
Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Matrix Geometries*

Rodrigo Blando
Dublin Institute for Advanced Studies

Dublin Ireland
4th Annual Meeting EU-NCG

Bucharest, Romania

*Joint work with Denjoe O’Connor

April 26, 2011

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Table of contents

1 Introduction

2 The 2-matrix model

3 The 3-matrix model
Classical Potential
Quantum Potential

4 Geometry from random matrices
Eigenvalue distributions and emergent geometry

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Mass deformed IKKT Yang-Mills matrix models in various dimensions admit
also the fuzzy sphere as a solution.

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Mass deformed IKKT Yang-Mills matrix models in various dimensions admit
also the fuzzy sphere as a solution.

Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Mass deformed IKKT Yang-Mills matrix models in various dimensions admit
also the fuzzy sphere as a solution.

Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

Discretisation of supersymmetric models.

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Mass deformed IKKT Yang-Mills matrix models in various dimensions admit
also the fuzzy sphere as a solution.

Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

Discretisation of supersymmetric models.

Understand the origin of geometry as an emergent phenomena

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Motivation

Matrix models give a non-perturbative definition for string theory,

IKKT model gives a definition for string theory IIB,

BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Mass deformed IKKT Yang-Mills matrix models in various dimensions admit
also the fuzzy sphere as a solution.

Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

Discretisation of supersymmetric models.

Understand the origin of geometry as an emergent phenomena

Matrix models provide an escenario to understand classical geometry as
condensation of random degrees of freedom as the system evolves.
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Consider the following 2-matrix model (X ,Y N × N Hermitian matrices)

Z [g2] =
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dX dYe−Tr[X 2+Y 2−g2 [X ,Y ]2], dX =
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Z [g2] =

∫

dX dYe−Tr[X 2+Y 2−g2 [X ,Y ]2], dX =
∏

dXii

∏

i<j

dRe(Xij )dIm(Xij )

Exploting the fact that the model is invariant under unitary transformations; the
model can be solved diagonalising the matrix X , then

g2Tr [X ,Y ]2 = 2g2Tr(XYXY − X 2Y 2) = −g2
∑

ij(xi − xj)
2
∣

∣Yij

∣

∣

2
, then

integrating over Y

Z [g2] =

∫

dx1 · · · dxNe−
∑N

i x2i +
1
2

∑
i 6=j log(xi−xj )

2− 1
2

∑
i 6=j log[1+g2(xi−xj )

2]
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Seff (xi ) =
N
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i

x2i − 1

2

∑

i 6=j

log(xi − xj)
2 +

1

2

∑

i 6=j

log[1 + g2(xi − xj)
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The saddle point equation

dSeff

dxk
= 0 −→ xi =

∑

i 6=j

1

(xi − xj)[1 + g2(xi − xj)2]
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The 2-matrix model

Taking the continuum limit
∑

→
∫

ρ(x)dx introducing ρ(x) as the eigenvalue
density with the normalisation condition

∫

ρ(x)dx = N the saddle point
equation in the large N limit becomes

x = −
∫

ρ(y)dy

(x − y)[1 + g2(x − y)2]
.
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3N

r3
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Model is effectively described by 2N dof; the off-diagonal terms become heavy.

Adding more matrices is possible, however the model is much more difficult to
solve for the fully interacting case even in the g2N >> 1 limit.

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices
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Taking the continuum limit
∑

→
∫

ρ(x)dx introducing ρ(x) as the eigenvalue
density with the normalisation condition

∫

ρ(x)dx = N the saddle point
equation in the large N limit becomes

x = −
∫

ρ(y)dy

(x − y)[1 + g2(x − y)2]
.

The equation can be solved for g2N >> 1, the solution for ρ(x) is given by

ρ(x) =
3N

r3
(r2 − x2).

Model is effectively described by 2N dof; the off-diagonal terms become heavy.

Adding more matrices is possible, however the model is much more difficult to
solve for the fully interacting case even in the g2N >> 1 limit.

Strategy: Use Monte Carlo simulations
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The action

S[D] =
α̃4

N
Tr

[

−1

4
[Da,Db]

2 +
i

3
ǫabc [DaDb]Dc − µD2

a

]

,

The parameters of the model are α̃ and µ. (α̃4 = 1
g2

= β = 1
T
).
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The model is invariant under U(N) unitary transformations Da → UDaU
† and global

SO(3) rotations. For µ = 0 it is also translational invariant Da → Da + ca1N , that can
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[Db, iFab ]− 2µDa = 0, with Fab = i [Da,Db] + ǫabcDc

Solutions for matrix configurations

The extrema of the model are clearly given by the trivial solution Da = 0 and
representations of SU(2), commuting matrices are also solutions.

Ground State

The ground state of the model is given by Da = La; irreducible representations of
SU(2):

[La,Lb ] = ǫabcLc , and
3
∑

i=1

L2a =
N2 − 1

4
1N ,

for which S(Da = La) = −α̃4 N2−1
4

(

1
6
+ µ

)

.
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Fuzzy sphere

Define a matrix Xa = 2La√
N2−1

, where La are irreducible representations of

SU(2). Then

[Xa,Xb] =
2iǫabc√
N2 − 1

Xc , and
3
∑

i=1

X 2
a =

N2 − 1

4
1N ,

relations which define the fuzzy sphere; a finite matrix approximation for the
commutative sphere. The commutative limit is when N → ∞

Stability of the fuzzy sphere

We are interested in tha stability of the fuzzy sphere matrix solution. For this reason
we consider the classical potential parametrising Da = φLa.
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The classical potential given in terms
of the configuration Da = φLa

Vclass

2c2
= α̃

(

1

4
φ4 − 1

3
φ3 − µ

2
φ2

)

with c2 ≡ L2a = S(S + 1) = (N2 − 1)/4 is the

quadratic Casimir for the S-irrep of SU(2)

(S = N−1
2

, the spin)

The condition dVclass
dφ

= 0 gives the

extrema for the potential

φ =

{

0,
1 +

√
1 + 4µ

2
,
1−√

1 + 4µ

2

}

For fix α̃ we can plot the potential for
different values of µ. For µ = −2/9
φ = (0, 2/3, 1/3)
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Quantum corrections

Taking into account quantum
fluctuations
The one-loop quantum effective
potential in the large N limit is given
by

Veff

2c2
= α̃4

[

φ4

4
− φ3

3
− µ

φ2

2

]

+log φ2
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[
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4
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2
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+log φ2

The configurations are given by
Da = φLa where φ is solution of the
equation

φ4 − φ3 − µφ2 + 2α̃−4 = 0
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The 3-matrix model

Geometry from random matrices

Classical Potential
Quantum Potential

Quantum corrections

Taking into account quantum
fluctuations
The one-loop quantum effective
potential in the large N limit is given
by

Veff

2c2
= α̃4

[

φ4

4
− φ3

3
− µ

φ2

2

]

+log φ2

The configurations are given by
Da = φLa where φ is solution of the
equation

φ4 − φ3 − µφ2 + 2α̃−4 = 0

The effective potential for µ fixed
The effective potential for α̃ fixed
A first order phase transition occurs.
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Classical Potential
Quantum Potential

Phase Diagram

The conditions V ′′
eff

= 0
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Phase Diagram

The conditions V ′′
eff

= 0
and V ′

eff
= 0 give the critical values

for φ and α̃ given by
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Classical Potential
Quantum Potential

Phase Diagram

The conditions V ′′
eff

= 0
and V ′

eff
= 0 give the critical values

for φ and α̃ given by

φ∗ =
3

8

(

1 +

√

1 +
32µ

9

)

1

α̃4
∗
=

φ2
∗(φ∗ + 2µ)

8
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The 3-matrix model
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Classical Potential
Quantum Potential

Phase Diagram

The conditions V ′′
eff

= 0
and V ′

eff
= 0 give the critical values

for φ and α̃ given by

φ∗ =
3

8

(

1 +

√

1 +
32µ

9

)

1

α̃4
∗
=

φ2
∗(φ∗ + 2µ)

8

For µ = −1/4, α̃∗ is sent to infinity
and there is no fuzzy sphere for
µ < −1/4.
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Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Eigenvalue distributions and emergent geometry

Geometrical Observables

Geometrical observables

The matrices Xa and i [Xa,Xb]. Xa are N × N Hermitian
matrices.

The matrix C = σaXa, where σa are the Pauli matrices. C is
a 2N × 2N Hermitian matrix.

The Dirac operator D = σa[Xa, ·], acting on a 2N2 Hilbert
space.

We will be interested in the eigenvalue distribution for all
these matrices. Which is precisely the information which
encodes the geometry.
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Specific backgrounds

Fuzzy sphere

The spectrum for those matrices are known for specific backgrounds. From the
equation of motion we see that the ground state is given by irrep SU(2),

Xa = 2La√
N2−1

. Then

[Xa,Xb] =
2iǫabc√
N2 − 1

Xc , and

3
∑

i=1

X 2
a =

N2 − 1

4
1N ,

relations which define the fuzzy sphere; a finite matrix approximation for the
commutative sphere. The commutative limit is when N → ∞
In this case we have C =

(

±N
2
− 1

2

) 1N
and spec {D} = {−N,−(N − 1), . . . ,−3,−2, 0, 1, 2, 3, . . . , (N − 1)}
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Eigenvalue distributions

Consider the model

S[D] =
α̃4

N
Tr

[

−1

4
[Da,Db]

2 +
i

3
ǫabc [DaDb]Dc − µD2

a

]

,

The critical line α̃(µ)∗ defines two phases; the low temperature phase where the
underlying geometry is a fuzzy sphere and a the high temperature phase or
matrix phase.

From random matrices to geometry

We emphasize that we start from a random matrix configuration
and then the system is brought into the equilibrium and is when we
measure the distributions.

Keep in mind the series of approximations have been made to derive the

effective potential and its consecuences; one-loop calculation, N large limit
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Eigenvalue distributions and emergent geometry

Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)

i [Da,Db] (∼ La)
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)

i [Da,Db] (∼ La)
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Eigenvalue distributions and emergent geometry

Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)

i [Da,Db] (∼ La)
C = σaDa

(
(

±N
2
− 1

2

)

1N)
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1
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)

i [Da,Db] (∼ La)
C = σaDa
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Eigenvalue distributions: Fuzzy sphere phase

Eigenvalue distributions in the fuzzy
sphere α̃ > α̃∗(µ)
Da (∼ La) (s = N−1

2
)

i [Da,Db] (∼ La)
C = σaDa

(
(

±N
2
− 1

2

)

1N)

D = σa[Da, ·]
(−N,−(N −
1), . . . ,−3,−2, 0, 1, 2, 3, . . . , (N − 1))
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Eigenvalue distributions in the fuzzy
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The 3-matrix model

Geometry from random matrices

Eigenvalue distributions and emergent geometry

Eigenvalue distributions: Pure Yang-Mills model

Lets now use the matrix Xa = αDa, with α = α̃√
N
.
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Geometry from random matrices

Eigenvalue distributions and emergent geometry

Eigenvalue distributions: Pure Yang-Mills model

Lets now use the matrix Xa = αDa, with α = α̃√
N
. The model now looks like

S[X ] = N Tr

[

−1

4
[Xa,Xb]

2 +
i

3
αǫabc [XaXb]Xc − µα2X 2

a

]
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Eigenvalue distributions: Pure Yang-Mills model

Lets now use the matrix Xa = αDa, with α = α̃√
N
. The model now looks like

S[X ] = N Tr

[

−1

4
[Xa,Xb]

2 +
i

3
αǫabc [XaXb]Xc − µα2X 2

a

]

Thus we can now set α = 0, the action is a pure Yang-Mills model

S[X ] = −N

4
Tr [Xa,Xb]

2.
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Eigenvalue distributions: Pure Yang-Mills model

Lets now use the matrix Xa = αDa, with α = α̃√
N
. The model now looks like

S[X ] = N Tr

[

−1

4
[Xa,Xb]

2 +
i

3
αǫabc [XaXb]Xc − µα2X 2

a

]

Thus we can now set α = 0, the action is a pure Yang-Mills model

S[X ] = −N

4
Tr [Xa,Xb]

2.

For larger number of matrices this model is the bosonic part of the IKKT matrix
model, which is well defined for N > d

d−1
(Hotta ’98), where d is the number of

matrices.
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Eigenvalue distributions: Pure Yang-Mills model

Lets now use the matrix Xa = αDa, with α = α̃√
N
. The model now looks like

S[X ] = N Tr

[

−1

4
[Xa,Xb]

2 +
i

3
αǫabc [XaXb]Xc − µα2X 2

a

]

Thus we can now set α = 0, the action is a pure Yang-Mills model

S[X ] = −N

4
Tr [Xa,Xb]

2.

For larger number of matrices this model is the bosonic part of the IKKT matrix
model, which is well defined for N > d

d−1
(Hotta ’98), where d is the number of

matrices.

It is a Yang-Mills model defined in zero volume.
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Eigenvalue distributions: Pure Yang-Mills model

Xa
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r .
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r .
i [Xa,Xb]
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The fit corresponds to the parabola
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r is found to be R = 2.0208 ± 0.015
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r .
i [Xa,Xb]
C = σaXa

Rodrigo Blando Dublin Institute for Advanced Studies Dublin Ireland 4th Annual Meeting EU-NCG BuchaMatrix Geometries*



Introduction
The 2-matrix model
The 3-matrix model

Geometry from random matrices

Eigenvalue distributions and emergent geometry

Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r .
i [Xa,Xb]
C = σaXa

D = σa[Xa, ·]
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
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4r3
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The eigenvalues distribute uniformly
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Eigenvalue distributions: Pure Yang-Mills model

Xa

The fit corresponds to the parabola

ρ(x) =
3

4r3
(r2 − x2)

r is found to be R = 2.0208 ± 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r .
i [Xa,Xb]
C = σaXa

D = σa[Xa, ·]
We observe continuous and
symmetric distributions.
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Eigenvalue distributions:Mass deformation

Consider the model

S[D] =
α̃4

N
Tr

[

−1

4
[Da,Db]

2 +
i

3
ǫabc [DaDb]Dc − µD2

a

]

,
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The effect of µ in the fuzzy sphere is
to squeeze the configuration
Eventually the µ∗ is reached and the
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commutative sphere with fixed radius
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Eigenvalue distributions: Matrix phase

Lets see the effect of the parameter µ
on Xa

The effect of µ in the fuzzy sphere is
to squeeze the configuration
Eventually the µ∗ is reached and the
fuzzy sphere dissapears and a
commutative sphere with fixed radius
pops up!
C = σaXa

The transition is that of a
non-commutative sphere to a
commutative sphere of radius 2.
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Conclusions
We have shown a simple example of how geometry emerges dynamically from
matrix models.

Starting from a matrix model with no background geometry, random degrees of
freedom condensate under the effect of quantum fluctuations giving origin to
geometry.

The geometry in matrix models is then understood as an emergent concept.

In this concrete example, in the matrix phase or high temperature phase the
matrices are effectively commutative and dominated by diagonal elements which
form a solid ball.

The low temperature phase has an non-commutative sphere as underlying
geometry, the fuzzy sphere.

The transition observed is that of a non-commutative sphere to a commutative
sphere of radius 2.

It is believed that such transitions belong to a new universality class.

The excellent agreement of theoretical predictions and simulations suggest the
existence of an exact solution for this type of matrix models.
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