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Outline

@ Traces for geometric operators on graphs and
CW-complexes
© Applications:
e Geometric invariants for self-similar CW-complexes (joint
work with F. Cipriani and T. Isola, [math.OA/0607603]).
e lhara Zeta functions (joint work with T. Isola and
M. Lapidus, [math.OA/0605753, to appear on Proceedings
of Bedlewo - math.OA/0608060, to appear on Transactions
AMS - math.OA/0608229]).
e Bose-Einstein condensation for pure-hopping Hamiltonian
on graphs (joint work with F. Fidaleo and T. Isola, work in
progress).
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Traces for geometric operators on graphs and CW-complexes

Amenable graphs.

Graph: X = (VX, EX), VX vertices, EX edges.
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Traces for geometric operators on graphs and CW-complexes

Amenable graphs.

Graph: X = (VX, EX), VX vertices, EX edges.
Simple: an edge is an unordered pair of distinct vertices.
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Traces for geometric operators on graphs and CW-complexes

Amenable graphs.

Graph: X = (VX, EX), VX vertices, EX edges.

Simple: an edge is an unordered pair of distinct vertices.
Distance: Let 9 : £2(EX) — ¢?(VX) the boundary operator, and
say that for vy # v € VX, d(v1, vo) = 1if (0*vy,0%vp) # 0.
Then endow VX with the corresponding path distance.
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Traces for geometric operators on graphs and CW-complexes

Amenable graphs.

Graph: X = (VX, EX), VX vertices, EX edges.

Simple: an edge is an unordered pair of distinct vertices.
Distance: Let 9 : £2(EX) — ¢?(VX) the boundary operator, and
say that for vy # v € VX, d(v1, vo) = 1if (0*vy,0%vp) # 0.
Then endow VX with the corresponding path distance.
Amenable graph: An exhaustion K = {Kj}nen by finite
subgraphs of X is amenable if

. |VFK;

Vi)

=0,

where v € VFK, if v € VK, and has distance 1 from a vertex in
(VK»)°. A graph is amenable if it has an amenable exhaustion.
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Traces for geometric operators on graphs and CW-complexes

A trace on finite propagation operators.

An operator T € B(¢2(VX)) has finite propagation p if
d(vy, v2) > pimplies (dy,, Téy,) = 0.

Proposition

The norm closure A)F(P of finite propagation operators is a
C*-algebra.
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Traces for geometric operators on graphs and CW-complexes

A trace on finite propagation operators.

An operator T € B(¢2(VX)) has finite propagation p if
d(vy, v2) > pimplies (dy,, Téy,) = 0.

Proposition

The norm closure A)F(P of finite propagation operators is a
C*-algebra.

(X, K) amenable graph, A C A;P C*-algebra.
Limit condition: ¥7 € A 3 lim tr TPy

, where P, denotes the

tr P,
orthogonal projection on £2( VK,).

is a trace state on A.

. . tr TPy
In this case 7(T) = I|,r7n P,
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Traces for geometric operators on graphs and CW-complexes

Geometric operators.

A local isomorphism of the graph X is a triple (s(v) () ,7)
a

where s(v), r(vy) are subgraphs of X and v : s(y) — r(v) is
graph isomorphism.

Daniele Guido, Universita di Roma Tor Vergata A trace for self-similar graphs



Traces for geometric operators on graphs and CW-complexes

Geometric operators.

A local isomorphism of the graph X is a triple (s(v) () 7)
where s(v), r(v) are subgraphs of X and v : s(y) — r(vy) is a
graph isomorphism.

Let G be a family of local isomorphisms. T € B(/2(VX)) is
G-geometric if 3p > 0:

@ T has finite propagation p,
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Traces for geometric operators on graphs and CW-complexes

Geometric operators.

A local isomorphism of the graph X is a triple (s(v) () 7)
where s(v), r(v) are subgraphs of X and v : s(y) — r(vy) is a
graph isomorphism.
Let G be a family of local isomorphisms. T € B(/2(VX)) is
G-geometric if 3p > 0:
@ T has finite propagation p,
e ifye g, B(v,p) C s(v), B(yv,p) C r(v) then
(TAy =X\ T)oy =0and (T*\, — A\, T*)d, =0, where A, is
the partial isometry determined by
Aoy =6y ifves(y)
Aoy =0 ifves(y)
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Traces for geometric operators on graphs and CW-complexes

Proposition
The norm closure Ay g of the set of G-geometric operators is a
C*-algebra.

Recall that A := 09* = D — A, where D is the diagonal degree
matrix and A is the adjacency matrix. Then D and A are
geometric operators.
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Traces for geometric operators on graphs and CW-complexes

CW-complexes

Let X be a (regular, bounded) CW-complex:
p
o &(X) j-cells, £(X) = U (X

~
C(E(X)) = &) 52(5(/\/7)%
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Traces for geometric operators on graphs and CW-complexes

CW-complexes

Let X be a (regular, bounded) CW-complex:
p
o &(X) j-cells, £(X) = U (X

-
CBE(X) = B4 £2(& (M))=
@ Boundary: 9; : £2(&;(X)) — 2(§-1(X))
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Traces for geometric operators on graphs and CW-complexes

CW-complexes

Let X be a (regular, bounded) CW-complex:
p
o &(X) j-cells, £(X) = U gi(X)

et
C(E(X)) = B2 (E (M)),

@ Boundary: 9; : £2(&;(X)) — 2(§-1(X))

@ Distance: 0 € &_1(M), 7 € §i(M), d(o,7) =1 if

(o,07) # 0. d is extended to a distance on £(X) via path
length.
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Traces for geometric operators on graphs and CW-complexes

CW-complexes

Let X be a (regular, bounded) CW-complex:
p
o &(X) j-cells, £(X) = U (X

et
C(E(X)) = B2 (E (M)),

@ Boundary: 9; : £2(&;(X)) — 2(§-1(X))

@ Distance: 0 € &_1(M), 7 € §i(M), d(o,7) =1 if

(o,07) # 0. d is extended to a distance on £(X) via path
length.

Amenable exhaustions, local isomorphisms, finite propagation

operators and G-geometric operators can be defined
analogously.
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Traces for geometric operators on graphs and CW-complexes

Theorem

The norm closure Ay g of the set of G-geometric operators is a
C*-algebra. If Ax g satisfies the limit condition, with P, the
orthogonal projection on @,-Ez(é’an),

tr TP,
tr P,

x,g.x(T) = lim

is a trace state on Ax g.
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Traces for geometric operators on graphs and CW-complexes

Periodic graphs (or CW-complexes)

X a simple graph with bounded degree, VX countably infinite,
I < Aut(X) discrete group, acting freely [i.e. I'y is trivial,
Vv € VX], X/T finite graph.
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Traces for geometric operators on graphs and CW-complexes

Periodic graphs (or CW-complexes)

X a simple graph with bounded degree, VX countably infinite,
I < Aut(X) discrete group, acting freely [i.e. I'y is trivial,

Vv € VX], X/T finite graph.

I" gives global isomorphisms for X, hence we may consider the
-geometric operators, and the corresponding C*-algebra Ax .
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Traces for geometric operators on graphs and CW-complexes

Periodic graphs (or CW-complexes)

X a simple graph with bounded degree, VX countably infinite,
I < Aut(X) discrete group, acting freely [i.e. I'y is trivial,

Vv € VX], X/T finite graph.

I" gives global isomorphisms for X, hence we may consider the
-geometric operators, and the corresponding C*-algebra Ax .
The weak closure of Ay r is endowed with the trace state

rxr(T) = |;O| S (v, ),

vEF)

where Fy C X contains one representative for any point of X/TI.
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Traces for geometric operators on graphs and CW-complexes

Periodic graphs (or CW-complexes)

X a simple graph with bounded degree, VX countably infinite,
I < Aut(X) discrete group, acting freely [i.e. I'y is trivial,

Vv € VX], X/T finite graph.

I" gives global isomorphisms for X, hence we may consider the
-geometric operators, and the corresponding C*-algebra Ax .
The weak closure of Ay r is endowed with the trace state

rxr(T) = |;O| S (v, ),

vEF)

where Fy C X contains one representative for any point of X/TI.
If I is amenable, Falner condition gives an amenable
exhaustion. Then, VT € Ax,

. trTP
TX,F(T) = ||r|')'] ir Pnn.
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
e s(v) = Ka,
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
° 5(7) = Kn,
o U u(8kn) = &Kain),

~yeG(n,n+1)
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
° 5(7) = Kn,
o U u(8kn) = &Kain),

~yeG(n,n+1)
o E(Kn) NEY'(Kn) = F(Erv(Kn)) N F(E (Kn)s v # 7'
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
o s(7) = K,
° U Vi (S,-(K,,)) = &j(Kn+1),
YEG(n,n+1)
o &y(Kn) N &Y (Kn) = F(Ery(Kn)) N F(E (Kn), v # '
© Let G denote the set of all admissible products of 4’s and
v~ Vs, G(n) = {y € G : s(7) = Kn}. Then we ask that
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
° 3(7) = Kn1
° U Vi (S,-(K,,)) = &j(Kn+1),
~yeG(n,n+1)
o Ev(Kn) NEN'(Kn) = F(Erv(Kn)) N F(ER (Kn), v #
© Let G denote the set of all admissible products of 4’s and
v~ Vs, G(n) = {y € G : s(7) = Kn}. Then we ask that
i [ Fo(EKn)

lim

— _ — —1 .
gk =0, Fg(§Kn) = U v F(&y(Kn))-

v€G(N)
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Traces for geometric operators on graphs and CW-complexes

Self-similar CW-complexes

An amenable CW-complex (X, K) is self-similar if:
@ G(n,n+ 1) finite set of local isomorphisms such that:
° 3(7) = Kn1
° U Vi (S,-(K,,)) = &j(Kn+1),
~yeG(n,n+1)
o Ev(Kn) NEN'(Kn) = F(Erv(Kn)) N F(ER (Kn), v #
© Let G denote the set of all admissible products of 4’s and
v~ Vs, G(n) = {y € G : s(7) = Kn}. Then we ask that
i [ Fo(EKn)

lim

_ . _ —1 .
m ek~ 0 FolEke) = U ' F(En(Ka)).

v€G(N)

Ax g satisfies the limit condition, namely we get a trace 7x g .
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Traces for geometric operators on graphs and CW-complexes

Selfsimilar fractal

Selfsimilar prefractal

wi, ... Wq contracting
similarities of RP

with the same scaling
constant
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Traces for geometric operators on graphs and CW-complexes

Selfsimilar fractal

Selfsimilar prefractal

wi, ... Wq contracting
similarities of RP

with the same scaling
constant

P open, w;P C P
wiPNwP =0

convex polyhedron,
w;/P N w;P =face of P
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Traces for geometric operators on graphs and CW-complexes

Selfsimilar fractal

Selfsimilar prefractal

wi, ... Wq contracting
similarities of RP

with the same scaling
constant

P open, w;P C P
wiPNwP =0

convex polyhedron,
w;/P N w;P =face of P

Wp = U,q:1 W,‘P
{Wnp}neN — F
w.r.t. Hausdorff metrics

W/|n =Wy, Wy

—1
{Kn = W/|n WnP}neN /X
amenable exhaustion
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Traces for geometric operators on graphs and CW-complexes
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Traces for geometric operators on graphs and CW-complexes
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Traces for geometric operators on graphs and CW-complexes

Small perturbations of graphs

Let (X, K) be an amenable graph, A" the norm closure of the
*-algebra of finite propagation operators.

. e TPy Ep
Ess. zero: T ~ 0 iflim P, =0,TecAy.

Proposition

T:={T e AP : T ~ 0} is a closed two-sided ideal in AL".
If Ax ¢ satisfies the limit condition for a given G, 7x g x extends
to atrace on Ax g + 1.
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Traces for geometric operators on graphs and CW-complexes

Let (X1,K1), (X2, K2) be amenable graphs. Xy ~ X, if there
exists (X, K) such that

@ X; is a subgraph of X;
@ Kyi=Kin X,

o IX1 ~ IXQ;

o A)(1 ~ AX2'
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Traces for geometric operators on graphs and CW-complexes

Let (X1,K1), (X2, K2) be amenable graphs. Xy ~ X, if there
exists (X, K) such that

@ X; is a subgraph of X;
@ Kyi=Kin X,

o IX1 ~ IX2;

o A)(1 ~ AX2'

Theorem

Consider a graph (X, G, K) for which Ax ¢ satisfies the limit
condition and a graph (X', K') such that X ~ X'. We get a
C*-algebra Iy c A' C ALY satisfying the limit condition, hence
atracet onit. If T € Axg, T'€e A, and T ~ T, then
(T)=7'(T).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Outline

@ Applications
@ Geometric invariants for self-similar CW-complexes
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).
[2-Betti numbers: 5; = ua,({0}),j=0,...,p.
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).

[2-Betti numbers: 5; = ua,({0}),j=0,...,p.
Novikov-Shubin numbers: «;, j = 1,..., p such that

para ([0, 1)) — B ~ to9/2.
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).

[2-Betti numbers: 5; = ua,({0}),j=0,...,p.
Novikov-Shubin numbers: «;, j = 1,..., p such that

para ([0, 1)) — B ~ to9/2.

Following Lott and Liick, we define also L2-invariants for the
relative complex (X, 0X).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).
[2-Betti numbers: 5; = ua,({0}),j=0,...,p.
Novikov-Shubin numbers: «;, j = 1,..., p such that
para ([0, 1)) — B ~ to9/2.
Following Lott and Liick, we define also L2-invariants for the
relative complex (X, 0X).
@ Covering case: homotopy invariance of a; and 3; (Dodziuk
1977, Gromov-Shubin 1991).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

L2-invariants for self-semilar CW-complexes.

Let (X, G, K) a self-similar CW-complex, T € Ax ¢ selfadjoint,
set pr: [fdur =7(f(T)), f e Co(R).
[2-Betti numbers: 5; = ua,({0}),j=0,...,p.
Novikov-Shubin numbers: «;, j = 1,..., p such that
para ([0, 1)) — B ~ to9/2.
Following Lott and Liick, we define also L2-invariants for the
relative complex (X, 0X).
@ Covering case: homotopy invariance of a; and 3; (Dodziuk
1977, Gromov-Shubin 1991).
@ Self-similar case: rough isometry invariance of « for
graphs (when the NS-numbers are defined). (Follows by
Hambly-Kumagai, 2004)
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

Applications

Examples of self-similar graphs

Sierpinski graph
_ olog3 log 3
log5

ﬂozo
1

M.T. Barlow 2003
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

Applications

3
32
3
;3

ssiiiing

I—n I—I I—n lb—i—(b n—: I—n lb—§—1r GD—I I—n GD—I

ssiiting

:—4' lD—I :—4' lD—I

teos oees

1L,

:—n :—I :—n lb—§—1b n—i I—n lb—§—ﬂ GD—I :—n GD—I

Vicsek graph
a=2 log 5

I—!D %—§4D ib—§—ﬂ GD—I
:—1' %—E—ﬂ ib—§—ﬂ GD—I
T ke
»
|
\l _L

ododi o 4]
$i. 00
s2saluete!

J. Klgaml M.L.Lapidus, 2001

Daniele Guido, Universita di Roma Tor Vergata A trace for self-similar graphs



Daniele Guido, Univer

Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Lindstrom graph
a = 2 log7

fog 12.89027
Bo=0
B =14
T.Kumagai, 1993
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

A 2-dimensional example

A 2-dimensional
prefractal complex X:
the Sierpinski carpet
CW-complex.
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Computation of ax(X)

-+ - Isthe 2-Laplacian of X the Laplacian of
5 I a graph G, where the 2-cells are the
| vertices, and 2 vertices are connected
1] . :
% F by an edge if the corresponding cells
have a 1-cell in common?
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Geometric invariants for self-similar CW-complexes

Aoplications Ihara Zeta functions
pp BE condensation for pure-hopping Hamiltonian on graphs

Computation of ax(X)

-+ - Isthe 2-Laplacian of X the Laplacian of
5 I a graph G, where the 2-cells are the
| vertices, and 2 vertices are connected
1] ] . :

% F by an edge if .the corresponding cells

have a 1-cell in common?

Indeed any boundary 1-cell of X allows the random walk to “fall
in the hole”, implying the corresponding NS-invariant to be
trivial. To avoid this, one should excise the boundary, and
consider the relative complex (X, 9X). Then

az(X,0X) = a(G).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

Applications

! ! !
! ! !
| | ' 17 Let us consider now the graph G,
: obtained by X via a
| ‘o | 1. "Ll “cross-square” transformation,
which was studied in [M.T.Barlow,
! R.F.Bass, (1999)].
| = . ,. 17 Gand G are roughly isometric,
! ! ! hence

as(X,0X) = a(G) = o(G) € [1.67,1.87].
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Outline

9 Applications

@ lhara Zeta functions
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Appli ) )
pplications BE condensation for pure-hopping Hamiltonian on graphs

Ihara Zeta function for finite simple graphs
[lhara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.
@ Path of length m: C = (w, ..., Vim), (Vj, Vis1) € EX
(Closed: vy = Vip).
@ Connected: any two vertices are connected by a path.
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Ihara Zeta function for finite simple graphs
[lhara (1966), Hashimoto (1989), Bass (1992)]

Let X be a finite graph.
@ Path of length m: C = (w, ..., Vim), (Vj, Vis1) € EX
(Closed: vy = Vip).
@ Connected: any two vertices are connected by a path.

@ No backtracking / no tail: v; # vj o [mod m].
Grigin

Gigin
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

Applications

A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r > 2 times.
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
BE condensation for pure-hopping Hamiltonian on graphs

Applications

A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r > 2 times.

A cycle is a closed path modulo the starting point.

‘P denotes the class of primitive cycles (infinitely many!).
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications

BE condensation for pure-hopping Hamiltonian on graphs

A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r > 2 times.

A cycle is a closed path modulo the starting point.

‘P denotes the class of primitive cycles (infinitely many!).

Def. [Zeta function]

Zy(u) = JJ(1=d)",  wec
CeP
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Geometric invariants for self-similar CW-complexes
Ihara Zeta functions
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Applications

A closed path with no backtracking and no tail is primitive if it is
not obtained by going around some other path r > 2 times.

A cycle is a closed path modulo the starting point.

‘P denotes the class of primitive cycles (infinitely many!).

Def. [Zeta function]

Zy(u) = JJ(1=d)",  wec
CeP

Example: |VX| = 4,|EX| =6,
X(X) = 72’,’ = 37’£X = 161
ﬁ(u) = (1-u?)?(1—u)(1-2u)(1 +u+2u?)3
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Applications

Determinant formula
[lhara (1966), Hashimoto (1989), Bass (1992)]

Theorem (Determinant formula)

1
—— = (1 - ®)xX det(A(v)),
Zm =1-9 (B(u)
where A(u) = | — Au + QU?,
A = adjacency matrix, Q = diag(deg(vy) — 1, ..., deg(vn) — 1),
x(X) = |VX| — |EX| = Euler char. of X.

Obs. A(1) = (Q+ ) — A= graph Laplacian.
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Properties of Ihara Zx.

@ Hashimoto (1989), Northshield (1998)
r := rank of fundamental group 1 (X) = |[EX| — |VX| + 1 s
the order of the pole of Zx(u) atu=1.If r > 1

1
: P S
A A= U= = oy

kx = number of spanning trees in X.
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Properties of Ihara Zx.

@ Hashimoto (1989), Northshield (1998)
= rank of fundamental group 7 (X) = |[EX| — |[VX|+ 1 s
the order of the pole of Zx(u) atu=1.If r > 1

1
lim Z 1-Uu) =i
A 2x (W)t =) = =5y
kx = number of spanning trees in X.

@ Hashimoto (1992), Horton, Stark, Terras (2006)
Ry radius of convergence of Zx
g.c.d{|C|: CEP}_1 Then

{CeP:|Cl=n}~"" no o
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Regular graphs.

A graph is regular if any vertex has the same degree. If X is
(g + 1)—regular,

Zx(g )= [T - (@)™

CeP

Daniele Guido, Univer Vergata A trace for self-similar graphs



Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Regular graphs.

A graph is regular if any vertex has the same degree. If X is
(g + 1)—regular,

Zx(@ %) = [J(1 =)=
ceP
Cf. the Euler product formula for the Riemann zeta function:

() =101 -p)".

J°)
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Definition
X satisfies the Riemann Hypothesis if
Z'(q%)=0

Rs e (0,1) = Rs=1
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Definition

X satisfies the Riemann Hypothesis if
Zy'(q°)=0
Rs € (0,1) = Rs=1

Theorem (lhara (1966), Lubotzky (1994))
X (g + 1)—regular satisfies the Riemann Hypothesis iff X is a

Ramanujan graph, namely
Aeo(A), N <g+1 = [N <24

A

Ramanujan graphs are important in communication networks.
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Ihara Zeta function for covering graphs

Let X be a connected simple graph with bounded degree, VX
countably infinite, I < Aut(X) discrete group, acting freely [i.e.
Iy is trivial, Vv € VX], X/T finite graph.

Definition (Zeta function)

Zxr(u) = [ (1—ul€)-1el
[CleP/T

where P /T denotes the set of primitive cycles modulo
I-translations, and I' ¢ = the stabilizer of a cycle C.

It gives a holomorphic function in a suitable disc.
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Ihara Zeta function for self-similar graphs
[G.I.L. (2006)]

Applications

Definition (Zeta function)
Zxg(u) = H (1 — ylCly=H©),
[CleP/¢

where classes of cycles are modulo local isomorphisms in G,
and 1.(C) = average multiplicity of C is defined as

HC Cc Kn: C' ~g C}].

C) =lim
/’L( ) n |Kn|

N.B. Self-similarity implies the limit exists and is finite.
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Proposition
e depends only on the size of C, namely the least m € N s.t.
C C v(Km), forsome ~ € G.

o For the Gasket graph, 1(C) = 37,
@ For the Vicsek graph, 1(C) = 5,
@ For the Lindstrom graph, u(C) = 525,

where p is the size of C
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An analytic determinant on (A, 7)

Applications

Proposition
Let Ay = {A € A:co(c(A)) # 0}, and set

det A =expor olog A, A€ A,

where log A = % / log\ (A —A)~" d\, and C is a simple
c

curve surrounding co(o(A)). Then det is well defined and

analytic on Ayp.
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Applications

@ det(zA) = z7() det(A), for any z € C \ {0},
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Applications

@ det(zA) = z7() det(A), for any z € C \ {0},
@ if Ais normal, det(A) = det(U) det(H), where A= UH is
the polar decomposition,
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BE condensation for pure-hopping Hamiltonian on graphs

@ det(zA) = z7() det(A), for any z € C \ {0},
@ if Ais normal, det(A) = det(U) det(H), where A= UH is
the polar decomposition,

@ if Ais positive, det(A) = Det(A), where the latter is the
Fuglede—Kadison determinant.
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Applications

@ det(zA) = z7() det(A), for any z € C \ {0},

@ if Ais normal, det(A) = det(U) det(H), where A= UH is
the polar decomposition,

@ if Ais positive, det(A) = Det(A), where the latter is the
Fuglede—Kadison determinant.

det AB # det Adet B:
@ A B e Ay does notimply AB € Ay
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Applications

@ det(zA) = z7() det(A), for any z € C \ {0},

@ if Ais normal, det(A) = det(U) det(H), where A= UH is
the polar decomposition,

@ if Ais positive, det(A) = Det(A), where the latter is the
Fuglede—Kadison determinant.
det AB # det Adet B:
@ A B e Ay does notimply AB € Ay

@ evenif A B, AB € Ay and A and B commute, the product
property may be violated.
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BE condensation for pure-hopping Hamiltonian on graphs

@ det(zA) = z7() det(A), for any z € C \ {0},

@ if Ais normal, det(A) = det(U) det(H), where A= UH is
the polar decomposition,

@ if Ais positive, det(A) = Det(A), where the latter is the
Fuglede—Kadison determinant.
det AB # det Adet B:
@ A B e Ay does notimply AB € Ay

@ evenif A B, AB € Ay and A and B commute, the product
property may be violated.

@ However, if A and B have sufficiently small norm, then
det((/+ A)(/ + B)) = det(/ + A) det(/ + B).
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Applications

The determinant formula

1
= (1 — u®)X®X) detg(A(u)), for u in a suitable disc.
x,r(u)

@ Periodic case: x(®(X) = x(X/I).

@ Self-similar case: x(¥(X) = lim X(Kn)

n—oo ’Kn’
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Applications

The determinant formula

= (1 — u®) P X detg(A(w)), for u in a suitable disc.
Zxr(u)

@ Periodic case: x(®(X) = x(X/I).

@ Self-similar case: x(¥(X) = lim x(Kn)

n—oo ’Kn’

The determinant formula in the periodic case was fist proved by
Clair and Mokhtari-Sharghi, but the determinant was defined in
a completely different way.
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The determinant formula

= (1 — u®) P X detg(A(w)), for u in a suitable disc.

Zxr(u)

@ Periodic case: x(®(X) = x(X/I).

@ Self-similar case: x®(X) = lim X(Kn)
n—co | Ky|

The determinant formula in the periodic case was fist proved by
Clair and Mokhtari-Sharghi, but the determinant was defined in
a completely different way.
Recall that A(u) = I — Au + Qu?, hence takes values in a
commutative C*-algebra if and only if Q is constant, namely the
graph is regular.

Daniele Guido, Universita di Roma Tor Vergata A trace for self-similar graphs



Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

x?)(X) for some self-similar graphs

—_

@ Gasket graph Y (X) = —1.
@ Vicsek graph x@(X) = —1.
@ Lindstrom graph x®(X) = —1.

@ Carpet graph x®(X) = —19.
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Applications

The Functional Equation

We now assume the graph X to
be (g + 1)-regular, possibly up to
a finite number of vertices. Then
Zx(u) extends to the
complement of the curve Q.
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Applications

The Functional Equation

We now assume the graph X to
be (g + 1)-regular, possibly up to
a finite number of vertices. Then
Zx(u) extends to the
complement of the curve Q.

@ The Riemann zeta admits a so called completion
£(s) := m=5/21(s/2)¢(s), where T is the usual Gamma
function, satisfying the functional equation £(s) = £(1 — s).
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Applications

The Functional Equation

We now assume the graph X to
be (g + 1)-regular, possibly up to
a finite number of vertices. Then
Zx(u) extends to the
complement of the curve Q.
@ The Riemann zeta admits a so called completion
£(s) := m=5/21(s/2)¢(s), where T is the usual Gamma
function, satisfying the functional equation £(s) = £(1 — s).
@ Setting u = g%, the reflection s — 1 — s becomes the

: 1
reflection u — 90
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Theorem (Functional equation)
Ihara zeta function admits a completion

Ex(u) = (1 4+ u) D201 — u)TTD2(1 — qu)Zx(u).

Such completion satisfies {x(u) = Ex ( c;u) .
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BE condensation for pure-hopping Hamiltonian on graphs

Theorem (Functional equation)
Ihara zeta function admits a completion

Ex(u) = (1 4+ u) D201 — u)TTD2(1 — qu)Zx(u).

Such completion satisfies {x(u) = Ex ( c;u) .

N.B.: The curve Q is invariant under the reflection u — #.
While in the finite graph case the singularities are only polar,
hence the functional equation is a relation between
meromorphic functions on C, for infinite graphs there are
branching points. The question whether the extension of the
domain of Zx r by means of the determinant formula is
compatible with an analytic extension from the defining domain
is a non-trivial issue, see [Clair, Zeta functions of graphs with Z

actions, math.NT/0607689].
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Approximation by finite graphs

Applications

Theorem (Clair, Mokhtari-Sharghi)

X covering graph with constant degree, and assume T is
residually finite, i.e. T, "\, {e} normal subgroups of T,
[ :Th] < oco. Then

]
Zxr(u) = nILmOO Zg, (U)ol | u e,

where B, .= X /I, be the tower of finite coverings of B .= X/T.
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Approximation by finite graphs

Applications

Theorem (Clair, Mokhtari-Sharghi)

X covering graph with constant degree, and assume T is
residually finite, i.e. T, "\, {e} normal subgroups of T,

[ :Th] < oco. Then

]
Zxr(u) = nILmOO Zg, (U)ol | u e,

where B, .= X /I, be the tower of finite coverings of B .= X/T.

Theorem (Guido, Isola, Lapidus)

X a self-similar graph or a periodic graph with amenable T .
Then

)
Zx g(u) = nILmOO Zx,(u)Tkal | ue.
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Outline

9 Applications

@ BE condensation for pure-hopping Hamiltonian on graphs
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Bose-Einstein condensation

(X, K) amenable graph, H Hamiltonian, H, the restriction to K.
The grand-canonical ensemble on K}, is described by:
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Bose-Einstein condensation

(X, K) amenable graph, H Hamiltonian, H, the restriction to K.
The grand-canonical ensemble on K}, is described by:

@ the C*-algebra 2(K,) := CCR(L?(Kp)),
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Bose-Einstein condensation

(X, K) amenable graph, H Hamiltonian, H, the restriction to K.
The grand-canonical ensemble on K}, is described by:
@ the C*-algebra 2(K,) := CCR(L?(Kp)),
@ the time-evolution, implemented by the second
quantization of et
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Bose-Einstein condensation

(X, K) amenable graph, H Hamiltonian, H, the restriction to K.
The grand-canonical ensemble on K}, is described by:
@ the C*-algebra 2(K,) := CCR(L?(Ky)),
@ the time-evolution, implemented by the second
quantization of e/,
@ the KMS state wg ,, such that
wpu(@ (x)a(y)) = (x, (&7 —1)~1y), (2p. funct.)
on(B, 1) = ”(SMTK# (density).
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Bose-Einstein condensation

(X, K) amenable graph, H Hamiltonian, H, the restriction to K.
The grand-canonical ensemble on K}, is described by:
@ the C*-algebra 2(K,) := CCR(L?(Kp)),
@ the time-evolution, implemented by the second
quantization of et

@ the KMS state wg ,, such that
Wﬁ,u(a*(x)a(Y)ﬁ?Hf (x, E?BH"_“ — N71y), (2p. funct.)
pn(B, p) = =) (density).

[Knl
One tries to find, on a suitable CCR algebra 2((X) on which the
second-quantization of e implements automorphisms, a KMS
state wg,, given by a weak* limit of states wg ,,,, on A(Ky), with

Hn — M.
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Thecase X =79 H=A

(& ) ety - o

Critical density: ps(3) = 7((€°F — )™") < 0 if d > 2.

When 1 < 0, Ii’rvn
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Thecase X =79 H=A

(& ) ety - o

Critical density: ps(3) = 7((€°F — )™") < 0 if d > 2.
Given (3, p one find up : pn(5, un) = p. Then:

When 1 < 0, Ii’rvn
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Thecase X =79 H=A

GHn—pn _ N-—1
tr((e T N~ _ T((eﬁH—M _ I)—1) < 00.
n
Critical density: ps(3) = 7((€°" — )™") < o if d > 2.
Given (3, p one find up : pn(5, un) = p. Then:
Q p < pe(B): 1 < 0, 3 limit state wg , on CCR(Upt2(Kp)):
wau(@(x)aly)) = (x, (e # = N7y), x.yeX.

When 1 < 0, Ii’rvn
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Thecase X =79 H=A

e (e

Critical density: ps(3) = 7((€°F — )™") < 0 if d > 2.

Given (3, p one find up : pn(5, un) = p. Then:

Q p < pe(B): 1 < 0, 3 limit state wg , on CCR(Upt2(Kp)):
wp(@(x)a(y)) = (x, (&7 = N7y), xyeX

Q p > pe(B)(d > 2): =0, 3 limit states ws g on
CCR(Un2(Ky)):
wgo(@(x)a(y)) = (x, (e =171y)+(p—pe(8))(x,1)(1,¥)-

When 1 < 0, Ii’rvn

Daniele Guido, Universita di Roma Tor Vergata A trace for self-similar graphs



Geometric invariants for self-similar CW-complexes
Ihara Zeta functions

Applications BE condensation for pure-hopping Hamiltonian on graphs

Thecase X =79 H=A

Hn—pin -
tr((eﬁ oo —1) 1) _ T((eﬁH—u _ I)—1) < 00.
|Knl
Critical density: ps(3) = 7((€°F — )™") < 0 if d > 2.
Given (3, p one find up : pn(5, un) = p. Then:
Q p < pe(B): 1 < 0, 3 limit state wg , on CCR(Upt2(Kp)):
wp(@(x)aly)) = (x, (" = N7Ty), xyeX
Q p > pe(B)(d > 2): =0, 3 limit states ws g on
CCR(Un?(Kp)):
wpo(a@ (x)a(y)) = (x, (e = 1y)+(p—pe(8))(x, 1)(1,¥)-
In both cases wg ,, extends to a KMS state on CCR(S(X)).
In the 2" case wg o is not uniquely determined; the extra-term

corresponds to the 0-energy eigenvector and describes the
BE-condensation.

When 1 < 0, Ii’rvn
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Pure hopping Hamiltonian for small perturbations of
periodic graphs

The pure hopping Hamiltonian is the non-diagonal part of the
Laplacian, i.e. —A. In order to set to 0 the lower bound of the
spectrum, we consider H = || A||/ — A. It turns out that this
Hamiltonian is sensitive to small perturbations.
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Pure hopping Hamiltonian for small perturbations of
periodic graphs

The pure hopping Hamiltonian is the non-diagonal part of the
Laplacian, i.e. —A. In order to set to 0 the lower bound of the
spectrum, we consider H = || A||/ — A. It turns out that this
Hamiltonian is sensitive to small perturbations.

Classically, e.g. for X =79, H = A,

Transience < 3JBEC < pc < o0 & d > 2.
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Pure hopping Hamiltonian for small perturbations of
periodic graphs

The pure hopping Hamiltonian is the non-diagonal part of the
Laplacian, i.e. —A. In order to set to 0 the lower bound of the
spectrum, we consider H = || A||/ — A. It turns out that this
Hamiltonian is sensitive to small perturbations.

Classically, e.g. for X =79, H = A,

Transience < 3JBEC < pc < o0 & d > 2.

In our case, transience is still necessary for BEC, and possibly
sufficient, but it is not related with p < oo or d > 2.
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Pure hopping Hamiltonian for small perturbations of
periodic graphs

The pure hopping Hamiltonian is the non-diagonal part of the
Laplacian, i.e. —A. In order to set to 0 the lower bound of the
spectrum, we consider H = || A||/ — A. It turns out that this
Hamiltonian is sensitive to small perturbations.

Classically, e.g. for X =79, H = A,

Transience < 3JBEC < pc < o0 & d > 2.

In our case, transience is still necessary for BEC, and possibly
sufficient, but it is not related with p < oo or d > 2.

We expect that, when A is transient, we can choose sequences
un — 0 giving rise to KMS states with two-point functions

(x, (&7 = )7Ty) + k(x, vV)(v.y),

where v is a generalised Perron-Frobenius eigenvector for A,
i.e. the 0-energy eigenvector.
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The comb graphs

The comb graph Z9 - (Z, 0) consists of a copy of the graph Z¢
(the basis) where at each vertex is attached a copy of the graph
Z (the fiber) at the vertex 0.
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The comb graphs

The comb graph Z9 - (Z, 0) consists of a copy of the graph Z¢
(the basis) where at each vertex is attached a copy of the graph
Z (the fiber) at the vertex 0.

The exaustion K}, is given by boxes with a given center on the
basis and side 2n.
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The comb graphs

The comb graph Z9 - (Z, 0) consists of a copy of the graph Z¢
(the basis) where at each vertex is attached a copy of the graph
Z (the fiber) at the vertex 0.

The exaustion K}, is given by boxes with a given center on the
basis and side 2n.

We consider here the restriction of H to K, with periodic
conditions, or, equivalently, we approximate 79 (Z,0) with
(Zgn n ([_nv n]’ 0)
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The comb graphs

The comb graph Z9 - (Z, 0) consists of a copy of the graph Z¢
(the basis) where at each vertex is attached a copy of the graph
Z (the fiber) at the vertex 0.

The exaustion K}, is given by boxes with a given center on the
basis and side 2n.

We consider here the restriction of H to K, with periodic
conditions, or, equivalently, we approximate 79 (Z,0) with
(Zgn n ([_nv n]’ 0)

The comb graph Z9 4 (Z,0) may be considered as a small
perturbation of infinitely many copies of Z, the perturbation
consisting in removing the basis. We easily get that A is
transient iff d > 2. In this case the critical density is finite.
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Applications

Theorem

Letd > 2,6 > 0. Then, Vk > 0, there exists a sequence
un — 0 such that:

@ KMS states wg,,, converge to a state on CCR(UnL2(Kp))
with two-point function

(x, (" = D7y) + k(x,v)(v.y),

where v is the generalised Perron-Frobenius eigenvector
for A obtained as pointwise limit of the Perron-Frobenius
eigenvectors vy, for A, taking value 1 on the basis.
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BE condensation for pure-hopping Hamiltonian on graphs

Theorem

Letd > 2,6 > 0. Then, Vk > 0, there exists a sequence
un — 0 such that:

@ KMS states wg,,, converge to a state on CCR(UnL2(Kp))
with two-point function

(x, (" = D7y) + k(x,v)(v.y),

where v is the generalised Perron-Frobenius eigenvector
for A obtained as pointwise limit of the Perron-Frobenius
eigenvectors vy, for A, taking value 1 on the basis.

@ Such limit states extend to KMS states on
CCR({vj € 229 4 (z,0)) : > vi? € S(z9)}).
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Applications

Theorem
Letd > 2,6 > 0. Then, Vk > 0, there exists a sequence
un — 0 such that:

@ KMS states wg,,, converge to a state on CCR(UnL2(Kp))
with two-point function

(x, (" = D7y) + k(x,v)(v.y),

where v is the generalised Perron-Frobenius eigenvector
for A obtained as pointwise limit of the Perron-Frobenius
eigenvectors vy, for A, taking value 1 on the basis.

@ Such limit states extend to KMS states on
CCR({vj € 229 4 (z,0)) : Zj vi? € S(z9)}).

@ The condensate is localised around the basis, hence does
not contribute to the density, which is simply pc.
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