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Matrix models give a non-perturbative definition for string theory,
IKKT model gives a definition for string theory I1B,
BFSS matrix model definition of M theory,

BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

Rodrigo Blando blin Institute for Advanced Studies Dublin  Matrix Geometries*



Introduction

Motivation

@ Matrix models give a non-perturbative definition for string theory,

@ IKKT model gives a definition for string theory IIB,

@ BFSS matrix model definition of M theory,

@ BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

@ Mass deformed IKKT Yang-Mills matrix models in various dimensions admit

also the fuzzy sphere as a solution.

Rodrigo Blando blin Institute for Advanced Studies Dublin  Matrix Geometries*



Introduction

Motivation

@ Matrix models give a non-perturbative definition for string theory,

@ IKKT model gives a definition for string theory IIB,

@ BFSS matrix model definition of M theory,

@ BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

@ Mass deformed IKKT Yang-Mills matrix models in various dimensions admit

also the fuzzy sphere as a solution.

@ Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

Rodrigo Blando blin Institute for Advanced Studies Dublin  Matrix Geometries*



Introduction

Motivation

@ Matrix models give a non-perturbative definition for string theory,

@ IKKT model gives a definition for string theory IIB,

@ BFSS matrix model definition of M theory,

@ BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

@ Mass deformed IKKT Yang-Mills matrix models in various dimensions admit

also the fuzzy sphere as a solution.

@ Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

@ Discretisation of supersymmetric models.

Rodrigo Blando blin Institute for Advanced Studies Dublin  Matrix Geometries*



Introduction

Motivation

@ Matrix models give a non-perturbative definition for string theory,

@ IKKT model gives a definition for string theory IIB,

@ BFSS matrix model definition of M theory,

@ BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

@ Mass deformed IKKT Yang-Mills matrix models in various dimensions admit

also the fuzzy sphere as a solution.

@ Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

@ Discretisation of supersymmetric models.

@ Understand the origin of geometry as an emergent phenomena

Rodrigo Blando blin Institute for Advanced Studies Dublin  Matrix Geometries*



Introduction

Motivation

@ Matrix models give a non-perturbative definition for string theory,

@ IKKT model gives a definition for string theory IIB,

@ BFSS matrix model definition of M theory,

@ BMN matrix model is a mass deformation of the BFSS model in d = 10, admits
the fuzzy sphere as a solution of its equations of motion.

@ Mass deformed IKKT Yang-Mills matrix models in various dimensions admit

also the fuzzy sphere as a solution.

@ Matrix models have a very rich phase structure: D-branes, intersecting branes,
etc

@ Discretisation of supersymmetric models.
@ Understand the origin of geometry as an emergent phenomena

@ Matrix models provide an escenario to understand classical geometry as
condensation of random degrees of freedom as the system evolves.
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@ Consider the following 2-matrix model (X, Y N x N Hermitian matrices)
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The 2-matrix model

The 2-matrix model: A solvable model (Hoppe '82,Berestein,et.al. '09)

@ Consider the following 2-matrix model (X, Y N x N Hermitian matrices)

Z[g% = /dX dye TP = XYP] 1 gx = TT dXi [ ] dRe(Xy)dim(X;)
i<j
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The 2-matrix model

The 2-matrix model: A solvable model (Hoppe '82,Berestein,et.al. '09)

@ Consider the following 2-matrix model (X, Y N x N Hermitian matrices)

Z[g%] = /dX dye TP = XYP] 1 gx = TT dXi [ ] dRe(Xy)dim(X;)
i<j
@ Exploting the fact that the model is invariant under unitary transformations; the
model can be solved diagonalising the matrix X, then
g2 TrX, YPP = 282 Tr(XYXY — X2¥?) = —g2 3 (xi — x;)* | Vj|°, then
integrating over Y

Z[g’) = / dxy - dxye™ = X3 Tig logl—)" =5 iy loglle” (xi—x)?]
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The 2-matrix model

The 2-matrix model: A solvable model (Hoppe '82,Berestein,et.al. '09)

@ Consider the following 2-matrix model (X, Y N x N Hermitian matrices)

Z[g% = /dX dye TP = XYP] 1 gx = TT dXi [ ] dRe(Xy)dim(X;)
i<j
@ Exploting the fact that the model is invariant under unitary transformations; the
model can be solved diagonalising the matrix X, then
g2 Tr[X, Y]? = 2g2 Tr(XYXY — X2Y?) = —g? 37 ,(xi — x)? | V; | then
integrating over Y

Z[g’) = / dxy - dxye™ = X3 Tig logl—)" =5 iy loglle” (xi—x)?]

Serr (i) Xt =2 > log(xi —x)? + 5 " log[l + g2(xi — x)°]
Z 5> -7

l#J I#J
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The 2-matrix model

The 2-matrix model: A solvable model (Hoppe '82,Berestein,et.al. '09)

@ Consider the following 2-matrix model (X,Y N x N Hermitian matrices)

Z[g% = /dX dye TP = XYP] 1 gx = TT dXi [ ] dRe(Xy)dim(X;)
i<j
@ Exploting the fact that the model is invariant under unitary transformations; the
model can be solved diagonalising the matrix X, then
g2 Tr[X, Y]? = 2g2 Tr(XYXY — X2Y?) = —g? 37 ,(xi — x)? | V; | then
integrating over Y

Z[g’) = / dxy - dxye™ = X3 Tig logl—)" =5 iy loglle” (xi—x)?]

Serr XI ZX - 7Z|°g(Xl Xj) + = ZIOg[l""g (Xl _Xj) ]
i#j I#J
@ The saddle point equation

dSef 1
= — X; =
dx g (xi —)[1 + &%(xi — x)°]

Rodrigo Blando Dublin Institute for Advanced Studies Dublin  Matrix Geometries*



The 2-matrix model

The 2-matrix model

@ Taking the continuum limit }° — [ p(x)dx introducing p(x) as the eigenvalue
density with the normalisation condition [ p(x)dx = N the saddle point
equation in the large N limit becomes

N :][ ply)dy
(x—y)1+g%(x—y)?]

Rodrigo Blando Dublin Institute for Advanced Studies Dublin  Matrix Geometries*



The 2-matrix model

The 2-matrix model

@ Taking the continuum limit }° — [ p(x)dx introducing p(x) as the eigenvalue
density with the normalisation condition [ p(x)dx = N the saddle point
equation in the large N limit becomes

N :][ ply)dy
(x—y)1+g%(x—y)?]

@ The equation can be solved for g2 >> 1, the solution for p(x) is given by

o) = 2 (2 =),
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The 2-matrix model

The 2-matrix model

@ Taking the continuum limit }° — [ p(x)dx introducing p(x) as the eigenvalue
density with the normalisation condition [ p(x)dx = N the saddle point
equation in the large N limit becomes

. ][ ply)dy
(x =)l +g%(x — )]
@ The equation can be solved for g2 >> 1, the solution for p(x) is given by
3N

pix) = 252 = ).

@ Model is effectively described by 2/V dof; the off-diagonal terms become heavy.
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The 2-matrix model

The 2-matrix model

@ Taking the continuum limit }° — [ p(x)dx introducing p(x) as the eigenvalue
density with the normalisation condition [ p(x)dx = N the saddle point
equation in the large N limit becomes

N :][ ply)dy
(x—y)1+g%(x—y)?]

@ The equation can be solved for g2 >> 1, the solution for p(x) is given by

o) = 2 (2 =),

@ Model is effectively described by 2/V dof; the off-diagonal terms become heavy.

@ Adding more matrices is possible, however the model is much more difficult to
solve for the fully interacting case even in the g2/N >> 1 limit.
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The 2-matrix model

The 2-matrix model

@ Taking the continuum limit }° — [ p(x)dx introducing p(x) as the eigenvalue
density with the normalisation condition [ p(x)dx = N the saddle point
equation in the large N limit becomes

N :][ ply)dy
(x—y)1+g%(x—y)?]

@ The equation can be solved for g2 >> 1, the solution for p(x) is given by

o) = 2 (2 =),

@ Model is effectively described by 2/V dof; the off-diagonal terms become heavy.

@ Adding more matrices is possible, however the model is much more difficult to
solve for the fully interacting case even in the g2/N >> 1 limit.

@ Strategy: Use Monte Carlo simulations
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Classical Potential
The 3-matrix model Quantum Potential

at 1 i
S[D] = ~ Tr —Z[Da, Dy)? + Eeabc[Dan]Dc —uD?|,

The parameters of the model are & and p. (&% = g1—2 S E %)
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The 3-matrix model Quantum Potential

at 1 i
S[D] = ~ Tr —Z[Da, Dy)? + Eeabc[Dan]Dc —uD?|,

The parameters of the model are & and p. (&% = g1—2 S E %)

The model is invariant under U(N) unitary transformations D; — UD; UT and global
S0(3) rotations. For p = 0 it is also translational invariant D, — D, + c,1y, that can
be fixed by imposing traceless condition on D,.
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Classical Potential
The 3-matrix model Quantum Potential

at 1 i
S[D] = W Tr —Z[Dm Db]2 A geabc[Dan]Dc — MDg 5

The parameters of the model are & and p. (&% = g1—2 S E %)

The model is invariant under U(N) unitary transformations D; — UD; UT and global
S0(3) rotations. For p = 0 it is also translational invariant D, — D, + c,1y, that can
be fixed by imposing traceless condition on D,.

Note that there is no reference whatsoever to a background geometry. The model
describes a bunch of matrices that interact in a particular way.
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Classical Potential
The 3-matrix model Quantum Potential

Equations of Motion, S =0

[Db7 iFab] - 2.U‘D3 =0, with  Fp = i[D37 Db] + €abc De
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Classical Potential
The 3-matrix model Quantum Potential

Equations of Motion, S =0

[Db7 iFab] - 2.U‘D3 =0, with  Fp = i[D37 Db] + €abc De

Solutions for matrix configurations

The extrema of the model are clearly given by the trivial solution D, = 0 and
representations of SU(2), commuting matrices are also solutions.
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Classical Potential
The 3-matrix model Quantum Potential

Equations of Motion, S =0

[Db7 iFab] - 2.U‘D3 =0, with  Fp = i[D37 Db] + €abc De

Solutions for matrix configurations

The extrema of the model are clearly given by the trivial solution D, = 0 and
representations of SU(2), commuting matrices are also solutions.

Ground State

| A\

The ground state of the model is given by D, = L;; irreducible representations of
SU(2):
3 N2 —1

_ 2 __
[La, Lp] = €apcle, and ; 12 = — v

for which S(Da = Ly) = —&* 2221 (1 4 ).
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Classical Potential
The 3-matrix model Quantum Potential

Fuzzy sphere

Fuzzy sphere

efine a matrix X3 = —=2=, where L, are irreducible representations o
@ Defi ix X \/% here L irreducibl i f
SU(2). Then
. 3
_ 2iegpe .,  N2-—1
[Xa, Xp] = \/ﬁxc, and ;:1 X: = TILN7

relations which define the fuzzy sphere; a finite matrix approximation for the

commutative sphere. The commutative limit is when N — oo
ot

Stability of the fuzzy sphere

We are interested in tha stability of the fuzzy sphere matrix solution. For this reason
we consider the classical potential parametrising D; = ¢L,.

A\
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Classical Potential
Quantum Potential

The 3-matrix model

Classical Potential

@ The classical potential given in terms

of the configuration D, = ¢L,
0.1
V, 1, 1 Gosouc088, T
HE-0.
class —a 7¢4 _ 7¢3 _ quz 0.08 T
2 4 3 2 n=-0.24
0.06 pE-0.25
H=-0.30
with g = L2 = S(S + 1) = (N2 — 1) /4 is the 0.04 Y
quadratic Casimir for the S-irrep of SU(2) e 0.02 \
(8§ = —Ngl, the spin) >‘—5 ’ . Ve
@ The condition d“/fgss = 0 gives the 0 =
extrema for the potential 002 =13
° }
-0.04
6= 01+\/1+4u 1-1+4u 006
’ 2 ’ 2 02 0 02 04
o

@ For fix & we can plot the potential for
different values of u. For p=—2/9
¢ =1(0,2/3,1/3)

lin Institute for Advanced Studies
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Classical Potential
The 3-matrix model Quantum Potential

Quantum corrections

@ Taking into account quantum
fluctuations
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Classical Potential
The 3-matrix model Quantum Potential

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective
potential in the large N limit is given
by

4 3 2
Vet _ g0 (90 _ 9 —u%}-i—logzzﬂ

262 4 3
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The 3-matrix model

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective
potential in the large N limit is given
by

Vog .4 [0* ¢° ¢2} 5
LA A
2, O |4 T3 T Hgy Tleed

@ The configurations are given by
D, = ¢L, where ¢ is solution of the
equation

¢t —¢* —pg? +2a7* =0
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The 3-matrix model

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective
potential in the large N limit is given
by

Vog .4 [0* ¢° ¢2} 5
LA A
2, O |4 T3 T Hgy Tleed

@ The configurations are given by
D, = ¢L, where ¢ is solution of the
equation

¢t —¢* —pg? +2a7* =0

@ The effective potential for p fixed
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Classical Potential
The 3-matrix model Quantum Potential

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective 6 W=018 d=55 —— ]
potential in the large N limit is given zgg /
by 4t =31 / 1
=25
=10
Vet _ 48" &° 9 2 2
— =& |— — — — p—|+lo
26 2 "3 Mg tleed”
£ 0 %
@ The configurations are given by > = /
D, = ¢L, where ¢ is solution of the /
H / /
equation 4 ,.'v //
¢* —¢* —ug® +2a7* =0 o N
0 0.2 0.4 0.6 0.8 1 12 1.4
®

@ The effective potential for p fixed
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The 3-matrix model Quantum Potential

Quantum corrections

@ Taking into account quantum
fluctuations
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by
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Classical Potential
The 3-matrix model Quantum Potential

Quantum corrections

@ Taking into account quantum

fluctuations
@ The one-loop quantum effective =50 -
potential in the large N limit is given 40 BT ‘
K /
4 ¢3 ¢2 2 ﬁ : ; /
Vit _ 2 [ > |
=&" |— — — —pu—|+lo /
26 2 3 Mgt o | /
R s
> -~ = //
@ The configurations are given by NG /
D, = ¢L, where ¢ is solution of the -20 ;
equation ‘
w0 . i\(fJ:L)A—/O D,l,
¢t — ¢ —pp?+2a"* =0 —

@ The effective potential for p fixed
@ The effective potential for & fixed
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The 3-matrix model

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective
potential in the large N limit is given
by

Vog .4 [0* ¢° ¢2} 5
LA A
2, O |4 T3 T Hgy Tleed

@ The configurations are given by
D, = ¢L, where ¢ is solution of the
equation

¢4_¢3_“¢2+26‘74 =0
@ The effective potential for p fixed

@ The effective potential for & fixed
@ A first order phase transition occurs.
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Classical Potential
Quantum Potential

The 3-matrix model

Quantum corrections

@ Taking into account quantum
fluctuations

@ The one-loop quantum effective
potential in the large N limit is given

by
Vet _ 48" &° 9 2
— =& |— — — —pu—|+lo =
20, Y A
@ The configurations are given by i /
D, = ¢L, where ¢ is solution of the ¢=213
equation 002 /
-0.04 g
4 3 2 ~—4
— 3 — 2 = —
¢" — ¢° — uo” + 24 0 006
0.2 0 0.2 04 06 08 1

@ The effective potential for p fixed
@ The effective potential for & fixed
@ A first order phase transition occurs.
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Classical Potential
The 3-matrix model Quantum Potential

Phase Diagram

™ [ —
@ The conditions V(i =0
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Phase Diagram

@ The conditions Vi =0
@ and V/; = 0 give the critical values
for ¢ and & given by

Rodrigo Blando i itute for Advanced Studies Dublin  Matrix Geometri



Classical Potential
The 3-matrix model Quantum Potential

Phase Diagram

@ The conditions Vi =0
@ and V/; = 0 give the critical values
for ¢ and & given by

3 324
c== 1441+ 22
’ 8(+ +9>

1 PA(dx +2n)
a4 8

*
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The 3-matrix model

Phase Diagram

@ The conditions Vi =0
@ and V/; = 0 give the critical values
for ¢ and & given by

3 324
c== 1441+ 22
’ 8(+ +9>

1 PA(dx +2n)
a4 8

*

@ For p = —1/4, & is sent to infinity
and there is no fuzzy sphere for
p< —1/4.
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The 3-matrix model

Phase Diagram

Classical Potential
Quantum Potential

@ The conditions V/f =0
@ and V!, =0 give the critical values
for ¢ and & given by

3 32u =
v = [ 14+4/1+ — =

1 2o +2p)
at 8
@ For = —1/4, &« is sent to infinity

and there is no fuzzy sphere for
w< —1/4.

4.5

35

25

Matrix Phase

Fuzzy Sphere Phase

15
-0.25

-0.2

-0.15

Matrix Geometries*

-0.1
M

-0.05

0.05
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Classical Potential
The 3-matrix model Quantum Potential

Phase Diagram

45 : : : : & ,
@ The conditions V/f =0 A0\ |
@ and V!, =0 give the critical values

for ¢ and & given by 35| Fuzzy Sphere Phase 1
3 32u =
w== 1441+ =— = 37
25
1 QA6 +20)
a4 8 2+ Matrix Phase
@ For = —1/4, &« is sent to infinity 15 . . . . .
and there is no fuzzy sphere for 025 02 -015 -01 -0.05 0 0.05
w< —1/4. "
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Geometrical Observables

Geometrical observables

@ The matrices X, and i[X,, Xp]. X5 are N x N Hermitian
matrices.

@ The matrix C = 0,X;, where o, are the Pauli matrices. C is
a 2N x 2N Hermitian matrix.

@ The Dirac operator D = 7,[X,, -], acting on a 2N? Hilbert
space.

@ We will be interested in the eigenvalue distribution for all
these matrices. Which is precisely the information which
encodes the geometry.

Rodrigo Blando Dublin Institute for Advanced Studies Dublin  Matrix Geometries*



Eigenvalue distributions and emergent geometry

Geometry from random matrices

Specific backgrounds

Fuzzy sphere

@ The spectrum for those matrices are known for specific backgrounds. From the
equation of motion we see that the ground state is given by irrep SU(2),

_ 2L,
Xa - \/ﬁ Then

o 8
[Xa,Xb] = %731”)(57 and sz = i 1]]-N7
VN° -1 i=1 ’ 4

relations which define the fuzzy sphere; a finite matrix approximation for the
commutative sphere. The commutative limit is when N — oo
@ In this case we have C = (:I:% — %) 1y

@ and spec {D} = {-N,—(N—-1),...,-3,-2,0,1,2,3,..., (N —1)}
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue distributions

@ Consider the model

&t 1 i
S[D] = —; Tr [—Z[Da, Dp)? + 5 €abe[DaDp]De — uoﬁ} ,

@ The critical line &(u)« defines two phases; the low temperature phase where the
underlying geometry is a fuzzy sphere and a the high temperature phase or
matrix phase.

'

From random matrices to geometry

We emphasize that we start from a random matrix configuration
and then the system is brought into the equilibrium and is when we
measure the distributions. )

Keep in mind the series of approximations have been made to derive the
effective potential and its consecuences; one-loop calculation, N large limit
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy
sphere & > G (1)
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy
sphere & > G (1)

@ D, (~ L) (s = ML)
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue distributions: Fuzzy sphere phase

35 L S
N=24 b=5 —
©
@ Eigenvalue distributions in the fuzzy g 25| ]
sphere & > G (1) =
N—1 WL i
9@ D, (~ La) (SZT) %
=]
5 15} R
[
| l l
o .| |
(]
L M( UL

E 1
eigenvalues
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Eigenvalue distributions and emergent geometry
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Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy
sphere & > G (1)

@ D, (~ L) (s = ML)

® i[Da, Dy] (~ La)
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Eigenvalue distributions: Fuzzy sphere phase

o B
Ey
@ Eigenvalue distributions in the fuzzy g * F
sphere & > G (1) < ﬁ
0 D, (~ L) (s = M1 g ( ‘ |
® i(D, D] (~ L) P ‘ ‘ |
\ | } | J | }/
AR

12 410 9 8 7 6 5 4 3 2 4 0 1 2 3 4 5 6 7 8 9 10 11 12
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Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy
sphere & > G (1)

D, (~ L) (s = %)

i[D37 Db] (N La)

C =03D;

((i% - %) 1y)

[ ]
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Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy
sphere & > G (1)

D, (~ L) (s = M1)

i[D37 Db] (N La)

C =03D;

((i% - %) 1y)

eigenvalue distribution C
.
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Eigenvalue distributions: Fuzzy sphere phase

@ Eigenvalue distributions in the fuzzy

sphere & > G (1)

D, (~ L) (s = %)

i[D37 Db] (N La)

C =03D;

((i% - %) 1y)

@ D =0,[Da,"]
(=N, (N —
1)7"'7_37_2707172737"'7(N_ 1))

[ ]
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Eigenvalue distributions: Fuzzy sphere phase

Rodrigo Blando

Eigenvalue distributions in the fuzzy
sphere & > G (1)
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Eigenvalue distri

@ Lets now use the matrix X; = aD,, with a = N

Rodrigo Blando i itute for Advanced Studies Dublin  Matrix Geometri



Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue

@ Lets now use the matrix X; = aD,, with a = N The model now looks like

1 i
S[X]=NTr {—Z[xa,x,,]2 + EaeabC[XaXb]Xc = ,u,azXf}
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Eigenvalue distributions: Pure Mills model

@ Lets now use the matrix X; = aD,, with a = fN The model now looks like

1 i
S[X]=NTr {—Z[xa,x,,]2 + EaeabC[XaXb]Xc = ,u,azXf}

@ Thus we can now set o = 0, the action is a pure Yang-Mills model

N
S[X] = L [Xa, Xb]%.
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Eigenvalue distributions and emergent geometry

Geometry from random matrices

Eigenvalue distributions: Pure ills model

@ Lets now use the matrix X; = aD,, with a = fN The model now looks like

1 i
S[X]=NTr {—Z[xa,x,,]2 + EaeabC[XaXb]Xc = ,u,azXf}

@ Thus we can now set o = 0, the action is a pure Yang-Mills model

N
S[X] = L [Xa, Xb]%.

@ For larger number of matrices this model is the bosonic part of the IKKT matrix
model, which is well defined for N > % (Hotta '98), where d is the number of
matrices.
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Eigenvalue distributions: Pure ills model

@ Lets now use the matrix X; = aD,, with a = fN The model now looks like

1 i
S[X]=NTr {—Z[xa,x,,]2 + EaeabC[XaXb]Xc = ,u,azXf}

@ Thus we can now set o = 0, the action is a pure Yang-Mills model

N
S[X] = L [Xa, Xb]%.

@ For larger number of matrices this model is the bosonic part of the IKKT matrix
model, which is well defined for N > % (Hotta '98), where d is the number of
matrices.

@ It is a Yang-Mills model defined in zero volume.
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Eigenvalue distributions: Pure Yang-Mills model

o X,
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Eigenvalue distributions: Pure Yang-Mills model

0.45

0.4 r N=35 1
0.35 ) N=64 = 1

0.25 J

0.15 + 1

eigenvalues distributions of D
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O 1 1 1 1
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Eigenvalue distributions and emergent geometry
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

p) = 5 (7 = 5%)

r is found to be R = 2.0208 + 0.015
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Eigenvalue distributions: Pure Yang-Mills model

0.45 T

N=24
O X, 04 N=35 1

. N=4g e
0.35 N=64 = 1

03} ]
0.25 ]
02} % ]
0.15 | ]
01f ]
0.05 | X

3 "

O 1 1 1 1
2 -15 -1 05 0 05 1 15 2

eigenvalues

@ The fit corresponds to the parabola

r is found to be R = 2.0208 + 0.015

eigenvalues distributions of D
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

3 2
p(x) = m(’ —x%)
r is found to be R = 2.0208 + 0.015
@ The eigenvalues distribute uniformly
inside a solid 3-ball with radius r.
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

3 2
p(x) = m(’ - x7)
r is found to be R = 2.0208 + 0.015
@ The eigenvalues distribute uniformly

inside a solid 3-ball with radius r.
@ i[Xs, Xp]
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Eigenvalue distributions: Pure Yang-Mills model

— 0.6 :
N
o X, e

@ The fit corresponds to the parabola g 05¢ 1
kS

3, @ 04l ]
X)=—(r —x L
p0) = 1 (P = x2) s

2 o3f ]
r is found to be R = 2.0208 £0.015 2

@ The eigenvalues distribute uniformly ¢ 0.2 ]
inside a solid 3-ball with radius r. =

@ i[Xa, Xp] g 01y 1
2

o 0 . . . . .

eigenvalues
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

3
px) = 5 (7 = %)
r is found to be R = 2.0208 + 0.015
@ The eigenvalues distribute uniformly
inside a solid 3-ball with radius r.
o i[Xayxb]
Q@ C=03X,
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Eigenvalue distributions: Pure Yang-Mills model
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o X, 03} N=35 1
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

3 2
p(x) = m(’ —x%)
r is found to be R = 2.0208 + 0.015
@ The eigenvalues distribute uniformly
inside a solid 3-ball with radius r.

@ i[Xs, Xp]
Q@ C=0:X;
@ D= Ua[Xau ]
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Eigenvalue distributions: Pure Yang-Mills model

0.3
° X, N
@ The fit corresponds to the parabola % 0.25 | ]
3 § 0.2
5 2L i
PO = 45 (P = x2)
2 015t ,
ris found to be R = 2.0208 +0.015 £
@ The eigenvalues distribute uniformly 8§ o1 g
inside a solid 3-ball with radius r. ‘_E“
@ i[Xa, Xp] 3 oosf 1
@ C=0.X, ®
@ D =0,[Xa,] 0
-6 6
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Eigenvalue distributions: Pure Yang-Mills model

o X,
@ The fit corresponds to the parabola

3

px) = 5 (7 = %)
r is found to be R = 2.0208 + 0.015
The eigenvalues distribute uniformly
inside a solid 3-ball with radius r.
i[Xa, Xp]
C =0:X,
D = 0a[Xa, ]
We observe continuous and
symmetric distributions.

(4

©0 660
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Eigenvalue distributions:Mass deformation

@ Consider the model

&t 1 i
S[D] = & Tr | =5 [D, Dp)? + 5 €abe[DaDp]De — pD?|,
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Eigenvalue distributions: Matrix phase

@ Lets see the effect of the parameter p
on X3
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Eigenvalue distributions: Matrix phase

"N=37 G=5p=-0.18 '

@ Lets see the effect of the parameter p
on X,

N

eigenvalue distribution D,
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Eigenvalue distributions: Matrix phase

N=24 p =-0.200 ——
0.45 |- = ,
[1=-0.225 -
@ Lets see the effect of the parameter p 04l g
on Xj
0.35 1

eigenvalue distribution D,
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Eigenvalue distributions: Matrix phase

@ Lets see the effect of the parameter p
on X3

@ The effect of p in the fuzzy sphere is
to squeeze the configuration
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Eigenvalue distributions: Matrix phase

@ Lets see the effect of the parameter p
on X3

@ The effect of p in the fuzzy sphere is
to squeeze the configuration

@ Eventually the ps« is reached and the
fuzzy sphere dissapears and a
commutative sphere with fixed radius

pops up!
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Eigenvalue distributions: Matrix phase

N=24 p=-0.200 ——
045 |- . p= -22/8 1
[1=-0.225 -
@ Lets see the effect of the parameter p 0al H=-0230

on X,

@ The effect of p in the fuzzy sphere is
to squeeze the configuration

@ Eventually the 4 is reached and the
fuzzy sphere dissapears and a
commutative sphere with fixed radius

pops up!

eigenvalue distribution D,

eigenvalues
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Eigenvalue distributions: Matrix phase

@ Lets see the effect of the parameter p
on X3

@ The effect of p in the fuzzy sphere is
to squeeze the configuration

@ Eventually the ps« is reached and the
fuzzy sphere dissapears and a
commutative sphere with fixed radius
pops up!

@ C=0,X,
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Eigenvalue distributions: Matrix phase

1.2 T T T T T T T T T
NZ24 | =-0.200 ——
) = 29 |
© I\ =

@ Lets see the effect of the parameter 1 3@ ir “\ ﬁ_gggg ; 1.
on X, i | & p=-0.235 L

) fFe f H f . o 08 L I u=-0.240 i H i
The effect of p in the fuzzy sphere is ¢ . “ ! 1L =-0.250 ;
to squeeze the configuration E i 1 =-0.260 : [

@ Eventually the p. is reached and the & 067 “ i LI
fuzzy sphere dissapears and a S | | i
commutative sphere with fixed radius 3§ 041 | [ | ]
pops up! § “ |

@ C=0.X5 2 0.2—“5 =

[ 1 i
11 O I S 1 1
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Eigenvalue distributions: Matrix phase

@ Lets see the effect of the parameter p
on X3

@ The effect of p in the fuzzy sphere is
to squeeze the configuration

@ Eventually the ps« is reached and the
fuzzy sphere dissapears and a
commutative sphere with fixed radius
pops up!

@ C=0,X,

@ The transition is that of a
non-commutative sphere to a
commutative sphere of radius 2.
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Conclusions

@ We have shown a simple example of how geometry emerges dynamically from
matrix models.

@ Starting from a matrix model with no background geometry, random degrees of
freedom condensate under the effect of quantum fluctuations giving origin to
geometry.

@ The geometry in matrix models is then understood as an emergent concept.

@ In this concrete example, in the matrix phase or high temperature phase the
matrices are effectively commutative and dominated by diagonal elements which
form a solid ball.

@ The low temperature phase has an non-commutative sphere as underlying
geometry, the fuzzy sphere.

@ The transition observed is that of a non-commutative sphere to a commutative
sphere of radius 2.

@ It is believed that such transitions belong to a new universality class.

@ The excellent agreement of theoretical predictions and simulations suggest the
existence of an exact solution for this type of matrix models.
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