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Overview

This is joint work with Ken Dykema.
Plan:

1. Haagerup-Thorbjørnsen’s C ∗-algebra linearization ‘trick’.

2. A von Neumann algebra linearization theorem.

3. About Connes embedding property (CEP) & applications of
the theorem.

4. Horn theorem.

5. Bercovici Li’s large N Horn theorem.

6. A new equivalent condition to CEP.
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Haagerup-Thorbjørnsen’s C ∗-algebra linearization Trick

Theorem (HT’s C ∗-algebra linearization trick)

Let A (resp. B) be a unital C ∗-algebra generated by selfadjoints
X1, . . . ,Xk (resp.Y1, . . . ,Yk) such that for all positive integers N
and for all a0, . . . , ak ∈ MN(C)sa,

a0 ⊗ 1 + a1 ⊗ X1 + . . . + ak ⊗ Xk

and
a0 ⊗ 1 + a1 ⊗ Y1 + . . . + ak ⊗ Yk

have the same spectrum.
Then there exists an isomorphism φ between A and B such that
φ(Xi ) = Yi .
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Question: How about a von Neumann (non-commutative) version ?



Main result

Theorem
Let M be a von Neumann algebra generated by X1, . . . ,Xk

selfadjoint and N generated by Y1, . . . Yk selfadjoint.

Let τ be a faithful trace on M and χ be a faithful trace on N.
Let c < d be positive real numbers and suppose that for all n ∈ N∗
and all a1, . . . ak in Mn(C)s.a. whose spectra are contained in the
interval [c , d ],

distr
∑

i

ai ⊗ Xi = distr
∑

i

ai ⊗ Yi

Then there exists an isomorphism φ : M → N such that
φ(Xi ) = Yi and χ ◦ φ = τ .
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Notation

For a1, a2 ∈ MN(C)sa, we call eva1,a2 the algebra morphism

C〈x1, x2〉 → C

given by
eva1,a2(P) = P(a1, a2).



First steps of proof

I Step 0: By the GNS representation theorem, it is enough to
prove that for all monomial P in k non-commuting variables,

τ(P(Xi )) = χ(P(Yi )).

I Step I: For all monomial P in k non-commuting variables,

τ(P(Xi )) = χ(P(Yi ))

is equivalent to proving that

∩N≥1∩a1,a2∈MN(C)sa Ker(Tr◦eva1,a2) = {[a, b], a, b ∈ C〈x1, x2〉}
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First steps of proof (continued)

I Observation: hypothesis distr
∑

i ai ⊗ Xi = distr
∑

i ai ⊗ Yi is
equivalent to

Tr ◦ τ((
∑

i

ai ⊗ Xi )
k) = Tr ◦ χ((

∑
i

ai ⊗ Yi )
k)

for all integers k.

I Using the cyclicity of the trace and an appropriate description
of

{[a, b], a, b ∈ C〈x1, x2〉},

the moment condition can be seen to be equivalent to

∩N≥1∩a1,a2∈MN(C)sa Ker(Tr◦eva1,a2) = {[a, b], a, b ∈ C〈x1, x2〉}
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Main step (II) of proof

I The main step is to prove

∩N≥1∩a1,a2∈MN(C)sa Ker(Tr◦eva1,a2) = {[a, b], a, b ∈ C〈x1, x2〉}

I This looks like a linear algebra problem but we don’t know an
algebraic proof.

I Our strategy: use the fact that an ensemble of probability > 0
is non-empty !
In other words: don’t be descriptive, use RMT instead.
(more precisely, second order freeness theory by J. Mingo and
R. Speicher)
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Reminder of second order freeness

For x1, . . . , xr complex valued random variables having moments of
all orders, recall that the classical cumulant Cr (x1, . . . , xr ) is
defined by

Cr (x1, . . . , xr ) =
∂r

∂t1 . . . ∂tr
log E (e

P
tixi )|ti=0.

A random matrice sequence A = (AN)N∈N has a second order limit
distribution if for all m, n ≥ 1 the limits

αA
n := lim

N→∞
C1(tr(An

N))

and
γA

m,n := lim
N→∞

C2(Tr(Am
N ),Tr(An

N))

exists and if for all r ≥ 3, and all n(1), . . . , n(r) ≥ 1,

lim
N→∞

Cr

(
Tr(An(1)

N ), . . . ,Tr(An(r)
N )

)
= 0.
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Consider two random matrix ensembles A = (AN)N∈N and
B = (BN)N∈N, each of them with a second order limit distribution.
Denote

YN

(
n(1),m(1), . . . , n(p),m(p)

)
=

Tr
(
(A

n(1)
N −αA

n(1)1)(B
m(1)
N −αB

m(1)1) · · · (An(p)
N −αA

n(p)1)(B
m(p)
N −αB

m(p)1)
)
.

The random matrix ensembles A = (AN)N∈N and B = (BN)N∈N
are asymptotically free of second order if every monomial in AN ,BN

has a second order limit distribution, and if for all n,m ≥ 1

lim
N→∞

C2

(
Tr(An

N − αA
n 1),Tr(Bm

N − αB
m1)

)
= 0

...
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...and for all p, q ≥ 1 and
n(1), . . . , n(p),m(1), . . . ,m(p),ñ(1), . . . , ñ(q), m̃(1), . . . , m̃(q) ≥ 1
we have

lim
N→∞

C2

(
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(
n(1),m(1), . . . , n(p),m(p)

)
,
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(
ñ(1), m̃(2), . . . , ñ(q), m̃(q)

))
= 0

if p 6= q, and otherwise

lim
N→∞
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,

YN

(
ñ(p), m̃(p), . . . , ñ(1), m̃(1)

))
=

p∑
k=1

p∏
i=1

γA
n(i+k),ñ(i)γ

B
m(i+k),m̃(i)
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ñ(p), m̃(p), . . . , ñ(1), m̃(1)
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Theorem (Mingo-Speicher)

Let AN = P(X1) and BN = Q(X2) where X1,X2 are independent
Gaussian unitary ensembles, and P,Q are two polynomials.

Then, AN and BN are asymptotically free of second order.

Theorem (Johansson)

Let AN be the GUE of dimension N and Ti the Chebyshev
polynomial of second kind, then the real infinite dimensional
random vector

(
Tr(Ti (AN))− E (Tr(Ti (AN)))√

i
)i∈N

tends in distribution towards independent standard real gaussian
variables.
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End of the proof

Let x be any element of C〈x1, x2〉 − [C〈x1, x2〉, C〈x1, x2〉].

By the results of Johansson and Mingo-Speicher, it is possible to
prove that the random element

Tr(evX1,X2(x))− E (Tr(evX1,X2(x)))

converges towards a nontrivial gaussian variable as N →∞.
Therefore there exists N, a1, a2 ∈ MN(C)s.a. (resp. b1, b2) such
that

Tr(eva1,a2(x)) 6= Tr(evb1,b2(x))

Therefore one of them is non-zero. QED
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Therefore one of them is non-zero. QED



Comments

About the use of random matrices:

I Random matrices ‘had’ solve step II because we are dealing
with continuous functions and random matrices exhaust all
possibilities.

I It is (probably) the first application of second order freeness
beyond RMT.

I However, it could be important and instructive to look for a
constructive proof.
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Reminders about CEP

Let R denote the hyperfinite II1–factor and τR its normalized trace.

Let ω be a free ultrafilter on N and let Iω denote the ideal of
`∞(N,R) consisting of those sequences (xn)

∞
n=1 such that

limn→ω τR((xn)∗xn) = 0.
Then Rω is the quotient `∞(N,R)/Iω, which is actually a von
Neumann algebra.
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Definition
The pair (M, τ) is said to have Connes’ embedding property (CEP)
if M can be embedded into an ultra power Rω of the hyperfinite
von Neumann algebra R in a trace–preserving way.

Whether any finite vN algebra with separable predual has CEP is a
BIG OPEN QUESTION.
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Reminders about microstates

Definition
If X = (x1, . . . , xn) is a finite subset of Msa := {x ∈ M | x∗ = x},
we say that X has matricial microstates

if for every m ∈ N and
every ε > 0, there is k ∈ N and there are self–adjoint k × k
matrices A1, . . . ,An such that whenever 1 ≤ p ≤ m and
i1, . . . , ip ∈ {1, . . . , n}, we have

|trk(Ai1Ai2 · · ·Aip)− τ(xi1xi2 · · · xip)| < ε, (1)

where trk is the normalized trace on Mk(C).

Theorem
Connes Embedding Property is equivalent to the existence of
microstates.
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A direct consequence of the linearization trick:

Theorem
Suppose that a von Neumann algebra M with trace τ is generated
by self–adjoint elements x1 and x2.
Let c < d be real numbers.
Then M has Connes’ embedding property if and only if there exists
y1, y2 ∈ (Rω)sa such that for all a1, a2 ∈ Mn(C)sa whose spectra
are contained in [c , d ],

distr(a1 ⊗ x1 + a2 ⊗ x2) = distr(a1 ⊗ y1 + a2 ⊗ y2)
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A more general statement

...switching the quantifiers...

Theorem
Suppose that a von Neumann algebra M with trace τ is generated
by self–adjoint elements x1 and x2.
Then M has Connes’ embedding property if and only if for all
n ∈ N∗ and all a1, a2 ∈ Mn(C)+ there exists y1, y2 ∈ Rω such that

distr(x1) = distr(y1) (2)

distr(x2) = distr(y2) (3)

distr(a1 ⊗ x1 + a2 ⊗ x2) = distr(a1 ⊗ y1 + a2 ⊗ y2) (4)

hold.
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Horn conjecture: setting

Let A,B,C be three selfadjoint n × n matrices whose respective
eigenvalues are the nonincreasing real sequences (αi ), (βi ), (γi )
indexed by i ∈ {1, . . . , n}.

Let (I , J,K ) be a triple of subsets of {1, . . . , n}. The eigenvalues
(αi ), (βi ), (γi ) are said to satisfy inequalities (∗IJK ) iff∑

i∈K

γi ≤
∑
i∈I

αi +
∑
i∈J

βi .
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Horn conjecture: definition of the convex body

Horn defined sets T n
r of triples (I , J,K ) of subsets of {1, ..., n} of

the same cardinality r , by the following inductive procedure.

I Set

Un
r = {(I , J,K ),

∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k + r(r + 1)/2}.

I When r = 1, set T n
1 = Un

1 . In general,

T n
r = {(I , J,K ) ∈ Un

r , for all p < r and all (F ,G ,H) ∈ T r
p ,∑

f ∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p + 1)/2



Horn conjecture: definition of the convex body

Horn defined sets T n
r of triples (I , J,K ) of subsets of {1, ..., n} of

the same cardinality r , by the following inductive procedure.

I Set

Un
r = {(I , J,K ),

∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k + r(r + 1)/2}.

I When r = 1, set T n
1 = Un

1 . In general,

T n
r = {(I , J,K ) ∈ Un

r , for all p < r and all (F ,G ,H) ∈ T r
p ,∑

f ∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p + 1)/2



Horn conjecture: definition of the convex body

Horn defined sets T n
r of triples (I , J,K ) of subsets of {1, ..., n} of

the same cardinality r , by the following inductive procedure.

I Set

Un
r = {(I , J,K ),

∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k + r(r + 1)/2}.

I When r = 1, set T n
1 = Un

1 . In general,

T n
r = {(I , J,K ) ∈ Un

r , for all p < r and all (F ,G ,H) ∈ T r
p ,∑

f ∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p + 1)/2



Horn conjecture: theorem

Theorem
A triple (α, β, γ) occurs as eigenvalues of Hermitian n by n
matrices A,B,C with C = A + B if and only if∑

γi =
∑

αi +
∑

βi

and the inequalities (∗IJK ) hold for every (I , J,K ) in T n
r , for all

r < n.



Large N scaling limit of Horn problem

Observation & theorem due to Bercovici-Li: for probability
measures µ, ν with compact support, it is possible to well-define a
convex body Kν,µ of measures by approximating µ, ν by the
spectral distribution of matrices A,B of dimension N.

Theorem (Bercovici-Li)

This convex body exactly characterizes what spectral measures
occur for A + B, A and B belonging to a factor with CEP.
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Matrix valued version
Observation: with N-dimensional spectral measures µ, ν and
a, b ∈ Mn(C)sa, define a set K a,b

ν,µ of possible measures of

a⊗ AN + b ⊗ BN

for AN ∈ MN(C) of spectral measure µ and BN ∈ MN(C) of
spectral measure ν.

It is actually possible to replace MN(C) by MdN(C) and to define

the closure of the increasing limit, K a,b
ν,µ,ω

One can show that this body exactly characterizes what spectral
measures occur for a⊗ A + b ⊗ B, A and B belonging to a factor
with CEP.

Theorem

I Unlike K 1,1
ν,µ , K a,b

ν,µ may be non-convex.

I Let M be a II1 factor. This factor has CEP iff
distr(a⊗ A + b ⊗ B) ∈ K a,b

ν,µ for all a, b and A,B ∈ M of
distribution (µ, nu)
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Open questions:

I If Connes conjecture fails, does it mean that it is possible to
find A,B in a II1 factor with A + B not in Kµ,ν ?

I What does actually Kµ,ν look like ?

I Do all finite M with separable predual have CEP ? ;-)

Thanks !
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