
Traces for geometric operators on graphs and CW-complexes
Applications

A trace on the C*-algebra of geometric
operators on self-similar graphs

Daniele Guido, Università di Roma Tor Vergata

Sibiu, June 12th, 2007

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Outline

1 Traces for geometric operators on graphs and
CW-complexes

2 Applications:
Geometric invariants for self-similar CW-complexes (joint
work with F. Cipriani and T. Isola, [math.OA/0607603]).
Ihara Zeta functions (joint work with T. Isola and
M. Lapidus, [math.OA/0605753, to appear on Proceedings
of Bedlewo - math.OA/0608060, to appear on Transactions
AMS - math.OA/0608229]).
Bose-Einstein condensation for pure-hopping Hamiltonian
on graphs (joint work with F. Fidaleo and T. Isola, work in
progress).
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Amenable graphs.

Graph: X = (VX , EX ), VX vertices, EX edges.
Simple: an edge is an unordered pair of distinct vertices.
Distance: Let ∂ : `2(EX ) → `2(VX ) the boundary operator, and
say that for v1 6= v2 ∈ VX , d(v1, v2) = 1 if (∂∗v1, ∂

∗v2) 6= 0.
Then endow VX with the corresponding path distance.
Amenable graph: An exhaustion K = {Kn}n∈N by finite
subgraphs of X is amenable if

lim
n

|VFKn|
|VKn|

= 0,

where v ∈ VFKn if v ∈ VKn and has distance 1 from a vertex in
(VKn)

c . A graph is amenable if it has an amenable exhaustion.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Amenable graphs.

Graph: X = (VX , EX ), VX vertices, EX edges.
Simple: an edge is an unordered pair of distinct vertices.
Distance: Let ∂ : `2(EX ) → `2(VX ) the boundary operator, and
say that for v1 6= v2 ∈ VX , d(v1, v2) = 1 if (∂∗v1, ∂

∗v2) 6= 0.
Then endow VX with the corresponding path distance.
Amenable graph: An exhaustion K = {Kn}n∈N by finite
subgraphs of X is amenable if

lim
n

|VFKn|
|VKn|

= 0,

where v ∈ VFKn if v ∈ VKn and has distance 1 from a vertex in
(VKn)

c . A graph is amenable if it has an amenable exhaustion.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Amenable graphs.

Graph: X = (VX , EX ), VX vertices, EX edges.
Simple: an edge is an unordered pair of distinct vertices.
Distance: Let ∂ : `2(EX ) → `2(VX ) the boundary operator, and
say that for v1 6= v2 ∈ VX , d(v1, v2) = 1 if (∂∗v1, ∂

∗v2) 6= 0.
Then endow VX with the corresponding path distance.
Amenable graph: An exhaustion K = {Kn}n∈N by finite
subgraphs of X is amenable if

lim
n

|VFKn|
|VKn|

= 0,

where v ∈ VFKn if v ∈ VKn and has distance 1 from a vertex in
(VKn)

c . A graph is amenable if it has an amenable exhaustion.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Amenable graphs.

Graph: X = (VX , EX ), VX vertices, EX edges.
Simple: an edge is an unordered pair of distinct vertices.
Distance: Let ∂ : `2(EX ) → `2(VX ) the boundary operator, and
say that for v1 6= v2 ∈ VX , d(v1, v2) = 1 if (∂∗v1, ∂

∗v2) 6= 0.
Then endow VX with the corresponding path distance.
Amenable graph: An exhaustion K = {Kn}n∈N by finite
subgraphs of X is amenable if

lim
n

|VFKn|
|VKn|

= 0,

where v ∈ VFKn if v ∈ VKn and has distance 1 from a vertex in
(VKn)

c . A graph is amenable if it has an amenable exhaustion.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

A trace on finite propagation operators.

An operator T ∈ B(`2(VX )) has finite propagation ρ if
d(v1, v2) > ρ implies (δv1 , T δv2) = 0.

Proposition

The norm closure AFP
X of finite propagation operators is a

C∗-algebra.

(X ,K) amenable graph, A ⊂ AFP
X C∗-algebra.

Limit condition: ∀T ∈ A ∃ lim
n

tr TPn

tr Pn
, where Pn denotes the

orthogonal projection on `2(VKn).

Theorem

In this case τ(T ) = lim
n

tr TPn

tr Pn
is a trace state on A.
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Geometric operators.

A local isomorphism of the graph X is a triple
(

s(γ) , r(γ) , γ
)

where s(γ) , r(γ) are subgraphs of X and γ : s(γ) → r(γ) is a
graph isomorphism.
Let G be a family of local isomorphisms. T ∈ B(`2(VX )) is
G-geometric if ∃ρ > 0:

T has finite propagation ρ,
if γ ∈ G, B(v , ρ) ⊂ s(γ), B(γv , ρ) ⊂ r(γ) then
(Tλγ − λγT )δv = 0 and (T ∗λγ − λγT ∗)δv = 0, where λγ is
the partial isometry determined by{

λγδv = δγv if v ∈ s(γ)

λγδv = 0 if v 6∈ s(γ)
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Proposition
The norm closure AX ,G of the set of G-geometric operators is a
C∗-algebra.

Recall that ∆ := ∂∂∗ = D − A, where D is the diagonal degree
matrix and A is the adjacency matrix. Then D and A are
geometric operators.
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CW-complexes

Let X be a (regular, bounded) CW-complex:

Ej(X ) j-cells, E(X ) =

p⋃
j=1

Ej(X )

`2(E(X )) = ⊕p
j=1`

2(Ej(M)),

Boundary: ∂j : `2(Ej(X )) → `2(Ej−1(X ))

Distance: σ ∈ Ej−1(M), τ ∈ Ej(M), d(σ, τ) = 1 if
(σ, ∂τ) 6= 0. d is extended to a distance on E(X ) via path
length.

Amenable exhaustions, local isomorphisms, finite propagation
operators and G-geometric operators can be defined
analogously.
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Theorem
The norm closure AX ,G of the set of G-geometric operators is a
C∗-algebra. If AX ,G satisfies the limit condition, with Pn the
orthogonal projection on ⊕j`

2(EjKn),

τX ,G,K(T ) = lim
n

tr TPn

tr Pn

is a trace state on AX ,G .
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Periodic graphs (or CW-complexes)

X a simple graph with bounded degree, VX countably infinite,
Γ < Aut(X ) discrete group, acting freely [i.e. Γv is trivial,
∀v ∈ VX ], X/Γ finite graph.
Γ gives global isomorphisms for X , hence we may consider the
Γ-geometric operators, and the corresponding C∗-algebra AX ,Γ.
The weak closure of AX ,Γ is endowed with the trace state

τX ,Γ(T ) =
1
|F0|

∑
v∈F0

(v , Tv),

where F0 ⊂ X contains one representative for any point of X/Γ.
If Γ is amenable, Følner condition gives an amenable
exhaustion. Then, ∀T ∈ AX ,Γ,

τX ,Γ(T ) = lim
n

tr TPn

tr Pn
.
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Self-similar CW-complexes

An amenable CW-complex (X ,K) is self-similar if:
1 G(n, n + 1) finite set of local isomorphisms such that:

s(γ) = Kn,⋃
γ∈G(n,n+1)

γj

(
Ej(Kn)

)
= Ej(Kn+1),

Ejγ(Kn) ∩ Ejγ
′(Kn) = F(Ejγ(Kn)) ∩ F(Ejγ

′(Kn), γ 6= γ′

2 Let G denote the set of all admissible products of γ’s and
γ−1’s, G(n) = {γ ∈ G : s(γ) = Kn}. Then we ask that

lim
n

|FG(EjKn)|
|EjKn|

= 0, FG(EjKn) =
⋃

γ∈G(n)

γ−1
j F(Ejγ(Kn)).

Theorem
AX ,G satisfies the limit condition, namely we get a trace τX ,G,K.
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Selfsimilar fractal Selfsimilar prefractal
w1, . . . wq contracting
similarities of Rp

with the same scaling
constant

P open, wiP ⊂ P convex polyhedron,
wiP ∩ wjP = ∅ wiP ∩ wjP =face ofP
WP =

⋃q
i=1 wiP wI|n := wIn · · ·wI1

{W nP}n∈N → F {Kn := w−1
I|n W nP}n∈N ↗ X

w.r.t. Hausdorff metrics amenable exhaustion
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Small perturbations of graphs

Let (X ,K) be an amenable graph, AFP
X the norm closure of the

∗-algebra of finite propagation operators.

Ess. zero: T ∼ 0 if lim
n

tr TPn

tr Pn
= 0, T ∈ AFP

X .

Proposition

I := {T ∈ AFP
X : T ∼ 0} is a closed two-sided ideal in AFP

X .
If AX ,G satisfies the limit condition for a given G, τX ,G,K extends
to a trace on AX ,G + I.
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Definition
Let (X1,K1), (X2,K2) be amenable graphs. X1 ∼ X2 if there
exists (X ,K) such that

Xi is a subgraph of X ;
Kn,i = Kn ∩ Xi ;
IX1 ∼ IX2 ;
AX1 ∼ AX2 .

Theorem
Consider a graph (X ,G,K) for which AX ,G satisfies the limit
condition and a graph (X ′,K′) such that X ∼ X ′. We get a
C∗-algebra IX ′ ⊂ A′ ⊂ AFP

X ′ satisfying the limit condition, hence
a trace τ ′ on it. If T ∈ AX ,G , T ′ ∈ A′, and T ∼ T ′, then
τ(T ) = τ ′(T ′).
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L2-invariants for self-semilar CW-complexes.

Let (X ,G,K) a self-similar CW-complex, T ∈ AX ,G selfadjoint,
set µT :

∫
f dµT = τ(f (T )), f ∈ C0(R).

L2-Betti numbers: βi = µ∆j ({0}), j = 0, . . . , p.
Novikov-Shubin numbers: αj , j = 1, . . . , p such that
µ∂∗j ∂j ([0, t))− βj ∼ tαj/2.
Following Lott and Lück, we define also L2-invariants for the
relative complex (X , ∂X ).

Covering case: homotopy invariance of αj and βj (Dodziuk
1977, Gromov-Shubin 1991).
Self-similar case: rough isometry invariance of α for
graphs (when the NS-numbers are defined). (Follows by
Hambly-Kumagai, 2004)
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Examples of self-similar graphs

Sierpinski graph
α = 2 log 3

log 5
β0 = 0
β1 = 1

3
M.T.Barlow, 2003
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Vicsek graph
α = 2 log 5

log 15
β0 = 0
β1 = 1

7
J.Kigami, M.L.Lapidus, 2001
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Lindstrom graph
α = 2 log 7

log 12.89027
β0 = 0
β1 = 1

5
T.Kumagai, 1993
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A 2-dimensional example

A 2-dimensional
prefractal complex X :
the Sierpinski carpet
CW-complex.
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Computation of α2(X )

Is the 2-Laplacian of X the Laplacian of
a graph G, where the 2-cells are the
vertices, and 2 vertices are connected
by an edge if the corresponding cells
have a 1-cell in common?

Indeed any boundary 1-cell of X allows the random walk to “fall
in the hole”, implying the corresponding NS-invariant to be
trivial. To avoid this, one should excise the boundary, and
consider the relative complex (X , ∂X ). Then

α2(X , ∂X ) = α(G).
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Let us consider now the graph G′,
obtained by X via a
“cross-square” transformation,
which was studied in [M.T.Barlow,
R.F.Bass, (1999)].
G and G′ are roughly isometric,
hence

α2(X , ∂X ) = α(G) = α(G′) ∈ [1.67, 1.87].
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Ihara Zeta function for finite simple graphs
[Ihara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.
Path of length m: C = (v0, ..., vm), (vi , vi+1) ∈ EX
(Closed: v0 = vm).
Connected: any two vertices are connected by a path.
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Ihara Zeta function for finite simple graphs
[Ihara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.
Path of length m: C = (v0, ..., vm), (vi , vi+1) ∈ EX
(Closed: v0 = vm).
Connected: any two vertices are connected by a path.

No backtracking / no tail: vi 6= vi+2 [mod m].

Origin

Origin

Backtracking Tail
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A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r ≥ 2 times.
A cycle is a closed path modulo the starting point.
P denotes the class of primitive cycles (infinitely many!).
Def. [Zeta function]

ZX (u) :=
∏

C∈P

(1− u|C|)−1, u ∈ C.
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A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r ≥ 2 times.
A cycle is a closed path modulo the starting point.
P denotes the class of primitive cycles (infinitely many!).
Def. [Zeta function]

ZX (u) :=
∏

C∈P

(1− u|C|)−1, u ∈ C.

Example: |VX | = 4, |EX | = 6,
χ(X ) = −2, r = 3, κX = 16,

1
ZX (u) = (1−u2)2(1−u)(1−2u)(1+u+2u2)3
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Determinant formula
[Ihara (1966), Hashimoto (1989), Bass (1992)]

Theorem (Determinant formula)

1
ZX (u)

= (1− u2)−χ(X) det(∆(u)),

where ∆(u) = I − Au + Qu2,
A = adjacency matrix, Q = diag(deg(v1)− 1, ..., deg(vn)− 1),
χ(X ) = |VX | − |EX | = Euler char. of X .

Obs. ∆(1) = (Q + I)− A = graph Laplacian.
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Properties of Ihara ZX .

Hashimoto (1989), Northshield (1998)
r := rank of fundamental group π1(X ) ≡ |EX | − |VX |+ 1 is
the order of the pole of ZX (u) at u = 1. If r > 1

lim
u→1−

ZX (u)(1− u)r = − 1
2r (r − 1)κX

,

κX = number of spanning trees in X .
Hashimoto (1992), Horton, Stark, Terras (2006)
RX radius of convergence of ZX
g.c.d .{|C| : C ∈ P} = 1. Then

|{C ∈ P : |C| = n}| ∼ R−n
X
n , n →∞.
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Regular graphs.

A graph is regular if any vertex has the same degree. If X is
(q + 1)−regular,

ZX (q−s) =
∏

C∈P

(1− (q|C|)−s)−1.

Cf. the Euler product formula for the Riemann zeta function:

ζ(s) :=
∏

p

(1− p−s)−1.
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Definition
X satisfies the Riemann Hypothesis if{

Z−1
X (q−s) = 0
<s ∈ (0, 1) =⇒ <s = 1

2

Theorem (Ihara (1966), Lubotzky (1994))

X (q + 1)−regular satisfies the Riemann Hypothesis iff X is a
Ramanujan graph, namely
λ ∈ σ(A), |λ| < q + 1 =⇒ |λ| ≤ 2

√
q.

Ramanujan graphs are important in communication networks.
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Ihara Zeta function for covering graphs

Let X be a connected simple graph with bounded degree, VX
countably infinite, Γ < Aut(X ) discrete group, acting freely [i.e.
Γv is trivial, ∀v ∈ VX ], X/Γ finite graph.

Definition (Zeta function)

ZX ,Γ(u) :=
∏

[C]∈P/Γ

(1− u|C|)−1/|ΓC |,

where P/Γ denotes the set of primitive cycles modulo
Γ-translations, and ΓC = the stabilizer of a cycle C.

It gives a holomorphic function in a suitable disc.
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Ihara Zeta function for self-similar graphs
[G.I.L. (2006)]

Definition (Zeta function)

ZX ,G(u) :=
∏

[C]∈P/G

(1− u|C|)−µ(C),

where classes of cycles are modulo local isomorphisms in G,
and µ(C) = average multiplicity of C is defined as

µ(C) = lim
n

|{C′ ⊂ Kn : C′ ∼G C}|
|Kn|

.

N.B. Self-similarity implies the limit exists and is finite.
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Proposition
µC depends only on the size of C, namely the least m ∈ N s.t.
C ⊂ γ(Km), for some γ ∈ G.

For the Gasket graph, µ(C) = 2
3p+1 ,

For the Vicsek graph, µ(C) = 1
3·5p ,

For the Lindstrom graph, µ(C) = 1
5·7p ,

where p is the size of C
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An analytic determinant on (A, τ)

Proposition

Let A0 = {A ∈ A : co(σ(A)) 63 0}, and set

det A = exp ◦τ ◦ log A, A ∈ A0,

where log A =
1

2πi

∫
C

log λ (λ− A)−1 dλ, and C is a simple

curve surrounding co(σ(A)). Then det is well defined and
analytic on A0.
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det(zA) = zτ(I) det(A), for any z ∈ C \ {0},
if A is normal, det(A) = det(U) det(H), where A = UH is
the polar decomposition,
if A is positive, det(A) = Det(A), where the latter is the
Fuglede–Kadison determinant.

det AB 6= det A det B:
A, B ∈ A0 does not imply AB ∈ A0

even if A, B, AB ∈ A0 and A and B commute, the product
property may be violated.
However, if A and B have sufficiently small norm, then
det((I + A)(I + B)) = det(I + A) det(I + B).
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However, if A and B have sufficiently small norm, then
det((I + A)(I + B)) = det(I + A) det(I + B).
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The determinant formula

Theorem
1

ZX ,Γ(u)
= (1− u2)−χ(2)(X) detG(∆(u)), for u in a suitable disc.

Periodic case: χ(2)(X ) = χ(X/Γ).

Self-similar case: χ(2)(X ) = lim
n→∞

χ(Kn)

|Kn|
.

The determinant formula in the periodic case was fist proved by
Clair and Mokhtari-Sharghi, but the determinant was defined in
a completely different way.
Recall that ∆(u) = I − Au + Qu2, hence takes values in a
commutative C∗-algebra if and only if Q is constant, namely the
graph is regular.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

The determinant formula

Theorem
1

ZX ,Γ(u)
= (1− u2)−χ(2)(X) detG(∆(u)), for u in a suitable disc.

Periodic case: χ(2)(X ) = χ(X/Γ).

Self-similar case: χ(2)(X ) = lim
n→∞

χ(Kn)

|Kn|
.

The determinant formula in the periodic case was fist proved by
Clair and Mokhtari-Sharghi, but the determinant was defined in
a completely different way.
Recall that ∆(u) = I − Au + Qu2, hence takes values in a
commutative C∗-algebra if and only if Q is constant, namely the
graph is regular.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

The determinant formula

Theorem
1

ZX ,Γ(u)
= (1− u2)−χ(2)(X) detG(∆(u)), for u in a suitable disc.

Periodic case: χ(2)(X ) = χ(X/Γ).

Self-similar case: χ(2)(X ) = lim
n→∞

χ(Kn)

|Kn|
.

The determinant formula in the periodic case was fist proved by
Clair and Mokhtari-Sharghi, but the determinant was defined in
a completely different way.
Recall that ∆(u) = I − Au + Qu2, hence takes values in a
commutative C∗-algebra if and only if Q is constant, namely the
graph is regular.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

χ(2)(X ) for some self-similar graphs

Gasket graph χ(2)(X ) = −1.
Vicsek graph χ(2)(X ) = −1

3 .

Lindstrom graph χ(2)(X ) = −1
2 .

Carpet graph χ(2)(X ) = −10
11 .
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The Functional Equation

1
1
����

q

1
����������!!!
q

We now assume the graph X to
be (q + 1)-regular, possibly up to
a finite number of vertices. Then
ZX (u) extends to the
complement of the curve Ω.

The Riemann zeta admits a so called completion
ξ(s) := π−s/2Γ(s/2)ζ(s), where Γ is the usual Gamma
function, satisfying the functional equation ξ(s) = ξ(1− s).
Setting u = q−s, the reflection s → 1− s becomes the
reflection u → 1

qu .
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Theorem (Functional equation)
Ihara zeta function admits a completion

ξX (u) := (1 + u)(q−1)/2(1− u)(q+1)/2(1− qu)ZX (u).

Such completion satisfies ξX (u) = ξX

( 1
qu

)
.

N.B.: The curve Ω is invariant under the reflection u → 1
qu .

While in the finite graph case the singularities are only polar,
hence the functional equation is a relation between
meromorphic functions on C, for infinite graphs there are
branching points. The question whether the extension of the
domain of ZX ,Γ by means of the determinant formula is
compatible with an analytic extension from the defining domain
is a non-trivial issue, see [Clair, Zeta functions of graphs with Z
actions, math.NT/0607689].
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Approximation by finite graphs

Theorem (Clair, Mokhtari-Sharghi)
X covering graph with constant degree, and assume Γ is
residually finite, i.e. Γn ↘ {e} normal subgroups of Γ,
[Γ : Γn] < ∞. Then

ZX ,Γ(u) = lim
n→∞

ZBn(u)
1

[Γ:Γn ] , u ∈ Ω,

where Bn := X/Γn be the tower of finite coverings of B := X/Γ.

Theorem (Guido, Isola, Lapidus)
X a self-similar graph or a periodic graph with amenable Γ.
Then

ZX ,G(u) = lim
n→∞

ZKn(u)
τ(I)
|Kn| , u ∈ Ω.
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Bose-Einstein condensation

(X ,K) amenable graph, H Hamiltonian, Hn the restriction to Kn.
The grand-canonical ensemble on Kn is described by:

the C∗-algebra A(Kn) := CCR(L2(Kn)),
the time-evolution, implemented by the second
quantization of eitHn ,
the KMS state ωβ,µ such that
ωβ,µ(a∗(x)a(y)) = (x , (eβHn−µ − I)−1y), (2p. funct.)
ρn(β, µ) = tr((eβHn−µ−I)−1)

|Kn| , (density).

One tries to find, on a suitable CCR algebra A(X ) on which the
second-quantization of eitH implements automorphisms, a KMS
state ωβ,µ given by a weak∗ limit of states ωβ,µn on A(Kn), with
µn → µ.
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The case X = Zd , H = ∆

When µ < 0, lim
n

tr((eβHn−µn − I)−1)

|Kn|
= τ((eβH−µ − I)−1) < ∞.

Critical density: ρc(β) = τ((eβH − I)−1) < ∞ if d > 2.
Given β, ρ one find µn : ρn(β, µn) = ρ. Then:

1 ρ < ρc(β): µ < 0, ∃! limit state ωβ,µ on CCR(∪n`
2(Kn)):

ωβ,µ(a∗(x)a(y)) = (x , (eβH−µ − I)−1y), x , y ∈ X .

2 ρ ≥ ρc(β)(d > 2): µ = 0, ∃ limit states ωβ,0 on
CCR(∪n`

2(Kn)):
ωβ,0(a∗(x)a(y)) = (x , (eβH− I)−1y)+(ρ−ρc(β))(x , 1)(1, y).

In both cases ωβ,µ extends to a KMS state on CCR(S(X )).
In the 2nd case ωβ,0 is not uniquely determined; the extra-term
corresponds to the 0-energy eigenvector and describes the
BE-condensation.
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Pure hopping Hamiltonian for small perturbations of
periodic graphs

The pure hopping Hamiltonian is the non-diagonal part of the
Laplacian, i.e. −A. In order to set to 0 the lower bound of the
spectrum, we consider H = ‖A‖I − A. It turns out that this
Hamiltonian is sensitive to small perturbations.
Classically, e.g. for X = Zd , H = ∆,
Transience ⇔ ∃BEC ⇔ ρc < ∞⇔ d > 2.
In our case, transience is still necessary for BEC, and possibly
sufficient, but it is not related with ρc < ∞ or d > 2.
We expect that, when A is transient, we can choose sequences
µn → 0 giving rise to KMS states with two-point functions

(x , (eβH − I)−1y) + k(x , v)(v , y),

where v is a generalised Perron-Frobenius eigenvector for A,
i.e. the 0-energy eigenvector.
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We expect that, when A is transient, we can choose sequences
µn → 0 giving rise to KMS states with two-point functions

(x , (eβH − I)−1y) + k(x , v)(v , y),

where v is a generalised Perron-Frobenius eigenvector for A,
i.e. the 0-energy eigenvector.

Daniele Guido, Università di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes
Applications

Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

The comb graphs

The comb graph Zd a (Z, 0) consists of a copy of the graph Zd

(the basis) where at each vertex is attached a copy of the graph
Z (the fiber) at the vertex 0.
The exaustion Kn is given by boxes with a given center on the
basis and side 2n.
We consider here the restriction of H to Kn with periodic
conditions, or, equivalently, we approximate Zd a (Z, 0) with
(Zd

2n a ([−n, n], 0).
The comb graph Zd a (Z, 0) may be considered as a small
perturbation of infinitely many copies of Z, the perturbation
consisting in removing the basis. We easily get that A is
transient iff d > 2. In this case the critical density is finite.
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Theorem
Let d > 2, β > 0. Then, ∀k ≥ 0, there exists a sequence
µn → 0 such that:

KMS states ωβ,µn converge to a state on CCR(∪nL2(Kn))
with two-point function

(x , (eβH − I)−1y) + k(x , v)(v , y),

where v is the generalised Perron-Frobenius eigenvector
for A obtained as pointwise limit of the Perron-Frobenius
eigenvectors vn for An taking value 1 on the basis.
Such limit states extend to KMS states on
CCR({vij ∈ `2(Zd a (Z, 0)) :

∑
j v2

ij ∈ S(Zd)}).
The condensate is localised around the basis, hence does
not contribute to the density, which is simply ρc .
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