Inductive limits of projective C^*-algebras.

Hannes Thiel

University of Copenhagen, Denmark

26. April 2011
EU-NCG 4th annual meeting
"Simion Stoilow" Institute of Mathematics
Bucharest, Romania
Introduction I

Shape theory:
- a tool to study global properties of spaces
- better than homotopy theory if a space has singularities

Idea:
- approximate a space by nicer spaces (building blocks)
- study approximating system instead of original space

<table>
<thead>
<tr>
<th>object:</th>
<th>commutative world</th>
<th>noncommutative world</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric space X</td>
<td>separable C^*-algebra A</td>
<td></td>
</tr>
<tr>
<td>absolute neighborhood retracts X_k</td>
<td>semiprojective C^*-algebras A_k</td>
<td></td>
</tr>
<tr>
<td>limit (= inverse limit)</td>
<td>colimit (=inductive limit)</td>
<td></td>
</tr>
</tbody>
</table>

$X \cong \lim\limits_{\leftarrow} \{ \ldots \to X_2 \to X_1 \}$

$A \cong \lim\limits_{\rightarrow} \{ A_1 \to A_2 \to \ldots \}$
problem: Are there enough building blocks in order to approximate every space?

commutative world: Yes.
(every metric spaces is an inverse limit of ANRs)

noncommutative world: We don’t know.

Question 1.1 (Blackadar)
Which C^*-algebras are inductive limits of semiprojectives?

Theorem 1.2 (Sørensen, T)
$C(X)$ is semiprojective $\iff X$ is an ANR with $\dim(X) \leq 1$.

Theorem 1.3 (Loring, Shulman)
For every C^*-algebra A, the cone $CA = C_0((0,1]) \otimes A$ is an inductive limit of projective C^*-algebras.
Blackadar developed noncommutative shape theory for all separable C^*-algebras to avoid possible problems with too few building blocks, change notion of approximation:

Definition 2.1

A morphism $\varphi : A \to B$ is called (weakly) semiprojective, abbreviated by (W)SP, if:

- $\forall C$ with increasing sequence of ideals $J_1 \triangleleft J_2 \triangleleft \ldots \triangleleft C$, $\sigma : B \to C/\bigcup_k J_k$ (and $\varepsilon > 0$ and finite subset $F \subset A$)

- $\exists k$ and $\psi : A \to C/J_k$ such that the diagram commutes (up to ε on F):
Definition 2.2

If in the above definition, there is always a lift \(\sigma : A \to C \), then the morphism is called (weakly) projective.

A \(C^* \)-algebra \(A \) is called (weakly) (semi-)projective, if the morphisms \(\text{id}_A : A \to A \) is.

A semiprojective:

\[
\begin{array}{ccc}
A & \xrightarrow{\sigma} & C/igcup_k J_k \\
\downarrow \psi & & \downarrow \\
C/J_k & \xrightarrow{\psi} & C
\end{array}
\]

A projective:

\[
\begin{array}{ccc}
A & \xrightarrow{\sigma} & C/J \\
\downarrow \psi & & \\
C & \xrightarrow{\psi} & C
\end{array}
\]

Theorem 2.3 (Blackadar)

Every \(C^* \)-algebras is the inductive limit of an inductive system with semiprojective connecting maps. Such a system is called shape system.
Definition 2.4

A and B are **shape equivalent**, denoted \(A \sim_{\text{Sh}} B \), if they have shape systems with intertwinings that make the following diagram commute up to homotopy:

\[
\begin{array}{ccccccc}
A_1 & \xrightarrow{\gamma_1} & A_2 & \xrightarrow{\gamma_2} & A_3 & \ldots & A \\
\downarrow{\alpha_1} & & \downarrow{\alpha_2} & & \downarrow{\beta_2} & & \\
B_1 & \xrightarrow{\beta_1} & B_2 & \xrightarrow{\theta_1} & \ldots & & B
\end{array}
\]

If only upper triangles commute, say A is **homotopy dominated** by B, denoted \(A \preceq_{\text{Sh}} B \).

Remark 2.5

Shape theory extends homotopy theory:
\(A \simeq B \Rightarrow A \sim_{\text{Sh}} B \); \(A \preceq B \Rightarrow A \preceq_{\text{Sh}} B \)

converses hold if \(A, B \) are SP
For X a compact, connected, metric space, and $x \in X$, set:

$$C_0(X_0) := C_0(X \setminus \{x\})$$

Example 2.6 (Dadarlat)

If X, Y are compact, connected, metric spaces, then:

$$C_0(X_0) \sim_{Sh} C_0(Y_0) \iff (X, x) \sim_{Sh} (Y, y)$$

This means: noncommutative shape theory = classical shape theory for commutative C^*-algebras. However:

$$C_0(X_0) \otimes K \sim_{Sh} C_0(Y_0) \otimes K \iff K^*(X, x) \cong K^*(Y, y)$$
Inductive limits of projective C^*-algebras I

Need criterion to decompose a C^*-algebra as inductive limit. For example: Given $A = \varinjlim A_k$ and $A_k = \varinjlim_A l A_k$. When is A an inductive limit of some algebras A_k?

Theorem (Dadarlat, Eilers: $AAH \neq AH$)

There exists $A = \varinjlim A_k$ such that each A_k is AH (an inductive limit of homogeneous algebras), but A is not AH.

Proposition 3.1 (T)

$A = \varinjlim A_k$, each $A_k = \varinjlim A_k^l$, inductive limit of f.g. WSP algebras $A_k^l \Rightarrow A$ is inductive limit of some algebras A_k^l.

Notation

$A_P :=$ class of inductive limits of f.g. projective algebras

Theorem 3.2 (Loring, Shulman)

A is f.g. \Rightarrow the cone $CA = C_0((0,1]) \otimes A$ lies in A_P
Theorem 3.3 (T)

Let A be a C^*-algebra. Then the following are equivalent:

1. A lies in $A\mathcal{P}$
2. $A \sim_{Sh} 0$ (A has **trivial shape**)
3. A is inductive limit of (f.g.) cones
4. A is inductive limit of (f.g.) contractible C^*-algebras

Remark 3.4

This generalizes Loring, Shulman, since $C_0((0, 1]) \otimes A \simeq 0$

Corollary 3.5 (Closure properties of $A\mathcal{P}$)

$A\mathcal{P}$ is closed under countable direct sums, inductive limits, approximation by sub-C^*-algebras and maximal tensor products with any other C^*-algebra, i.e., $A \otimes_{max} B \in A\mathcal{P}$ as soon as $A \in A\mathcal{P}$
sketch of proof.

"(2) ⇒ (1)" : $A \sim_{Sh} 0$ means:

$$
\begin{array}{ccccccc}
A_1 & \xrightarrow{\gamma_1} & A_2 & \xrightarrow{\gamma_2} & \ldots & \rightarrow & A \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & 0 & \rightarrow & \ldots & \rightarrow & 0
\end{array}
$$

$\Rightarrow \gamma_k \simeq 0$, which corresponds naturally to a morphism $\Gamma_k : A_k \rightarrow CA_{k+1}$ such that $\gamma_k = ev_1 \circ \Gamma_k$

$$
\begin{array}{ccccccc}
A_1 & \xrightarrow{\gamma_1} & A_2 & \xrightarrow{\gamma_2} & \ldots & \rightarrow & A \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
CA_2 & \xrightarrow{\Gamma_2} & CA_3 & \rightarrow & \ldots & \rightarrow & A = \varprojlim A_k
\end{array}
$$

$$
\begin{array}{ccccccc}
CA_2 & \xleftarrow{\text{ev}_1} & A_2 & \xrightarrow{\gamma_2} & \ldots & \rightarrow & A = \varprojlim CA_k \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\Gamma_1 & & \Gamma_2 & & \\
C & & & & & & \mathcal{P}
\end{array}
$$

each $CA_k \in \mathcal{A} \Rightarrow A \in \mathcal{A} \mathcal{P}$ [by criterion for inductive limit]
Corollary 3.6

Every contractible C^*-algebra is an inductive limit of projective C^*-algebras.

Remark 3.7

This is the non-commutative analogue of the following classical result: Every contractible space is an inverse limit of ARs.

Example 3.8

$$X := \{0\} \times [-1, 1] \cup \{(x, \sin(1/x)) \in \mathbb{R}^2 \mid 0 < x \leq 1/\pi\}$$

$$X_0 := X \setminus \{(1/\pi, 0)\}$$

Then $C_0(X_0) \sim_{Sh} 0$, while $C_0(X_0) \not\cong 0$.

For every algebra A, $C_0(X_0, A)$ is inductive limit of projectives.
Example 3.9 (Dadarlat)

There exists a commutative C^*-algebra $A = C_0(X, x_0)$ such that $A \otimes K \simeq 0$ (in particular $A \otimes K \sim_{Sh} 0$), while $A \not\sim_{Sh} 0$.

Corollary 3.10

Trivial shape does not pass to full hereditary sub-C^-algebras.*

Proposition 3.11 (T)

Let (A_k, γ_k) be an inductive system. Then there exists an inductive system (B_k, δ_k) with surjective connecting morphisms and such that $\lim_A A_k \cong \lim_B B_k$.

Moreover, we may assume $B_k = A_k \ast \mathcal{F}_\infty$, where $\mathcal{F}_\infty := C^* (x_1, x_2, \ldots | \|x_i\| \leq 1)$ is the universal C^*-algebra generated by a countable number of contractive generators.

If A_k is (semi-)projective, then so is $A_k \ast \mathcal{F}_\infty$.
Corollary 3.12

\[A \sim_{Sh} 0 \Rightarrow A \text{ is inductive limit of projective } C^* \text{-algebra with surjective connecting morphisms.} \]

Corollary 3.13

Projectivity does not pass to full hereditary sub-\(C^* \)-algebras.

Proof.

Use example of Dadarlat: \(A \otimes K \simeq 0 \) but \(A \sim_{Sh} 0 \)
\(A \otimes K \simeq \lim_{\rightarrow} P_k \) with \(P_k \) projective and surjective connecting morphisms \(\gamma_k : P_k \rightarrow P_{k+1} \)
Consider \(Q_k := \gamma_{\infty,k}^{-1}(A) \subset P_k \). Then \(A \simeq \lim_{\rightarrow} Q_k \).
\(A \subset A \otimes K \) full hereditary \(\Rightarrow Q_k \subset P_k \) full hereditary.
If all \(Q_k \) were projective, then \(A \) would have trivial shape, a contradiction. Thus, some algebras \(Q_k \) are not projective. \(\square \)
Lemma 4.1

Given \(\alpha : A \rightarrow P, \beta : P \rightarrow A \) with \(\beta \circ \alpha = \text{id}_A \) and \(P \) projective.

\[\Rightarrow A \text{ projective.} \]

Proof.

Given lifting problem \(\varphi : A \rightarrow C/J \), need lift \(\psi : A \rightarrow C \).

\[P \text{ projective } \Rightarrow \text{get lift } \omega : P \rightarrow C \text{ for } \varphi \circ \beta : P \rightarrow C/J \]

Then \(\psi := \omega \circ \alpha : A \rightarrow B \) is desired lift for \(\varphi \).
Relations between the different classes II

Theorem 4.2 (T)

A projective ⇔ A semiprojective and $A \simeq 0$.

Proof.

Homotopy $\text{id}_A \simeq 0$ induces natural morphism $\phi: A \to CA$ such that $\text{id}_A = \text{ev}_1 \circ \phi$.

$\Rightarrow CA \simeq \lim P_k$ for projectives P_k with surjective connecting maps [by L-S]

Semiprojectivity of A gives lift $\alpha: A \to P_k$ (to some k) such that $(\text{ev}_1 \circ \gamma_k) \circ \alpha = \text{id}_A$. Lemma implies A is projective.

this verifies a conjecture of Loring
Proposition 4.3 (Loring)

A weakly projective C^*-algebra has trivial shape.

WP also implies WSP. Other implication proved using that C^*-algebra with trivial shape is inductive limit of projectives:

Theorem 4.4

A weakly projective \iff A weakly semiprojective and $A \sim_{Sh} 0$.

The above theorems are exact analogues of results in classical shape theory:

commutative
(for space X):

- X is AR
 $\iff X$ is ANR and $X \sim^*$
- X is AAR
 $\iff X$ is AANR and $X \sim_{Sh}^*$

noncommutative
(for C^*-algebra A):

- A is P
 $\iff A$ is SP and $A \sim 0$
- A is WP
 $\iff A$ is WSP and $A \sim_{Sh} 0$
Generalizing the above ideas, and using a mapping cylinder construction, one can prove the following:

Theorem 4.5 (T)

The class \mathcal{A}_{SP} is closed under shape domination:

If $A \preccurlyeq_{\text{Sh}} B$ and B is an inductive limit of f.g. semiprojective C^*-algebras, then so is A.

If $A \sim_{\text{Sh}} C$ and $B \sim_{\text{Sh}} D$, then $A \otimes_{\text{max}} B \sim_{\text{Sh}} C \otimes_{\text{max}} D$. Assume $B \sim_{\text{Sh}} \mathbb{C}$. Then A lies in \mathcal{A}_{SP} if and only if $A \otimes_{\text{max}} B$ does.

Example 4.6

We have $C([0, 1]^k) \preccurlyeq \mathbb{C}$. Thus $C([0, 1]^k, A)$ is a limit of semiprojectives if and only if A is. For example, $C([0, 1]^k, \mathcal{O}_n)$ is a limit of semiprojectives.

Open Problem 4.7 (Katsura)

Is $C([0, 1], \mathcal{O}_n)$ semiprojective?