, p.$ Novikov-Shubin numbers:  $\alpha_j, \ j = 1, \dots, p$  such that  $\mu_{\partial_j^*\partial_j}([0, t)) - \beta_j \sim t^{\alpha_j/2}.$ 

- Covering case: homotopy invariance of  $\alpha_j$  and  $\beta_j$  (Dodziuk 1977, Gromov-Shubin 1991).
- Self-similar case: rough isometry invariance of α for graphs (when the NS-numbers are defined). (Follows by Hambly-Kumagai, 2004)

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

## Examples of self-similar graphs



Sierpinski graph  

$$\alpha = 2 \frac{\log 3}{\log 5}$$
  
 $\beta_0 = 0$   
 $\beta_1 = \frac{1}{3}$   
M.T.Barlow, 2003

- ∢ ⊒ →

ъ

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

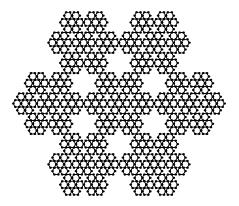
Vicsek graph  

$$\alpha = 2 \frac{\log 5}{\log 15}$$
  
 $\beta_0 = 0$   
 $\beta_1 = \frac{1}{7}$   
J.Kigami, M.L.Lapidus, 2001

イロト イポト イヨト イヨト

э

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs



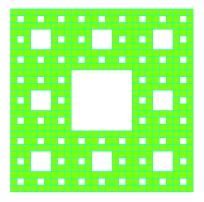
Lindstrom graph  $\alpha = 2 \frac{\log 7}{\log 12.89027}$   $\beta_0 = 0$   $\beta_1 = \frac{1}{5}$ T.Kumagai, 1993

・ロト ・ ア・ ・ ヨト ・ ヨト

э

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

## A 2-dimensional example



A 2-dimensional prefractal complex *X*: the Sierpinski carpet CW-complex.

< 🗇 ▶

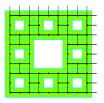
→ Ξ → < Ξ →</p>

э

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロト ・同ト ・ヨト ・ヨト

## Computation of $\alpha_2(X)$



Is the 2-Laplacian of X the Laplacian of a graph G, where the 2-cells are the vertices, and 2 vertices are connected by an edge if the corresponding cells have a 1-cell in common?

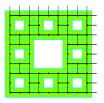
Indeed any boundary 1-cell of X allows the random walk to "fall in the hole", implying the corresponding NS-invariant to be trivial. To avoid this, one should excise the boundary, and consider the relative complex  $(X, \partial X)$ . Then

 $\alpha_2(X,\partial X)=\alpha(G).$ 

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

▲ @ ▶ | ▲ ⊇ ▶

# Computation of $\alpha_2(X)$

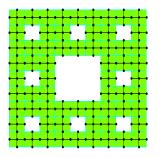


Is the 2-Laplacian of X the Laplacian of a graph G, where the 2-cells are the vertices, and 2 vertices are connected by an edge if the corresponding cells have a 1-cell in common?

Indeed any boundary 1-cell of X allows the random walk to "fall in the hole", implying the corresponding NS-invariant to be trivial. To avoid this, one should excise the boundary, and consider the relative complex  $(X, \partial X)$ . Then

$$\alpha_2(X,\partial X) = \alpha(G).$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs



Let us consider now the graph G', obtained by X via a "cross-square" transformation, which was studied in [M.T.Barlow, R.F.Bass, (1999)]. G and G' are roughly isometric, hence

< < >> < </>

$$\alpha_2(X, \partial X) = \alpha(G) = \alpha(G') \in [1.67, 1.87].$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

イロン イロン イヨン イヨン

# Outline



## 2 Applications

- Geometric invariants for self-similar CW-complexes
- Ihara Zeta functions
- BE condensation for pure-hopping Hamiltonian on graphs

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

## Ihara Zeta function for finite simple graphs [Ihara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.

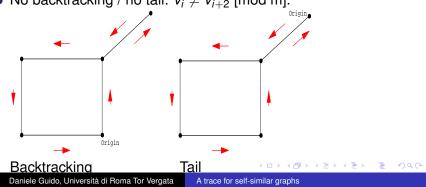
- Path of length *m*:  $C = (v_0, ..., v_m)$ ,  $(v_i, v_{i+1}) \in EX$ (Closed:  $v_0 = v_m$ ).
- Connected: any two vertices are connected by a path.

Ihara Zeta functions

## Ihara Zeta function for finite simple graphs [Ihara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.

- Path of length *m*:  $C = (v_0, ..., v_m), (v_i, v_{i+1}) \in EX$ (Closed:  $v_0 = v_m$ ).
- Connected: any two vertices are connected by a path.
- No backtracking / no tail:  $v_i \neq v_{i+2} \pmod{m}$ .



Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト ヘアト ヘビト ヘビト

э

# A closed path with no backtracking and no tail is primitive if it is not obtained by going around some other path $r \ge 2$ times.

A cycle is a closed path modulo the starting point.  $\mathcal{P}$  denotes the class of primitive cycles (infinitely many!). **Def.** [Zeta function]

$$Z_X(u) := \prod_{\mathcal{C}\in\mathcal{P}} (1-u^{|\mathcal{C}|})^{-1}, \qquad u\in\mathbb{C}.$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト ヘアト ヘビト ヘビト

æ

A closed path with no backtracking and no tail is primitive if it is not obtained by going around some other path  $r \ge 2$  times. A cycle is a closed path modulo the starting point.  $\mathcal{P}$  denotes the class of primitive cycles (infinitely many!). Def. [Zeta function]

$$Z_X(u) := \prod_{\mathcal{C} \in \mathcal{P}} (1 - u^{|\mathcal{C}|})^{-1}, \qquad u \in \mathbb{C}.$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト 人間 ト ヘヨト ヘヨト

æ

A closed path with no backtracking and no tail is primitive if it is not obtained by going around some other path  $r \ge 2$  times. A cycle is a closed path modulo the starting point.  $\mathcal{P}$  denotes the class of primitive cycles (infinitely many!). **Def.** [Zeta function]

$$Z_X(u) := \prod_{C \in \mathcal{P}} (1 - u^{|C|})^{-1}, \qquad u \in \mathbb{C}.$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

A closed path with no backtracking and no tail is primitive if it is not obtained by going around some other path  $r \ge 2$  times. A cycle is a closed path modulo the starting point.  $\mathcal{P}$  denotes the class of primitive cycles (infinitely many!). **Def.** [Zeta function]

$$Z_X(u) := \prod_{C \in \mathcal{P}} (1 - u^{|C|})^{-1}, \qquad u \in \mathbb{C}.$$



Example: 
$$|VX| = 4$$
,  $|EX| = 6$ ,  
 $\chi(X) = -2$ ,  $r = 3$ ,  $\kappa_X = 16$ ,  
 $\frac{1}{Z_X(u)} = (1 - u^2)^2 (1 - u)(1 - 2u)(1 + u + 2u^2)^3$ 

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

## Determinant formula [Ihara (1966), Hashimoto (1989), Bass (1992)]

Theorem (Determinant formula)

$$\frac{1}{Z_X(u)} = (1 - u^2)^{-\chi(X)} \det(\Delta(u)),$$

where  $\Delta(u) = I - Au + Qu^2$ ,  $A = adjacency \ matrix$ ,  $Q = diag(deg(v_1) - 1, ..., deg(v_n) - 1)$ ,  $\chi(X) = |VX| - |EX| = Euler \ char. \ of X.$ 

Obs.  $\Delta(1) = (Q + I) - A = \text{graph Laplacian}$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

# Properties of Ihara $Z_X$ .

Hashimoto (1989), Northshield (1998)
 r := rank of fundamental group π<sub>1</sub>(X) ≡ |EX| − |VX| + 1 is the order of the pole of Z<sub>X</sub>(u) at u = 1. If r > 1

$$\lim_{u\to 1^-} Z_X(u)(1-u)^r = -\frac{1}{2^r(r-1)\kappa_X},$$

 $\kappa_X$  = number of spanning trees in X.

• Hashimoto (1992), Horton, Stark, Terras (2006)  $R_X$  radius of convergence of  $Z_X$   $g.c.d.\{|C|: C \in \mathcal{P}\} = 1$ . Then  $|\{C \in \mathcal{P}: |C| = n\}| \sim \frac{R_X^{-n}}{n}, n \to \infty.$ 

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロン ・聞 と ・ ヨン ・ ヨン

# Properties of Ihara $Z_X$ .

Hashimoto (1989), Northshield (1998)
 r := rank of fundamental group π<sub>1</sub>(X) ≡ |EX| − |VX| + 1 is the order of the pole of Z<sub>X</sub>(u) at u = 1. If r > 1

$$\lim_{u\to 1^-} Z_X(u)(1-u)^r = -\frac{1}{2^r(r-1)\kappa_X},$$

 $\kappa_X$  = number of spanning trees in *X*.

• Hashimoto (1992), Horton, Stark, Terras (2006)  $R_X$  radius of convergence of  $Z_X$   $g.c.d.\{|C|: C \in \mathcal{P}\} = 1$ . Then  $|\{C \in \mathcal{P}: |C| = n\}| \sim \frac{R_X^{-n}}{n}, n \to \infty.$ 

ヘロト ヘ戸ト ヘヨト ヘヨト

# Regular graphs.

A graph is regular if any vertex has the same degree. If X is (q+1)-regular,

$$Z_X(q^{-s}) = \prod_{\mathcal{C}\in\mathcal{P}} (1-(q^{|\mathcal{C}|})^{-s})^{-1}.$$

Cf. the Euler product formula for the Riemann zeta function:

$$\zeta(s) := \prod_{p} (1 - p^{-s})^{-1}.$$

イロン 不同 とくほう イヨン

# Regular graphs.

A graph is regular if any vertex has the same degree. If X is (q+1)-regular,

$$Z_X(q^{-s}) = \prod_{\mathcal{C}\in\mathcal{P}} (1-(q^{|\mathcal{C}|})^{-s})^{-1}.$$

Cf. the Euler product formula for the Riemann zeta function:

$$\zeta(\boldsymbol{s}) := \prod_{\boldsymbol{p}} (1 - \boldsymbol{p}^{-\boldsymbol{s}})^{-1}.$$

<ロ> (四) (四) (三) (三) (三)

#### Definition

X satisfies the Riemann Hypothesis if  $\begin{cases}
Z_X^{-1}(q^{-s}) = 0 \\
\Re s \in (0, 1) \implies \Re s = \frac{1}{2}
\end{cases}$ 

## Theorem (Ihara (1966), Lubotzky (1994))

X (q+1)-regular satisfies the Riemann Hypothesis iff X is a Ramanujan graph, namely  $\lambda \in \sigma(A), |\lambda| < q+1 \implies |\lambda| \le 2\sqrt{q}.$ 

Ramanujan graphs are important in communication networks.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

#### Definition

X satisfies the Riemann Hypothesis if  $\begin{cases}
Z_X^{-1}(q^{-s}) = 0 \\
\Re s \in (0, 1) \implies \Re s = \frac{1}{2}
\end{cases}$ 

## Theorem (Ihara (1966), Lubotzky (1994))

X (q + 1)-regular satisfies the Riemann Hypothesis <u>iff</u> X is a Ramanujan graph, namely  $\lambda \in \sigma(A), |\lambda| < q + 1 \implies |\lambda| \le 2\sqrt{q}.$ 

Ramanujan graphs are important in communication networks.

ヘロト ヘ戸ト ヘヨト ヘヨト

# Ihara Zeta function for covering graphs

Let X be a connected simple graph with bounded degree, VX countably infinite,  $\Gamma < Aut(X)$  discrete group, acting freely [i.e.  $\Gamma_{v}$  is trivial,  $\forall v \in VX$ ],  $X/\Gamma$  finite graph.

#### Definition (Zeta function)

$$Z_{X,\Gamma}(u) := \prod_{[\mathcal{C}]\in\mathcal{P}/\Gamma} (1-u^{|\mathcal{C}|})^{-1/|\Gamma_{\mathcal{C}}|},$$

where  $\mathcal{P}/\Gamma$  denotes the set of primitive cycles modulo  $\Gamma$ -translations, and  $\Gamma_C$  = the stabilizer of a cycle C.

It gives a holomorphic function in a suitable disc.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト ヘアト ヘビト ヘビト

1

## Ihara Zeta function for self-similar graphs [G.I.L. (2006)]

#### Definition (Zeta function)

$$Z_{X,\mathcal{G}}(u) := \prod_{[\mathcal{C}] \in \mathcal{P}/\mathcal{G}} (1-u^{|\mathcal{C}|})^{-\mu(\mathcal{C})},$$

where classes of cycles are modulo local isomorphisms in G, and  $\mu(C) =$  average multiplicity of C is defined as

$$\mu(\mathbf{C}) = \lim_{n} \frac{|\{\mathbf{C}' \subset \mathbf{K}_n : \mathbf{C}' \sim_{\mathcal{G}} \mathbf{C}\}|}{|\mathbf{K}_n|}$$

N.B. Self-similarity implies the limit exists and is finite.

ヘロン 人間 とくほ とくほ とう

#### Proposition

 $\mu_{\mathcal{C}}$  depends only on the size of  $\mathcal{C}$ , namely the least  $m \in \mathbb{N}$  s.t.  $\mathcal{C} \subset \gamma(K_m)$ , for some  $\gamma \in \mathcal{G}$ .

- For the Gasket graph,  $\mu(C) = \frac{2}{3^{p+1}}$ ,
- For the Vicsek graph,  $\mu(C) = \frac{1}{3 \cdot 5^{\rho}}$ ,
- For the Lindstrom graph,  $\mu(C) = \frac{1}{5 \cdot 7^{p}}$ ,

where p is the size of C

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

イロト イポト イヨト イヨト 一日

# An analytic determinant on $(A, \tau)$

#### Proposition

Let  $\mathcal{A}_0 = \{ \mathbf{A} \in \mathcal{A} : \mathbf{co}(\sigma(\mathbf{A})) \not\ni \mathbf{0} \}$ , and set

$$\det A = \exp \circ \tau \circ \log A, \qquad A \in \mathcal{A}_0,$$

where  $\log A = \frac{1}{2\pi i} \int_{\mathcal{C}} \log \lambda \ (\lambda - A)^{-1} \ d\lambda$ , and  $\mathcal{C}$  is a simple curve surrounding  $co(\sigma(A))$ . Then det is well defined and analytic on  $\mathcal{A}_0$ .

イロト 不得 とくほ とくほ とうほ

- $det(zA) = z^{\tau(l)} det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if *A* is positive, det(*A*) = *Det*(*A*), where the latter is the Fuglede–Kadison determinant.

det  $AB \neq$  det A det B:

- $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
- even if  $A, B, AB \in A_0$  and A and B commute, the product property may be violated.
- However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

<ロ> (四) (四) (三) (三) (三)

- $\det(zA) = z^{\tau(l)} \det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if *A* is positive, det(*A*) = *Det*(*A*), where the latter is the Fuglede–Kadison determinant.

det  $AB \neq det A det B$ :

- $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
- even if  $A, B, AB \in A_0$  and A and B commute, the product property may be violated.
- However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

イロト 不得 トイヨト イヨト 二日 二

- $\det(zA) = z^{\tau(l)} \det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if A is positive, det(A) = Det(A), where the latter is the Fuglede–Kadison determinant.

#### det $AB \neq$ det A det B:

- $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
- even if  $A, B, AB \in A_0$  and A and B commute, the product property may be violated.
- However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- $\det(zA) = z^{\tau(l)} \det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if A is positive, det(A) = Det(A), where the latter is the Fuglede–Kadison determinant.
- det  $AB \neq \det A \det B$ :
  - $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
  - even if  $A, B, AB \in A_0$  and A and B commute, the product property may be violated.
  - However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\det(zA) = z^{\tau(l)} \det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if A is positive, det(A) = Det(A), where the latter is the Fuglede–Kadison determinant.
- det  $AB \neq \det A \det B$ :
  - $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
  - even if  $A, B, AB \in A_0$  and A and B commute, the product property may be violated.
  - However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\det(zA) = z^{\tau(l)} \det(A)$ , for any  $z \in \mathbb{C} \setminus \{0\}$ ,
- if A is normal, det(A) = det(U) det(H), where A = UH is the polar decomposition,
- if A is positive, det(A) = Det(A), where the latter is the Fuglede–Kadison determinant.

det  $AB \neq \det A \det B$ :

- $A, B \in \mathcal{A}_0$  does not imply  $AB \in \mathcal{A}_0$
- even if *A*, *B*, *AB* ∈ *A*<sub>0</sub> and *A* and *B* commute, the product property may be violated.
- However, if A and B have sufficiently small norm, then det((I + A)(I + B)) = det(I + A) det(I + B).

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

#### The determinant formula

#### Theorem

$$\frac{1}{Z_{X,\Gamma}(u)} = (1 - u^2)^{-\chi^{(2)}(X)} \det_{\mathcal{G}}(\Delta(u)), \text{ for } u \text{ in a suitable disc.}$$

• Periodic case: 
$$\chi^{(2)}(X) = \chi(X/\Gamma)$$
.

• Self-similar case: 
$$\chi^{(2)}(X) = \lim_{n \to \infty} \frac{\chi(K_n)}{|K_n|}$$
.

The determinant formula in the periodic case was fist proved by Clair and Mokhtari-Sharghi, but the determinant was defined in a completely different way.

Recall that  $\Delta(u) = I - Au + Qu^2$ , hence takes values in a commutative C\*-algebra if and only if Q is constant, namely the graph is regular.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

#### The determinant formula

#### Theorem

$$\frac{1}{Z_{X,\Gamma}(u)} = (1 - u^2)^{-\chi^{(2)}(X)} \det_{\mathcal{G}}(\Delta(u)), \text{ for } u \text{ in a suitable disc.}$$

• Periodic case: 
$$\chi^{(2)}(X) = \chi(X/\Gamma)$$
.

• Self-similar case: 
$$\chi^{(2)}(X) = \lim_{n \to \infty} \frac{\chi(K_n)}{|K_n|}$$
.

The determinant formula in the periodic case was fist proved by Clair and Mokhtari-Sharghi, but the determinant was defined in a completely different way.

Recall that  $\Delta(u) = I - Au + Qu^2$ , hence takes values in a commutative C\*-algebra if and only if Q is constant, namely the graph is regular.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト ヘアト ヘヨト ヘ

#### The determinant formula

#### Theorem

$$\frac{1}{Z_{X,\Gamma}(u)} = (1 - u^2)^{-\chi^{(2)}(X)} \det_{\mathcal{G}}(\Delta(u)), \text{ for } u \text{ in a suitable disc.}$$

• Periodic case: 
$$\chi^{(2)}(X) = \chi(X/\Gamma)$$
.

• Self-similar case: 
$$\chi^{(2)}(X) = \lim_{n \to \infty} \frac{\chi(K_n)}{|K_n|}$$
.

The determinant formula in the periodic case was fist proved by Clair and Mokhtari-Sharghi, but the determinant was defined in a completely different way.

Recall that  $\Delta(u) = I - Au + Qu^2$ , hence takes values in a commutative C\*-algebra if and only if *Q* is constant, namely the graph is regular.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロン 人間 とくほ とくほ とう

3

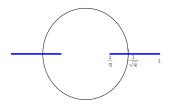
## $\chi^{(2)}(X)$ for some self-similar graphs

- Gasket graph  $\chi^{(2)}(X) = -1$ .
- Vicsek graph  $\chi^{(2)}(X) = -\frac{1}{3}$ .
- Lindstrom graph  $\chi^{(2)}(X) = -\frac{1}{2}$ .
- Carpet graph  $\chi^{(2)}(X) = -\frac{10}{11}$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロン ヘアン ヘビン ヘビン

## The Functional Equation



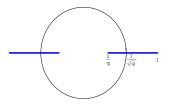
We now assume the graph *X* to be (q + 1)-regular, possibly up to a finite number of vertices. Then  $Z_X(u)$  extends to the complement of the curve  $\Omega$ .

- The Riemann zeta admits a so called completion  $\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s)$ , where  $\Gamma$  is the usual Gamma function, satisfying the functional equation  $\xi(s) = \xi(1 s)$ .
- Setting  $u = q^{-s}$ , the reflection  $s \to 1 s$  becomes the reflection  $u \to \frac{1}{qu}$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロト ・ 理 ト ・ ヨ ト ・

## The Functional Equation



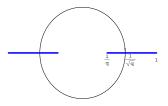
We now assume the graph *X* to be (q + 1)-regular, possibly up to a finite number of vertices. Then  $Z_X(u)$  extends to the complement of the curve  $\Omega$ .

- The Riemann zeta admits a so called completion
   ξ(s) := π<sup>-s/2</sup>Γ(s/2)ζ(s), where Γ is the usual Gamma
   function, satisfying the functional equation ξ(s) = ξ(1 − s).
- Setting  $u = q^{-s}$ , the reflection  $s \to 1 s$  becomes the reflection  $u \to \frac{1}{qu}$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

◆□ > ◆□ > ◆豆 > ◆豆 > →

## The Functional Equation



We now assume the graph *X* to be (q + 1)-regular, possibly up to a finite number of vertices. Then  $Z_X(u)$  extends to the complement of the curve  $\Omega$ .

- The Riemann zeta admits a so called completion
   ξ(s) := π<sup>-s/2</sup>Γ(s/2)ζ(s), where Γ is the usual Gamma
   function, satisfying the functional equation ξ(s) = ξ(1 − s).
- Setting  $u = q^{-s}$ , the reflection  $s \to 1 s$  becomes the reflection  $u \to \frac{1}{qu}$ .

#### Theorem (Functional equation)

Ihara zeta function admits a completion

$$\xi_X(u) := (1+u)^{(q-1)/2}(1-u)^{(q+1)/2}(1-qu)Z_X(u)$$

Such completion satisfies  $\xi_X(u) = \xi_X\left(\frac{1}{qu}\right)$ .

N.B.: The curve  $\Omega$  is invariant under the reflection  $u \rightarrow \frac{1}{qu}$ . While in the finite graph case the singularities are only polar, hence the functional equation is a relation between meromorphic functions on  $\mathbb{C}$ , for infinite graphs there are branching points. The question whether the extension of the domain of  $Z_{X,\Gamma}$  by means of the determinant formula is compatible with an analytic extension from the defining domain is a non-trivial issue, see [Clair, Zeta functions of graphs with  $\mathbb{Z}$ actions, math.NT/0607689].

#### Theorem (Functional equation)

Ihara zeta function admits a completion

$$\xi_X(u) := (1+u)^{(q-1)/2}(1-u)^{(q+1)/2}(1-qu)Z_X(u)$$

Such completion satisfies  $\xi_X(u) = \xi_X\left(\frac{1}{qu}\right)$ .

N.B.: The curve  $\Omega$  is invariant under the reflection  $u \rightarrow \frac{1}{qu}$ . While in the finite graph case the singularities are only polar, hence the functional equation is a relation between meromorphic functions on  $\mathbb{C}$ , for infinite graphs there are branching points. The question whether the extension of the domain of  $Z_{X,\Gamma}$  by means of the determinant formula is compatible with an analytic extension from the defining domain is a non-trivial issue, see [Clair, Zeta functions of graphs with  $\mathbb{Z}$  actions, math.NT/0607689].

#### Approximation by finite graphs

#### Theorem (Clair, Mokhtari-Sharghi)

*X* covering graph with constant degree, and assume  $\Gamma$  is residually finite, i.e.  $\Gamma_n \searrow \{e\}$  normal subgroups of  $\Gamma$ ,  $[\Gamma : \Gamma_n] < \infty$ . Then

$$Z_{X,\Gamma}(u) = \lim_{n \to \infty} Z_{B_n}(u)^{\frac{1}{[\Gamma:\Gamma_n]}}, \qquad u \in \Omega,$$

where  $B_n := X/\Gamma_n$  be the tower of finite coverings of  $B := X/\Gamma$ .

#### Theorem (Guido, Isola, Lapidus)

X a self-similar graph or a periodic graph with amenable Γ. Then

$$Z_{X,\mathcal{G}}(u) = \lim_{n \to \infty} Z_{K_n}(u)^{\frac{|U|}{|K_n|}}, \qquad u \in \Omega.$$

## Approximation by finite graphs

#### Theorem (Clair, Mokhtari-Sharghi)

*X* covering graph with constant degree, and assume  $\Gamma$  is residually finite, i.e.  $\Gamma_n \searrow \{e\}$  normal subgroups of  $\Gamma$ ,  $[\Gamma : \Gamma_n] < \infty$ . Then

$$Z_{X,\Gamma}(u) = \lim_{n \to \infty} Z_{B_n}(u)^{\frac{1}{[\Gamma:\Gamma_n]}}, \qquad u \in \Omega,$$

where  $B_n := X/\Gamma_n$  be the tower of finite coverings of  $B := X/\Gamma$ .

#### Theorem (Guido, Isola, Lapidus)

X a self-similar graph or a periodic graph with amenable  $\Gamma$ . Then

$$Z_{X,\mathcal{G}}(u) = \lim_{n \to \infty} Z_{K_n}(u)^{\frac{\tau(I)}{|K_n|}}, \qquad u \in \Omega.$$

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロト 人間 とくほとくほとう

ъ

## Outline



#### 2 Applications

- Geometric invariants for self-similar CW-complexes
- Ihara Zeta functions
- BE condensation for pure-hopping Hamiltonian on graphs

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## Bose-Einstein condensation

## $(X, \mathcal{K})$ amenable graph, *H* Hamiltonian, *H<sub>n</sub>* the restriction to *K<sub>n</sub>*. The grand-canonical ensemble on *K<sub>n</sub>* is described by:

- the C\*-algebra  $\mathfrak{A}(K_n) := CCR(L^2(K_n)),$
- the time-evolution, implemented by the second quantization of *e*<sup>*i*tH<sub>n</sub></sup>,

• the KMS state 
$$\omega_{\beta,\mu}$$
 such that  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H_n - \mu} - I)^{-1}y)$ , (2p. funct.)  
 $\rho_n(\beta,\mu) = \frac{\operatorname{tr}((e^{\beta H_n - \mu} - I)^{-1})}{|K_n|}$ , (density).

One tries to find, on a suitable CCR algebra  $\mathfrak{A}(X)$  on which the second-quantization of  $e^{itH}$  implements automorphisms, a KMS state  $\omega_{\beta,\mu}$  given by a weak\* limit of states  $\omega_{\beta,\mu_n}$  on  $\mathfrak{A}(K_n)$ , with  $\mu_n \to \mu$ .

イロン 不良 とくほう 不良 とうせい

## Bose-Einstein condensation

 $(X, \mathcal{K})$  amenable graph, *H* Hamiltonian, *H<sub>n</sub>* the restriction to *K<sub>n</sub>*. The grand-canonical ensemble on *K<sub>n</sub>* is described by:

• the C\*-algebra  $\mathfrak{A}(K_n) := CCR(L^2(K_n)),$ 

 the time-evolution, implemented by the second quantization of e<sup>itHn</sup>,

• the KMS state 
$$\omega_{\beta,\mu}$$
 such that  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H_n - \mu} - I)^{-1}y)$ , (2p. funct.)  
 $\rho_n(\beta,\mu) = \frac{\operatorname{tr}((e^{\beta H_n - \mu} - I)^{-1})}{|K_n|}$ , (density).

One tries to find, on a suitable CCR algebra  $\mathfrak{A}(X)$  on which the second-quantization of  $e^{itH}$  implements automorphisms, a KMS state  $\omega_{\beta,\mu}$  given by a weak\* limit of states  $\omega_{\beta,\mu_n}$  on  $\mathfrak{A}(K_n)$ , with  $\mu_n \rightarrow \mu$ .

イロン 不得 とくほど 不良 とうほう

## Bose-Einstein condensation

 $(X, \mathcal{K})$  amenable graph, *H* Hamiltonian,  $H_n$  the restriction to  $K_n$ . The grand-canonical ensemble on  $K_n$  is described by:

- the C\*-algebra  $\mathfrak{A}(K_n) := CCR(L^2(K_n)),$
- the time-evolution, implemented by the second quantization of *e*<sup>*i*tH<sub>n</sub></sup>,

• the KMS state 
$$\omega_{\beta,\mu}$$
 such that  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H_n - \mu} - I)^{-1}y)$ , (2p. funct.)  
 $\rho_n(\beta,\mu) = \frac{\operatorname{tr}((e^{\beta H_n - \mu} - I)^{-1})}{|K_n|}$ , (density).

One tries to find, on a suitable CCR algebra  $\mathfrak{A}(X)$  on which the second-quantization of  $e^{itH}$  implements automorphisms, a KMS state  $\omega_{\beta,\mu}$  given by a weak\* limit of states  $\omega_{\beta,\mu_n}$  on  $\mathfrak{A}(K_n)$ , with  $\mu_n \to \mu$ .

イロン 不得 とくほど 不良 とうほう

## Bose-Einstein condensation

 $(X, \mathcal{K})$  amenable graph, *H* Hamiltonian,  $H_n$  the restriction to  $K_n$ . The grand-canonical ensemble on  $K_n$  is described by:

- the C\*-algebra  $\mathfrak{A}(K_n) := CCR(L^2(K_n))$ ,
- the time-evolution, implemented by the second quantization of *e*<sup>*i*tH<sub>n</sub></sup>,

• the KMS state 
$$\omega_{\beta,\mu}$$
 such that  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H_n - \mu} - I)^{-1}y)$ , (2p. funct.)  
 $\rho_n(\beta,\mu) = \frac{\operatorname{tr}((e^{\beta H_n - \mu} - I)^{-1})}{|K_n|}$ , (density).

One tries to find, on a suitable CCR algebra  $\mathfrak{A}(X)$  on which the second-quantization of  $e^{itH}$  implements automorphisms, a KMS state  $\omega_{\beta,\mu}$  given by a weak\* limit of states  $\omega_{\beta,\mu_n}$  on  $\mathfrak{A}(K_n)$ , with  $\mu_n \rightarrow \mu$ .

イロン 不得 とくほど 不良 とうほう

## Bose-Einstein condensation

 $(X, \mathcal{K})$  amenable graph, *H* Hamiltonian,  $H_n$  the restriction to  $K_n$ . The grand-canonical ensemble on  $K_n$  is described by:

- the C\*-algebra  $\mathfrak{A}(K_n) := CCR(L^2(K_n)),$
- the time-evolution, implemented by the second quantization of e<sup>itH<sub>n</sub></sup>,

• the KMS state 
$$\omega_{\beta,\mu}$$
 such that  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H_n - \mu} - I)^{-1}y)$ , (2p. funct.)  
 $\rho_n(\beta,\mu) = \frac{\operatorname{tr}((e^{\beta H_n - \mu} - I)^{-1})}{|K_n|}$ , (density).

One tries to find, on a suitable CCR algebra  $\mathfrak{A}(X)$  on which the second-quantization of  $e^{itH}$  implements automorphisms, a KMS state  $\omega_{\beta,\mu}$  given by a weak\* limit of states  $\omega_{\beta,\mu_n}$  on  $\mathfrak{A}(K_n)$ , with  $\mu_n \to \mu$ .

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

ヘロン ヘアン ヘビン ヘビン

#### The case $X = \mathbb{Z}^d$ , $H = \Delta$

When 
$$\mu < 0$$
,  $\lim_{n} \frac{\operatorname{tr}((e^{\beta H_n - \mu_n} - I)^{-1})}{|K_n|} = \tau((e^{\beta H - \mu} - I)^{-1}) < \infty$ .  
Critical density:  $\rho_c(\beta) = \tau((e^{\beta H} - I)^{-1}) < \infty$  if  $d > 2$ .

Given  $\beta$ ,  $\rho$  one find  $\mu_n : \rho_n(\beta, \mu_n) = \rho$ . Then:

•  $\rho < \rho_c(\beta)$ :  $\mu < 0, \exists !$  limit state  $\omega_{\beta,\mu}$  on  $CCR(\cup_n \ell^2(K_n))$ :  $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H - \mu} - I)^{-1}y), \quad x, y \in X.$ 

2 
$$\rho \ge \rho_c(\beta)(d > 2)$$
:  $\mu = 0, \exists$  limit states  $\omega_{\beta,0}$  on  $CCR(\cup_n \ell^2(K_n))$ :

 $\omega_{\beta,0}(a^*(x)a(y)) = (x, (e^{\beta H} - I)^{-1}y) + (\rho - \rho_c(\beta))(x, 1)(1, y).$ 

In both cases  $\omega_{\beta,\mu}$  extends to a KMS state on CCR(S(X)). In the 2<sup>nd</sup> case  $\omega_{\beta,0}$  is not uniquely determined; the extra-term corresponds to the 0-energy eigenvector and describes the BE-condensation.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

#### The case $X = \mathbb{Z}^d$ , $H = \Delta$

When 
$$\mu < 0$$
,  $\lim_{n} \frac{\operatorname{tr}((e^{\beta H_n - \mu_n} - I)^{-1})}{|K_n|} = \tau((e^{\beta H - \mu} - I)^{-1}) < \infty$ .  
Critical density:  $\rho_c(\beta) = \tau((e^{\beta H} - I)^{-1}) < \infty$  if  $d > 2$ .  
Given  $\beta, \rho$  one find  $\mu_n : \rho_n(\beta, \mu_n) = \rho$ . Then:

•  $\rho < \rho_c(\beta)$ :  $\mu < 0, \exists!$  limit state  $\omega_{\beta,\mu}$  on  $CCR(\cup_n \ell^2(K_n))$ :  $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H - \mu} - l)^{-1}y), \quad x, y \in X.$ 

2 
$$\rho \ge \rho_c(\beta)(d > 2)$$
:  $\mu = 0, \exists$  limit states  $\omega_{\beta,0}$  on  $CCR(\cup_n \ell^2(K_n))$ :

 $\omega_{\beta,0}(a^*(x)a(y)) = (x, (e^{\beta H} - I)^{-1}y) + (\rho - \rho_c(\beta))(x, 1)(1, y).$ 

In both cases  $\omega_{\beta,\mu}$  extends to a KMS state on CCR(S(X)). In the 2<sup>nd</sup> case  $\omega_{\beta,0}$  is not uniquely determined; the extra-term corresponds to the 0-energy eigenvector and describes the BE-condensation.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

#### The case $X = \mathbb{Z}^d$ , $H = \Delta$

When  $\mu < 0$ ,  $\lim_{n} \frac{\operatorname{tr}((e^{\beta H_n - \mu_n} - I)^{-1})}{|K_n|} = \tau((e^{\beta H - \mu} - I)^{-1}) < \infty.$ Critical density:  $\rho_c(\beta) = \tau((e^{\beta H} - I)^{-1}) < \infty$  if d > 2. Given  $\beta$ ,  $\rho$  one find  $\mu_n : \rho_n(\beta, \mu_n) = \rho$ . Then: •  $\rho < \rho_c(\beta)$ :  $\mu < 0, \exists!$  limit state  $\omega_{\beta,\mu}$  on  $CCR(\cup_n \ell^2(K_n))$ :  $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H - \mu} - I)^{-1}y), \quad x, y \in X.$ 

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

イロト 不得 とくほ とくほ とう

∃ <2 <</p>

#### The case $X = \mathbb{Z}^d$ , $H = \Delta$

When 
$$\mu < 0$$
,  $\lim_{n} \frac{\operatorname{tr}((e^{\beta H_n - \mu_n} - I)^{-1})}{|K_n|} = \tau((e^{\beta H - \mu} - I)^{-1}) < \infty$ .  
Critical density:  $\rho_c(\beta) = \tau((e^{\beta H} - I)^{-1}) < \infty$  if  $d > 2$ .  
Given  $\beta, \rho$  one find  $\mu_n : \rho_n(\beta, \mu_n) = \rho$ . Then:  
 $\rho < \rho_c(\beta) : \mu < 0$ ,  $\exists$ ! limit state  $\omega_{\beta,\mu}$  on  $CCR(\cup_n \ell^2(K_n))$ :  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H - \mu} - I)^{-1}y), \quad x, y \in X$ .  
 $\rho \ge \rho_c(\beta)(d > 2): \mu = 0$ ,  $\exists$  limit states  $\omega_{\beta,0}$  on  
 $CCR(\cup_n \ell^2(K_n)):$   
 $\omega_{\beta,0}(a^*(x)a(y)) = (x, (e^{\beta H} - I)^{-1}y) + (\rho - \rho_c(\beta))(x, 1)(1, y)$ .  
In both cases  $\omega_{\beta,\mu}$  extends to a KMS state on  $CCR(S(X))$ .  
In the  $2^{nd}$  case  $\omega_{\beta,0}$  is not uniquely determined; the extra-term corresponds to the 0-energy eigenvector and describes the

BE-condensation.

Geometric invariants for self-similar CW-complexes Ihara Zeta functions BE condensation for pure-hopping Hamiltonian on graphs

(ロ) (同) (目) (日) (日) (の)

#### The case $X = \mathbb{Z}^d$ , $H = \Delta$

When 
$$\mu < 0$$
,  $\lim_{n} \frac{\operatorname{tr}((e^{\beta H_n - \mu_n} - I)^{-1})}{|K_n|} = \tau((e^{\beta H - \mu} - I)^{-1}) < \infty$ .  
Critical density:  $\rho_c(\beta) = \tau((e^{\beta H} - I)^{-1}) < \infty$  if  $d > 2$ .  
Given  $\beta, \rho$  one find  $\mu_n : \rho_n(\beta, \mu_n) = \rho$ . Then:  
 $\rho < \rho_c(\beta) : \mu < 0$ ,  $\exists$ ! limit state  $\omega_{\beta,\mu}$  on  $CCR(\cup_n \ell^2(K_n))$ :  
 $\omega_{\beta,\mu}(a^*(x)a(y)) = (x, (e^{\beta H - \mu} - I)^{-1}y), \quad x, y \in X$ .  
 $\rho \ge \rho_c(\beta)(d > 2) : \mu = 0$ ,  $\exists$  limit states  $\omega_{\beta,0}$  on  
 $CCR(\cup_n \ell^2(K_n))$ :  
 $\omega_{\beta,0}(a^*(x)a(y)) = (x, (e^{\beta H} - I)^{-1}y) + (\rho - \rho_c(\beta))(x, 1)(1, y)$ .  
In both cases  $\omega_{\beta,\mu}$  extends to a KMS state on  $CCR(\mathcal{S}(X))$ .  
In the  $2^{nd}$  case  $\omega_{\beta,0}$  is not uniquely determined; the extra-term  
corresponds to the 0-energy eigenvector and describes the  
BE-condensation.

The pure hopping Hamiltonian is the non-diagonal part of the Laplacian, i.e. -A. In order to set to 0 the lower bound of the spectrum, we consider H = ||A||I - A. It turns out that this Hamiltonian is sensitive to small perturbations.

Classically, e.g. for  $X = \mathbb{Z}^d$ ,  $H = \Delta$ ,

Transience  $\Leftrightarrow \exists BEC \Leftrightarrow \rho_c < \infty \Leftrightarrow d > 2.$ 

In our case, transience is still necessary for BEC, and possibly sufficient, but it is not related with  $\rho_c < \infty$  or d > 2. We expect that, when A is transient, we can choose sequences

 $\mu_n \rightarrow 0$  giving rise to KMS states with two-point functions

$$(x, (e^{\beta H} - I)^{-1}y) + k(x, v)(v, y),$$

The pure hopping Hamiltonian is the non-diagonal part of the Laplacian, i.e. -A. In order to set to 0 the lower bound of the spectrum, we consider H = ||A||I - A. It turns out that this Hamiltonian is sensitive to small perturbations.

Classically, e.g. for 
$$X = \mathbb{Z}^d$$
,  $H = \Delta$ ,

Transience  $\Leftrightarrow \exists BEC \Leftrightarrow \rho_c < \infty \Leftrightarrow d > 2.$ 

In our case, transience is still necessary for BEC, and possibly sufficient, but it is not related with  $\rho_c < \infty$  or d > 2. We expect that, when *A* is transient, we can choose sequences  $\mu_n \rightarrow 0$  giving rise to KMS states with two-point functions

$$(x, (e^{\beta H} - I)^{-1}y) + k(x, v)(v, y),$$

The pure hopping Hamiltonian is the non-diagonal part of the Laplacian, i.e. -A. In order to set to 0 the lower bound of the spectrum, we consider H = ||A||I - A. It turns out that this Hamiltonian is sensitive to small perturbations.

Classically, e.g. for 
$$X = \mathbb{Z}^d$$
,  $H = \Delta$ ,

Transience  $\Leftrightarrow \exists BEC \Leftrightarrow \rho_c < \infty \Leftrightarrow d > 2.$ 

In our case, transience is still necessary for BEC, and possibly sufficient, but it is not related with  $\rho_c < \infty$  or d > 2.

We expect that, when A is transient, we can choose sequences  $\mu_n \rightarrow 0$  giving rise to KMS states with two-point functions

$$(x, (e^{\beta H} - I)^{-1}y) + k(x, v)(v, y),$$

The pure hopping Hamiltonian is the non-diagonal part of the Laplacian, i.e. -A. In order to set to 0 the lower bound of the spectrum, we consider H = ||A||I - A. It turns out that this Hamiltonian is sensitive to small perturbations.

Classically, e.g. for 
$$X = \mathbb{Z}^d$$
,  $H = \Delta$ ,

Transience  $\Leftrightarrow \exists BEC \Leftrightarrow \rho_c < \infty \Leftrightarrow d > 2.$ 

In our case, transience is still necessary for BEC, and possibly sufficient, but it is not related with  $\rho_c < \infty$  or d > 2.

We expect that, when *A* is transient, we can choose sequences  $\mu_n \rightarrow 0$  giving rise to KMS states with two-point functions

$$(x,(e^{\beta H}-I)^{-1}y)+k(x,v)(v,y),$$

ヘロト ヘ回ト ヘヨト ヘヨト

## The comb graphs

The comb graph  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  consists of a copy of the graph  $\mathbb{Z}^d$  (the basis) where at each vertex is attached a copy of the graph  $\mathbb{Z}$  (the fiber) at the vertex 0.

The exaustion  $K_n$  is given by boxes with a given center on the basis and side 2n.

We consider here the restriction of *H* to  $K_n$  with periodic conditions, or, equivalently, we approximate  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  with  $(\mathbb{Z}_{2n}^d \dashv ([-n, n], 0))$ .

イロト 不得 とくほと くほう

## The comb graphs

The comb graph  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  consists of a copy of the graph  $\mathbb{Z}^d$  (the basis) where at each vertex is attached a copy of the graph  $\mathbb{Z}$  (the fiber) at the vertex 0.

## The exaustion $K_n$ is given by boxes with a given center on the basis and side 2n.

We consider here the restriction of *H* to  $K_n$  with periodic conditions, or, equivalently, we approximate  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  with  $(\mathbb{Z}_{2n}^d \dashv ([-n, n], 0)).$ 

ヘロト ヘワト ヘビト ヘビト

## The comb graphs

The comb graph  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  consists of a copy of the graph  $\mathbb{Z}^d$  (the basis) where at each vertex is attached a copy of the graph  $\mathbb{Z}$  (the fiber) at the vertex 0.

The exaustion  $K_n$  is given by boxes with a given center on the basis and side 2n.

We consider here the restriction of *H* to  $K_n$  with periodic conditions, or, equivalently, we approximate  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  with  $(\mathbb{Z}_{2n}^d \dashv ([-n, n], 0))$ .

・ロン ・聞と ・ヨン・ヨン

## The comb graphs

The comb graph  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  consists of a copy of the graph  $\mathbb{Z}^d$  (the basis) where at each vertex is attached a copy of the graph  $\mathbb{Z}$  (the fiber) at the vertex 0.

The exaustion  $K_n$  is given by boxes with a given center on the basis and side 2n.

We consider here the restriction of *H* to  $K_n$  with periodic conditions, or, equivalently, we approximate  $\mathbb{Z}^d \dashv (\mathbb{Z}, 0)$  with  $(\mathbb{Z}_{2n}^d \dashv ([-n, n], 0))$ .

ヘロン ヘロン ヘモン ヘモン

#### Theorem

Let  $d > 2, \beta > 0$ . Then,  $\forall k \ge 0$ , there exists a sequence  $\mu_n \rightarrow 0$  such that:

 KMS states ω<sub>β,µn</sub> converge to a state on CCR(∪<sub>n</sub>L<sup>2</sup>(K<sub>n</sub>)) with two-point function

$$(x,(e^{\beta H}-I)^{-1}y)+k(x,v)(v,y),$$

where v is the generalised Perron-Frobenius eigenvector for A obtained as pointwise limit of the Perron-Frobenius eigenvectors  $v_n$  for  $A_n$  taking value 1 on the basis.

- Such limit states extend to KMS states on  $CCR(\{v_{ij} \in \ell^2(\mathbb{Z}^d \dashv (\mathbb{Z}, 0)) : \sum_j v_{ij}^2 \in \mathcal{S}(\mathbb{Z}^d)\}).$
- The condensate is localised around the basis, hence does not contribute to the density, which is simply  $\rho_c$ .

#### Theorem

Let  $d > 2, \beta > 0$ . Then,  $\forall k \ge 0$ , there exists a sequence  $\mu_n \rightarrow 0$  such that:

 KMS states ω<sub>β,µn</sub> converge to a state on CCR(∪<sub>n</sub>L<sup>2</sup>(K<sub>n</sub>)) with two-point function

$$(x,(e^{\beta H}-I)^{-1}y)+k(x,v)(v,y),$$

where v is the generalised Perron-Frobenius eigenvector for A obtained as pointwise limit of the Perron-Frobenius eigenvectors  $v_n$  for  $A_n$  taking value 1 on the basis.

 Such limit states extend to KMS states on CCR({v<sub>ij</sub> ∈ ℓ<sup>2</sup>(Z<sup>d</sup> ⊣ (Z, 0)) : ∑<sub>j</sub> v<sup>2</sup><sub>ij</sub> ∈ S(Z<sup>d</sup>)}).

 The condensate is localised around the basis, hence does not contribute to the density, which is simply ρ<sub>c</sub>.

#### Theorem

Let  $d > 2, \beta > 0$ . Then,  $\forall k \ge 0$ , there exists a sequence  $\mu_n \rightarrow 0$  such that:

 KMS states ω<sub>β,µn</sub> converge to a state on CCR(∪<sub>n</sub>L<sup>2</sup>(K<sub>n</sub>)) with two-point function

$$(x,(e^{\beta H}-I)^{-1}y)+k(x,v)(v,y),$$

where v is the generalised Perron-Frobenius eigenvector for A obtained as pointwise limit of the Perron-Frobenius eigenvectors  $v_n$  for  $A_n$  taking value 1 on the basis.

- Such limit states extend to KMS states on CCR({v<sub>ij</sub> ∈ ℓ<sup>2</sup>(Z<sup>d</sup> ⊣ (Z, 0)) : ∑<sub>j</sub> v<sup>2</sup><sub>ij</sub> ∈ S(Z<sup>d</sup>)}).
- The condensate is localised around the basis, hence does not contribute to the density, which is simply ρ<sub>c</sub>.