Low lying spectral gaps induced by slowly varying magnetic fields

Radu Purice "Simion Stoilow" Institute of Mathematics of the Romanian Academy

work done in colaboration with Horia Cornean & Bernard Helffer

Metz, May 16-18, 2017

"Spectral Theory and Mathematical Physics"

・ロト ・ 同ト ・ ヨト ・ ヨ

Consider a periodic Schrödinger operator in two dimensions, perturbed by a weak magnetic field whose intensity slowly varies around a positive mean. We show in great generality that the bottom of the spectrum of the corresponding magnetic Schrödinger operator develops spectral islands separated by gaps, reminding of a Landau-level structure.

H. D. Cornean, B. Helffer, R. Purice: Low lying spectral gaps induced by slowly varying magnetic fields, **Journal of Functional Analysis 273** (1), 2017, pp. 206-282 http://dx.doi.org/10.1016/j.jfa.2017.04.002

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Structure of the bottom of the spectrum of periodic Hamiltonians in slowly varying magnetic fields

The Problem

- 2 Main Steps of the Proof
- 3 The magnetic ΨD calculus.
- 4 Magnetic almost-Wannier Functions
- 5 The Feshbach type argument
- 6 The magnetic quantization of the magnetic quasi Bloch function
- **7** The resolvent of $\mathfrak{O}\mathfrak{p}^{\epsilon,\kappa}(\lambda^{\epsilon})$

(日) (同) (三) (三)

The Problem

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The periodic Hamiltonian.

- On the configuration space X := ℝ² we consider a lattice Γ ⊂ X generated by two linearly independent vectors {e₁, e₂} ⊂ X.
- We also consider a smooth, Γ -periodic potential $V : \mathcal{X} \to \mathbb{R}$.
- Let us fix an *elementary cell*:

$$E := \left\{ y = \sum_{j=1}^{2} t_{j} e_{j} \in \mathbb{R}^{2} \mid -1/2 \leq t_{j} < 1/2, \ \forall j \in \{1,2\} \right\}.$$

- We consider the quotient group \mathcal{X}/Γ that is canonically isomorphic to the 2-dimensional torus \mathbb{T} .
- Consider the differential operator -Δ + V, which is essentially self-adjoint on the Schwartz set S(X).
 Denote by H⁰ its self-adjoint extension in H := L²(X) with domain the Sobolev space H²(X).

(a)

The Bloch-Zak representation.

• The dual basis $\{e_1^*,e_2^*\}\subset \mathcal{X}^*$ is defined by $\langle e_j^*,e_k
angle=(2\pi)\delta_{jk}$, and

$$egin{aligned} & {\sf \Gamma}_* = \oplus_{j=1}^2 \mathbb{Z} e_j^*, \quad \mathbb{T}_* := \mathcal{X}^* / {\sf \Gamma}_*, \ & {\sf E}_* \ := \ & \left\{ heta = \sum_{j=1}^2 t_j e_j^* \in \mathbb{R}^2 \ | \ -1/2 \leq t_j < 1/2 \,, \ \forall j \in \{1,2\}
ight\}. \end{aligned}$$

The map

(where |E| is the Lebesgue measure of the elementary cell E) induces a unitary operator $\mathscr{V}_{\Gamma} : L^{2}(\mathscr{X}) \to L^{2}(E_{*}; L^{2}(\mathbb{T})).$

• Its inverse is given by:

$$(\mathscr{V}_{\Gamma}^{-1}\psi)(x) = |E_*|^{-\frac{1}{2}} \int_{E_*} e^{i \langle \theta, x \rangle} \psi(\theta, x) \, d\theta$$

The Problem

The Bloch-Floquet theory.

•
$$\hat{H}^0 := \mathscr{V}_{\Gamma} H^0 \mathscr{V}_{\Gamma}^{-1} = \int_{E_*}^{\oplus} \hat{H}^0(\theta) d\theta$$

with $\hat{H}^0(\theta) := (-i\nabla - \theta)^2 + V$ in $L^2(\mathbb{T})$.

• The map $E_* \ni \theta \mapsto \hat{H}^0(\theta)$ has an extension to \mathcal{X}^* that is analytic in the norm resolvent topology and is given by

$$\hat{H}^0(heta+\gamma^*)=e^{i<\gamma^*,\cdot>}\hat{H}^0(heta)e^{-i<\gamma^*,\cdot>}$$

• There exists a family of continuous functions $E_* \ni \theta \mapsto \lambda_j(\theta) \in \mathbb{R}$ with periodic continuous extensions to $\mathcal{X}^* \supset E_*$, indexed by $j \in \mathbb{N}$ such that $\lambda_j(\theta) \leq \lambda_{j+1}(\theta)$ for every $j \in \mathbb{N}$ and $\theta \in E_*$, and

$$\sigma(\hat{H}^0(\theta)) = \bigcup_{j \in \mathbb{N}} \{\lambda_j(\theta)\}.$$

• There exists an orthonormal family of measurable eigenfunctions $E_* \ni \theta \mapsto \hat{\phi}_j(\theta, \cdot) \in L^2(\mathbb{T}), j \in \mathbb{N}$, such that $\|\hat{\phi}_j(\theta, \cdot)\|_{L^2(\mathbb{T})} = 1$ and $\hat{H}^0(\theta)\hat{\phi}_j(\theta, \cdot) = \lambda_j(\theta)\hat{\phi}_j(\theta, \cdot).$

The first Bloch band.

W. Kirsch, B. Simon, Comm. Math. Phys. 97 (1985)

The first Bloch eigenvalue $\lambda_0(\theta)$ is always simple in a neighborhood of $\theta = 0$ and has a nondegenerate global minimum on E_* at $\theta = 0$.

- Up to a shift in energy we may take this minimum to be equal to zero.
- Because H^0 has a real symbol, we have $\overline{\hat{H}^0(\theta)} = \hat{H}^0(-\theta)$.
- Since $\lambda_0(\cdot)$ is simple, it must be an even function $\lambda_0(\theta) = \lambda_0(-\theta)$.

イロト イポト イヨト イヨト 二日

Non-crossing Hypothesis.

$H.1: \ Non-crossing \ condition \ with \ a \ gap.$

 $\sup(\lambda_0) < \inf(\lambda_1).$

or

H.2: Non-crossing condition with range overlapping and no gap. The eigenvalue $\lambda_0(\theta)$ remains simple for all $\theta \in \mathbb{T}_*$, but $\sup(\lambda_0) \ge \inf(\lambda_1)$.

(日) (周) (三) (三)

The magnetic field.

We consider a 2-parameter family of magnetic fields

 $B_{\epsilon,\kappa}(x) := \epsilon B_0 + \kappa \epsilon B(\epsilon x),$

indexed by $(\epsilon,\kappa)\in [0,1] imes [0,1]$.

• $B_0 > 0$ is constant.

• $B : \mathcal{X} \to \mathbb{R}$ is smooth and bounded together with all its derivatives. We choose some smooth vector potentials $A^0 : \mathcal{X} \to \mathcal{X}$ and $A : \mathcal{X} \to \mathcal{X}$ such that:

$$B_0 = \partial_1 A_2^0 - \partial_2 A_1^0, B = \partial_1 A_2 - \partial_2 A_1,$$
$$A^{\epsilon,\kappa}(x) := \epsilon A^0(x) + \kappa A(\epsilon x), B_{\epsilon,\kappa} = \partial_1 A_2^{\epsilon,\kappa} - \partial_2 A_1^{\epsilon,\kappa}.$$

The vector potential A^0 is always in the *transverse gauge*, i.e.

$$A^{0}(x) = (B_{0}/2)(-x_{2},x_{1}).$$

(日) (周) (三) (三) (三) (000

The magnetic periodic Hamiltonian.

We consider the following magnetic Schrödinger operator:

$$H^{\epsilon,\kappa} := (-i\partial_{x_1} - A_1^{\epsilon,\kappa})^2 + (-i\partial_{x_2} - A_2^{\epsilon,\kappa})^2 + V$$

essentially self-adjoint on $\mathscr{S}(\mathcal{X})$.

When $\kappa = \epsilon = 0$ we recover the periodic Schrödinger Hamiltonian without magnetic field H^0 .

イロト イポト イヨト イヨト

The main result, for $B_{\epsilon,\kappa}(x) = \epsilon B_0 + \kappa \epsilon B(\epsilon x)$.

Theorem (H. Cornean, B. Helffer, R.P.: JFA (2017).)

Consider either Hypothesis H.1 or Hypothesis H.2. Fix an integer N > 1. Then there exist some constants $C_0, C_1, C_2 > 0$, and $\epsilon_0, \kappa_0 \in (0, 1)$, such that for any $\kappa \in (0, \kappa_0]$ and $\epsilon \in (0, \epsilon_0]$ there exist $a_0 < b_0 < a_1 < \cdots < a_N < b_N$ with $a_0 = \inf\{\sigma(H^{\epsilon,\kappa})\}$ so that: $\sigma(H^{\epsilon,\kappa}) \cap [a_0, b_N] \subset \bigcup_{k=0}^{N} [a_k, b_k], \quad \dim(\operatorname{Ran} E_{[a_k, b_k]}(H^{\epsilon,\kappa})) = +\infty,$ $b_k - a_k \leq C_0 \kappa \epsilon + C_1 \epsilon^{4/3}, \ 0 \leq k \leq N,$ $a_{k+1} - b_k \geq C_2^{-1} \epsilon, \ 0 \leq k \leq N - 1.$

Moreover, given any compact set $K \subset \mathbb{R}$, there exists C > 0, such that, for $(\kappa, \epsilon) \in [0, 1] \times [0, 1]$, we have (here dist_H means Hausdorff distance):

 $\operatorname{dist}_{H}(\sigma(H^{\epsilon,\kappa})\cap K,\sigma(H^{\epsilon,0})\cap K)\leq C\sqrt{\kappa\epsilon}.$

The existing result, for $B_{\epsilon}(x) = \epsilon B_0$.

Theorem (B. Helffer, J. Sjöstrand, LNP 345 (1989).)

Suppose fixed some E > 0 small enough. Under Hypothesis H.1, $\forall L \in \mathbb{N}^*$,

there exist $\epsilon_0 > 0$ and C > 0, such that for $\epsilon \in (0, \epsilon_0]$ there exist $N(\epsilon)$ and $a_0 < b_0 < ... < a_N < b_N$ such that:

- $a_0 = \inf\{\sigma(H^{\epsilon,0})\},\$
- $\sigma(H^{\epsilon,0}) \cap (-\infty, E) \subset \bigcup_{k=0}^{N} [a_k, b_k],$
- $|b_k a_k| \leq C \epsilon^L$ for $0 \leq k \leq N(\epsilon)$,
- $a_{k+1} b_k \ge \epsilon/C$ for $0 \le k \le N(\epsilon) 1$.

 a_k is determined by a Bohr-Sommerfeld rule $a_k = f((2k+1)\epsilon, \epsilon)$, where $t \mapsto f(t, \epsilon)$ has a complete expansion in powers of ϵ , $f(0,0) = \inf \lambda_0$ and $\partial_t f(0,0) \neq 0$

イロト イポト イヨト イヨト 二日

Main Steps of the Proof

3. 3

・ロト ・回 ・ ・ ヨト ・

Step 1: Construction of an effective magnetic matrix. (A)

- Being assumed to be isolated, we can associate with λ₀(θ) an orthonormal projection π₀ commuting with H⁰. This might **not** be a spectral projection for H⁰, unless there is a gap between the first band and the rest (Hypothesis H.1).
- Results by Nenciu, Cornean-Helffer-Nenciu and Fiorenza-Monaco-Panati show that in both cases the range of π₀ has a basis consisting of exponentially localized Wannier functions.
- When ε and κ are small enough, we can construct an orthogonal system of exponentially localized magnetic almost Wannier functions starting from the unperturbed Wannier basis of π₀; the corresponding orthogonal projection π₀^{ε,κ} is almost invariant for H^{ε,κ}. In the case with a gap (H.1), π₀^{ε,κ} is a spectral projection for H^{ε,κ}.

イロト 不得 トイヨト イヨト 二日

Step 1: Construction of an effective magnetic matrix. (B)

- Using a *Feshbach-type argument*, we prove that the bottom of the spectrum of $H^{\epsilon,\kappa}$ is at a Hausdorff distance of order ϵ^2 from the spectrum of the reduced operator $\pi_0^{\epsilon,\kappa}H^{\epsilon,\kappa}\pi_0^{\epsilon,\kappa}$.
- **②** In the basis of magnetic almost Wannier functions, the reduced operator $\pi_0^{\epsilon,\kappa} H^{\epsilon,\kappa} \pi_0^{\epsilon,\kappa}$ defines an *effective magnetic matrix* acting on $\ell^2(\Gamma)$.

Conclusion 1.

If the *effective magnetic matrix* has spectral gaps of order ϵ , the same holds true for the bottom of the spectrum of $H^{\epsilon,\kappa}$.

Step 2: Replacing the magnetic matrix with a magnetic pseudodifferential operator with periodic symbol.

- For κ = 0, i.e. for a constant magnetic field εB₀, we define a periodic magnetic Bloch band function λ^ε which is a perturbation of order ε of the first Bloch eigenvalue λ₀.
- We define the magnetic quantization Dp^{A^{ε,κ}}(λ^ε) of this magnetic Bloch band function considered as a periodic symbol, in the magnetic field B_{ε,κ}.
- It turns out that the spectrum of $\mathfrak{Op}^{\mathcal{A}^{\epsilon,\kappa}}(\lambda^{\epsilon})$ is located at a Hausdorff distance of order $\kappa\epsilon$ from the spectrum of the effective operator $\pi_0^{\epsilon,\kappa} H^{\epsilon,\kappa} \pi_0^{\epsilon,\kappa}$.

Conclusion 2.

Hence if $\mathfrak{Op}^{A^{\epsilon,\kappa}}(\lambda^{\epsilon})$ has gaps of order ϵ (provided that κ is smaller than some constant independent of ϵ), the same is true for the bottom of the spectrum of $H^{\epsilon,\kappa}$.

Step 3: Spectral analysis of $\mathfrak{Op}^{\mathcal{A}^{\epsilon,\kappa}}(\lambda^{\epsilon})$.

- We compare the bottom of the spectrum of Dp^{A^{ε,κ}}(λ^ε) with the bottom of the spectrum of an unbounded quadratic symbol defined using the Hessian of λ^ε near its simple, isolated minimum; this is achieved by proving that the magnetic quantization of an explicitly defined symbol is in fact a *quasi-resolvent* for the magnetic quantization of λ^ε.
- An important technical component is the development of a magnetic Moyal calculus for symbols with *weak spatial variation* that replaces the Moyal calculus for a constant field as appearing in the previous papers by Helffer and his coworkers.

イロト イポト イヨト イヨト 二日

3

• • • • • • • • • • • •

- Let us denote by \mathcal{X}^* the dual of \mathcal{X} (the momentum space) with $\langle \cdot, \cdot \rangle : \mathcal{X}^* \times \mathcal{X} \to \mathbb{R}$ denoting the duality map.
- Let Ξ := X × X^{*} be the phase space with the canonical symplectic form

 $\sigma(X,Y) := \langle \xi, y \rangle - \langle \eta, x \rangle,$

for $X := (x, \xi) \in \Xi$ and $Y := (y, \eta) \in \Xi^*$.

We consider the spaces $BC(\mathcal{V})$ of bounded continuous functions on any finite dimensional real vector space \mathcal{V} with the $\|\cdot\|_{\infty}$ norm.

We shall denote by $C^{\infty}(\mathcal{V})$ the space of smooth functions on \mathcal{V} and by $C^{\infty}_{\text{pol}}(\mathcal{V})$ (resp. by $BC^{\infty}(\mathcal{V})$) its subspace of smooth functions that are polynomially bounded together with all their derivatives, (resp. smooth and bounded together with all their derivatives), endowed with the usual locally convex topologies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Given a vector potential A with components of class $C_{pol}^{\infty}(\mathcal{X})$, for any tempered distribution $F \in \mathscr{S}'(\Xi)$ we can associate the following linear operator (defined as oscillatory integral):

$$\begin{aligned} \mathscr{S}(\mathcal{X}) &\ni u \mapsto (\mathfrak{Op}^{\mathcal{A}}(F)u)(x) := \\ &= (2\pi)^{-2} \int_{\mathcal{X}} \int_{\mathcal{X}^*} e^{i\langle \xi, x-y \rangle} e^{-i \int_{[x,y]} \mathcal{A}} F\left(\frac{x+y}{2}, \xi\right) u(y) \, d\xi \, dy. \end{aligned}$$

Remark

The application \mathfrak{Op}^A extends to a linear and topological isomorphism between $\mathscr{S}'(\Xi)$ and $\mathcal{L}(\mathscr{S}(\mathcal{X}); \mathscr{S}'(\mathcal{X}))$ (considered with the strong topologies).

3

イロト イポト イヨト イヨト

The operator composition of the operators $\mathfrak{Op}^{A}(F)$ and $\mathfrak{Op}^{A}(G)$ induces a *magnetic Moyal product*, such that

$$\mathfrak{Op}^{\mathcal{A}}(F)\mathfrak{Op}^{\mathcal{A}}(G)=\mathfrak{Op}^{\mathcal{A}}(F \ \sharp^{\mathcal{B}} \ G).$$

This product depends only on the magnetic field B and is given by the following oscillating integrals:

$$(F \sharp^{B} G)(X) := \pi^{-4} \int_{\Xi} dY \int_{\Xi} dZ e^{-2i\sigma(Y,Z)} e^{-i \int_{T(x,y,z)} B} F(X-Y) G(X-Z)$$
$$= \pi^{-4} \int_{\Xi} dY \int_{\Xi} dZ e^{-2i\sigma(X-Y,X-Z)} e^{-i \int_{\widetilde{T}(x,y,z)} B} F(Y) G(Z),$$

where T(x, y, z) is the triangle of vertices x - y - z, x + y - z, x - y + zand $\widetilde{T}(x, y, z)$ the triangle in \mathcal{X} of vertices x - y + z, y - z + x, z - x + y.

(日) (周) (三) (三) (三) (000

Hörmander type symbols

For any $s \in \mathbb{R}$ and any $ho \in [0,1]$, we denote by

 $s \in \mathbb{R}$

$$S^s_
ho(\Xi):=\{F\in C^\infty(\Xi)\mid
u^{s,
ho}_{n,m}(F)<+\infty\,, orall(n,m)\in\mathbb{N} imes\mathbb{N}\}\,,$$

where

$$egin{aligned} &
u_{n,m}^{s,
ho}(f) := \sup_{(x,\xi)\in \Xi \mid lpha \mid \leq n \mid eta \mid \leq m} \sum_{|lpha| \leq m} \left| \langle \xi
angle^{-s+
ho m} ig(\partial_{x}^{lpha} \partial_{\xi}^{eta} f ig)(x,\xi)
ight| \ & S_{
ho}^{\infty}(\Xi) := igcup S_{
ho}^{s}(\Xi) ext{ and } S^{-\infty}(\Xi) := igcap S_{
ho}^{s}(\Xi). \end{aligned}$$

 $s \in \mathbb{R}$

Image: A match a ma

Remark

For symbols of class $S_0^0(\Xi)$ the associated magnetic pseudodifferential operator is bounded in \mathcal{H} .

- < ∃ →

э

For any symbol F we denote by F_B^- its inverse with respect to the magnetic Moyal product, if it exists.

Proposition

- For any m > 0 and for a > 0 large enough (depending on m) the symbol s_m(x, ξ) :=< ξ >^m +a, has an inverse for the magnetic Moyal product.
- If F ∈ S⁰_ρ(Ξ) is invertible for the magnetic Moyal product, then the inverse F⁻_B also belongs to S⁰_ρ(Ξ).
- For m < 0, if $f \in S^m_{\rho}(\Xi)$ is such that 1 + f is invertible for the magnetic Moyal product, then $(1 + f)_B^- 1 \in S^m_{\rho}(\Xi)$.
- Let m > 0 and $\rho \in [0,1]$. If $G \in S^m_{\rho}(\Xi)$ is invertible for the magnetic Moyal product, with $\mathfrak{Op}^A(\mathfrak{s}_m \sharp^B G_B^-) \in \mathcal{L}(L^2(\mathcal{X}))$, then $G_B^- \in S_{\rho}^{-m}(\Xi)$.

Definition

A symbol F in $S^s_{\rho}(\Xi)$ is called *elliptic* if there exist two positive constants R and C such that

 $|F(x,\xi)| \geq C \langle \xi \rangle^s$,

for any $(x,\xi)\in \Xi$ with $|\xi|\geq R$.

Remark

For any real elliptic symbol $h \in S_1^m(\Xi)_{\Gamma}$ (with m > 0) and for any A in $C_{\text{pol}}^{\infty}(\mathcal{X}, \mathbb{R}^2)$, the operator $\mathfrak{Op}^A(h)$ has a closure H^A in $L^2(\mathcal{X})$ that is self-adjoint on a domain \mathcal{H}^m_A (a magnetic Sobolev space) and lower semibounded. Thus we can define its resolvent $(H^A - z)^{-1}$ for any $z \notin \sigma(H^A)$ and it exists a symbol $r_z^B(h) \in S_1^{-m}(\Xi)$ such that

$$(H^A - \mathbf{z})^{-1} = \mathfrak{O}\mathfrak{p}^A(r_\mathbf{z}^B(h)).$$

Weak magnetic fields

Let $B_{\epsilon} := \epsilon B_{\epsilon}^{0}$, with $B_{\epsilon}^{0} \in BC^{\infty}(\mathcal{X})$ uniformly for $\epsilon \in [0, \epsilon_{0}]$. Let H^{ϵ} be the self-adjoint extension of $\mathfrak{Op}^{\epsilon}(h)$ for an elliptic real symbol $h \in S_{1}^{m}(\Xi)$ with m > 0. For $z \in \rho(H^{\epsilon})$, let $r_{z}^{\epsilon}(h) \in S_{1}^{-m}(\Xi)$ denote the symbol of $(H^{\epsilon} - z)^{-1}$.

Proposition

For any compact subset K of $\mathbb{C} \setminus \sigma(H)$, there exists $\epsilon_0 > 0$ such that:

()
$$K \subset \mathbb{C} \setminus \sigma(H^{\epsilon})$$
, for $\epsilon \in [0, \epsilon_0]$.

② The following expansion is convergent in L(H) uniformly with respect to (ϵ, z) ∈ [0, ϵ₀] × K:

$$r_{z}^{\epsilon}(h) = \sum_{n \in \mathbb{N}} \epsilon^{n} r_{n}(h; \epsilon, z), \ r_{0}(h; \epsilon, z) = r_{z}^{0}(h), \ r_{n}(h; \epsilon, z) \in S_{1}^{-(m+2n)}(\Xi).$$

Some the map K ∋ z → r^ε_z(h) ∈ S^{-m}₁(Ξ) is a S^{-m}₁(Ξ)-valued analytic function, uniformly in ε ∈ [0, ε₀].

Radu Purice (IMAR)

Slowly varying symbols

Definition

For any $(m, \rho) \in \mathbb{R} \times [0, 1]$ and for some $\epsilon_0 > 0$, we denote by $S_{\rho}^{m}(\Xi)^{\bullet}$ the families of symbols $\{F^{\epsilon}\}_{\epsilon \in [0, \epsilon_0]}$ satisfying the following properties:

The following seminorms indexed by $(p,q)\in\mathbb{N}^2$

$$F^{\bullet} \mapsto \tilde{\nu}_{p,q}^{m,\rho}(F^{\bullet}) := \sup_{\epsilon \in [0,\epsilon_0]} \epsilon^{-p} \sum_{|\alpha|=p|\beta|=q} \sup_{(x,\xi) \in \Xi} <\xi >^{-(m-q\rho)} \left| \left(\partial_x^{\alpha} \partial_{\xi}^{\beta} F^{\epsilon} \right)(x,\xi) \right|$$

define the topology on $S^m_{\rho}(\Xi)^{\bullet}$.

Slowly varying symbols

Remark

Defining $\widetilde{F}^{\epsilon}(x,\xi) := F^{\epsilon}(\epsilon^{-1}x,\xi)$, it is easy to see that $\{F^{\epsilon}\}_{\epsilon \in [0,\epsilon_0]} \subset S^m_{\rho}(\Xi)$ belongs to $S^m_{\rho}(\Xi)^{\bullet}$ if and only if it is of the form $F^{\epsilon}(x,\xi) = \widetilde{F}^{\epsilon}(\epsilon x,\xi)$ for some bounded family $\{\widetilde{F}^{\epsilon}\}_{\epsilon \in [0,\epsilon_0]} \subset S^m_{\rho}(\Xi)$ verifying the condition

$$\exists \lim_{\epsilon \searrow 0} \widetilde{F}^{\epsilon}(0, \cdot) := F^0 \in S^m_{\rho}(\Xi) \bigcap C^{\infty}_{\mathsf{pol}}(\mathcal{X}^*).$$

イロト イポト イヨト イヨト 二日

Slowly varying symbols

Suppose $B_{\epsilon,\kappa}(x) = \epsilon B_0 + \kappa \epsilon B(\epsilon x)$.

Proposition

If $f^{\bullet} \in S^m_{\rho}(\Xi)^{\bullet}$ and $g^{\bullet} \in S^p_{\rho}(\Xi)^{\bullet}$, then $\{f^{\epsilon} \sharp^{B_{\epsilon,\kappa}} g^{\epsilon}\}_{\epsilon \in [0,\epsilon_0]}$ belongs to $S^{m+p}_{\rho}(\Xi)^{\bullet}$ uniformly with respect to $\kappa \in [0,1]$.

Proposition

If
$$f^{\bullet} \in S^m_{\rho}(\Xi)^{\bullet}$$
 and if the inverse $(f^{\epsilon})^- \equiv (f^{\epsilon})^-_{B_{\epsilon,\kappa}} \in S^{-m}_{\rho}(\Xi)$ exists for
every $\epsilon \in [0, \epsilon_0]$, then $\{(f^{\epsilon})^-\}_{\epsilon \in [0, \epsilon_0]} \in S^{-m}_{\rho}(\Xi)^{\bullet}$.

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q @

Magnetic almost-Wannier Functions

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

The Wannier functions.

Under any Hypothesis H.1 or H.2,

- the analyticity (in rezolvent norm) of the application $\mathcal{X}^* \ni \theta \to \hat{H}^0(\theta)$,
- the contour integral formula for the spectral projection,

allow one to define a L^2 -normalized eigenfunction for the eigenvalue λ_0 as an analytic function $\mathcal{X}^* \ni \theta \to \hat{\phi}_0(\theta, \cdot) \in L^2(\mathbb{T})$ such that

$$\hat{\phi}_0(\theta + \gamma^*, x) = e^{i < \gamma^*, x >} \hat{\phi}_0(\theta, x),$$

 $\hat{H}^{0}(\theta) \, \hat{\phi}_{0}(\theta, \cdot) \, = \, \lambda_{0}(\theta) \, \hat{\phi}_{0}(\theta, \cdot).$

Then the principal *Wannier function* ϕ_0 is defined by:

$$\phi_{0}(x) = \left[\mathscr{V}_{\Gamma}^{-1}\hat{\phi}_{0}\right](x) = |E_{*}|^{-\frac{1}{2}}\int_{E_{*}}e^{i\langle\theta,x\rangle}\hat{\phi}_{0}(\theta,x)\,d\theta.$$

イロト イポト イヨト イヨト 二日

The Wannier functions.

 ϕ_0 has rapid decay

 $\exists C > 0$ such that $\forall lpha \in \mathbb{N}^2$, $\exists C_{lpha} > 0$ such that

$$|\partial_x^lpha \phi_0(x)| \leq \mathcal{C}_lpha \, \exp(-|x|/\mathcal{C}) \,, \, orall x \in \mathbb{R}^2 \,.$$

We shall also consider the associated orthogonal projections

$$\hat{\pi}_0(heta):= |\hat{\phi}_0(heta,\cdot)> < \hat{\phi}_0(heta,\cdot)|\,, \quad \pi_0:= \mathscr{V}_{\Gamma}^{-1}\left(\int_{E_*}^\oplus \hat{\pi}_0(heta)d heta
ight) \mathscr{V}_{\Gamma}.$$

Remark

The family $\{\phi_{\gamma} := \tau_{-\gamma}\phi_0\}_{\gamma\in\Gamma}$ is an orthonormal basis for $\pi_0\mathcal{H}$.

Remark

Under Hypothesis H.1, π_0 is the spectral projection associated to λ_0 .

Radu Purice (IMAR)

Let us consider first the constant magnetic field $B_{\epsilon} := \epsilon B_0$.

Definition

③ For any $\gamma \in \Gamma$ and with A^0 defined above we define:

$$\overset{\circ}{\phi_{\gamma}^{\epsilon}}(x):=\Lambda^{\epsilon}(x,\gamma)\phi_{0}(x-\gamma),\quad\Lambda^{\epsilon}(x,y):=\exp\left\{-i\,\epsilon\int_{[x,y]}\mathcal{A}^{0}
ight\}.$$

*α π*₀^ε: the orthogonal projection on the closed linear span of {φ_γ^ε}_{γ∈Γ}. *G φ_α^ε_{αβ} := ⟨φ_α[°], φ_β[°]_β⟩_H*: the infinite *Gramian matrix*, indexed by Γ × Γ. *F*^ε := (*G*^ε)^{-1/2}.

Proposition

The matrix \mathbb{G}^{ϵ} defines a positive bounded operator on $\ell^2(\Gamma)$. \mathbb{F}^{ϵ} has the following properties:

2 For any $m \in \mathbb{N}$, there exists $C_m > 0$ such that

 $\sup_{(\alpha,\beta)\in\Gamma\times\Gamma} <\alpha-\beta>^m \left|\mathbb{F}_{\alpha\beta}^{\epsilon}-\mathbb{1}\right| \leq \operatorname{C_m}\epsilon\,,\,\forall\epsilon\in[0,\epsilon_0].$

Some control in the second secon

$$\mathbb{F}_{\alpha,\beta}^{\epsilon} = \Lambda^{\epsilon}(\beta,\alpha) \, \mathbf{F}_{\epsilon}(\beta-\alpha).$$

イロト 不得下 イヨト イヨト 二日

For all $\epsilon \in [0, \epsilon_0]$ we can define the following orthonormal basis of $\tilde{\pi}_0^{\epsilon} \mathcal{H}$:

$$\phi_{\gamma}^{\epsilon} \, := \, \sum_{\alpha \in \Gamma} \mathbb{F}_{\alpha \gamma}^{\epsilon} \stackrel{^{\circ}}{\phi_{\alpha}^{\epsilon}}, \forall \gamma \in \Gamma.$$

Proposition

With ψ_0^ϵ in $\mathscr{S}(\mathbb{R}^2)$ defined by

$$\psi_0^{\epsilon}(x) = \sum_{\alpha \in \Gamma} \mathbf{F}^{\epsilon}(\alpha) \Lambda^{\epsilon}(\alpha, x) \phi_0(x - \alpha),$$

we have

$$\phi_{\gamma}^{\epsilon} = \Lambda^{\epsilon}(\cdot, \gamma)(\tau_{-\gamma}\psi_{0}^{\epsilon}), \qquad \forall \gamma \in \Gamma.$$

Consider now $B_{\epsilon,\kappa} := \epsilon B_0 + \kappa \epsilon B(\epsilon x)$

let us choose some smooth vector potential A(y) such that dA = B and introduce

$$A_{\epsilon}(x) := A(\epsilon x) \text{ and } \widetilde{\Lambda}^{\epsilon,\kappa}(x,y) := \exp\left\{-i\kappa\int_{[x,y]}A_{\epsilon}
ight\},$$

Definition

•
$$\overset{\circ}{\phi}_{\gamma}^{\epsilon,\kappa} = \widetilde{\Lambda}^{\epsilon,\kappa}(\cdot,\gamma)\phi_{\gamma}^{\epsilon}.$$

• $\widetilde{\pi}_0^{\epsilon,\kappa}$ the orthogonal projection on the closed linear span of $\{\phi_{\gamma}^{\epsilon,\kappa}\}_{\gamma\in\Gamma}$.

• $\{\widetilde{\phi}_{\gamma}^{\epsilon,\kappa}\}_{\gamma\in\Gamma}$ the orthonormal basis of $\widetilde{\pi}_{0}^{\epsilon,\kappa}$ obtained from $\{\overset{\circ}{\phi}_{\gamma}^{\epsilon,\kappa}\}_{\gamma\in\Gamma}$ by the Gramm-Schmidt procedure.

The explicit form of the symbols of the projections $\tilde{\pi}_0^{\epsilon,\kappa}$ and π_0 allow us to use the magnetic pseudodifferential calculus with slowly varying symbols in order to prove that:

Proposition

There exist $\epsilon_0 > 0$ and C > 0 such that, for any $(\epsilon, \kappa) \in [0, \epsilon_0] \times [0, 1]$, the range of $\widetilde{\pi}_0^{\epsilon,\kappa}$ belongs to the domain of $H^{\epsilon,\kappa}$ and

 $\left\| \left[H^{\epsilon,\kappa}, \widetilde{\pi}_{0}^{\epsilon,\kappa} \right] \right\|_{\mathcal{L}(\mathcal{H})} \leq C \epsilon.$

Definition

We call quasi-band magnetic Hamiltonian, the operator $\tilde{\pi}_{0}^{\epsilon,\kappa}H^{\epsilon,\kappa}\tilde{\pi}_{0}^{\epsilon,\kappa}$ and quasi-band magnetic matrix, its form in the orthonormal basis $\{\tilde{\phi}_{\gamma}^{\epsilon,\kappa}\}_{\gamma\in\Gamma}$.

Image: A math a math

The magnetic quasi Bloch function.

Definition

We define $\mathfrak{h}^{\epsilon} \in \ell^2(\Gamma)$ by:

$$\mathfrak{h}^{\epsilon}(\gamma) := \left\langle \psi_{0}^{\epsilon} \,,\, \Lambda^{\epsilon}(x,\gamma)\tau_{-\gamma}H^{\epsilon}\psi_{0}^{\epsilon} \right\rangle_{\mathcal{H}} = \left\langle \phi_{0}^{\epsilon} \,,\, H^{\epsilon}\phi_{\gamma}^{\epsilon} \right\rangle_{\mathcal{H}} \text{ for } \gamma \in \mathsf{\Gamma},$$

and the magnetic quasi Bloch function λ^{ϵ} as its discrete Fourier transform:

$$\lambda^\epsilon:\mathbb{T}_* o\mathbb{R},\qquad\lambda^\epsilon(heta):=\sum_{\gamma\in\Gamma}\mathfrak{h}^\epsilon(\gamma)e^{-i< heta,\gamma>}$$

Proposition

There exists $\epsilon_0 > 0$ such that, for $\epsilon \in [0, \epsilon_0]$ and $\kappa \in [0, 1]$, the Hausdorff distance between the spectra of the magnetic quasi-band Hamiltonian $\widetilde{\pi}_0^{\epsilon,\kappa} H^{\epsilon,\kappa} \widetilde{\pi}_0^{\epsilon,\kappa}$ and $\mathfrak{Op}^{\epsilon,\kappa}(\lambda^{\epsilon})$ is of order $\kappa \epsilon$.

Image: A matrix

The Feshbach type argument

3

The Feshbach type argument

In order to apply a Feshbach type argument we need to control the invertibility on the orthogonal complement of $\widetilde{\pi}_0^{\epsilon,\kappa} \mathcal{H}$. Let us define

Proposition

There exist ϵ_0 and C > 0 such that, for $\epsilon \in [0, \epsilon_0]$, $K^{\epsilon, \kappa} \ge m_1 - C\epsilon > 0$.

Proposition

There exists $\epsilon_0 > 0$ such that for $\epsilon \in [0, \epsilon_0]$, the Hausdorff distance between the spectra of $H^{\epsilon,\kappa}$ and $\widetilde{\pi}_0^{\epsilon,\kappa} H^{\epsilon,\kappa} \widetilde{\pi}_0^{\epsilon,\kappa}$, both restricted to the interval $[0, \frac{m_1}{2}]$, is of order ϵ^2 .

The magnetic quantization of the magnetic quasi Bloch function

▲ □ ► ▲ □ ► ▲

Properties of the magnetic quasi Bloch function

Proposition

For the magnetic quasi Bloch function λ^{ϵ} defined above there exists $\epsilon_0 > 0$ such that $\lambda^{\epsilon}(\theta) = \lambda_0(\theta) + \epsilon \rho^{\epsilon}(\theta)$, with $\rho^{\epsilon} \in BC^{\infty}(\mathbb{T}_*)$ uniformly in $\epsilon \in [0, \epsilon_0]$ and such that $\rho^{\epsilon} - \rho^0 = \mathscr{O}(\epsilon)$.

- A consequence of this Proposition is that the modified Bloch eigenvalue λ^ϵ ∈ C[∞](X^{*}) also has an isolated non-degenerate minimum at some point θ^ϵ ∈ X^{*} ϵ-close to 0 ∈ X^{*}.
- λ_0 being an even function we get that in a neighborhood of $0\in\mathbb{T}_*$ we have the expansions

$$\lambda_0(\theta) = \sum_{1 \leq j,k \leq 2} a_{jk} \theta_j \theta_k + \mathscr{O}(|\theta|^4), \qquad a_{jk} := (\partial_{jk}^2 \lambda_0)(0);$$

$$\lambda^{\epsilon}(\theta) - \lambda^{\epsilon}(\theta^{\epsilon}) = \sum_{1 \le j,k \le 2} a_{jk}^{\epsilon}(\theta_j - \theta_j^{\epsilon})(\theta_k - \theta_k^{\epsilon}) + \epsilon \mathscr{O}(|\theta - \theta^{\epsilon}|^3) + \mathcal{O}(|\theta - \theta^{\epsilon}|^4).$$

The Hessian at the minimum of the magnetic quasi Bloch function

- There exists $\epsilon_0 > 0$ such that, for $\epsilon \in [0, \epsilon_0]$, we can choose a local coordinate system on a neighborhood of $\theta^{\epsilon} \in \mathcal{X}^*$ that diagonalizes the symmetric positive definite matrix a^{ϵ} and we denote by $0 < m_1^{\epsilon} \le m_2^{\epsilon}$ its eigenvalues.
- We denote by $0 < m_1 \le m_2$ the two eigenvalues of the matrix a_{jk} .
- We notice that

$$m_j^{\epsilon} = m_j + \epsilon \mu_j + \mathscr{O}(\epsilon^2)$$
 for $j = 1, 2,$

with μ_i explicitly computable.

Our goal is to obtain spectral information concerning the Hamiltonian $\mathfrak{Op}^{\epsilon,\kappa}(\lambda^{\epsilon})$ starting from the spectral information about $\mathfrak{Op}^{\epsilon,\kappa}(h_{m^{\epsilon}})$ with

$$h_{m^{\epsilon}}(\xi) := m_1^{\epsilon}\xi_1^2 + m_2^{\epsilon}\xi_2^2,$$

defining an elliptic symbol of class $S_1^2(\Xi)$ that does not depend on the configuration space variables.

Radu Purice (IMAR)

The model Landau Hamiltonian

We compare the bottom of the spectra of the following two operators

- the magnetic Hamiltonians $\mathfrak{O}\mathfrak{p}^{\epsilon,\kappa}(h_{m^{\epsilon}})$,
- the constant field magnetic Landau operator $\mathfrak{Op}^{\epsilon,0}(h_{m^{\epsilon}})$.

Proposition

For any compact set M in \mathbb{R} , there exist $\epsilon_K > 0$, C > 0 and $\kappa_K \in (0, 1]$, such that for any $(\epsilon, \kappa) \in [0, \epsilon_K] \times [0, \kappa_K]$, the spectrum of the operator $\mathfrak{Op}^{\epsilon,\kappa}(h_{m^{\epsilon}})$ in ϵM is contained in bands of width $C\kappa\epsilon$ centered at the points $\{(2n+1) \epsilon m^{\epsilon} B_0\}_{n \in \mathbb{N}}$.

The resolvent of $\mathfrak{Op}^{\epsilon,\kappa}(\lambda^{\epsilon})$

Isolating the minimum

- We choose an even function χ in $C_0^{\infty}(\mathbb{R})$ with $0 \le \chi \le 1$, with supp $\chi \subset (-2, +2)$ and $\chi(t) = 1$ on [-1, +1].
- For $\delta > 0$ we define $g_{1/\delta}(\xi) := \chi(h_{m^{\epsilon}}(\delta^{-1}\xi)), \quad \xi \in \mathcal{X}^*.$
- We choose δ₀ such that D(0, √2m₁⁻¹δ₀) ⊂ E_{*} where D(0, ρ) denotes the disk centered at 0 of radius ρ and E_{*} denotes the interior of E_{*}.
 For any δ ∈ (0, δ₀] we associate δ° := √m₁/2m₂ δ so that we have g_{1/δ°} = g_{1/δ} g_{1/δ°}.

For any $\delta \in (0, \delta_0]$, $g_{1/\delta} \in C_0^\infty(E_*)$.

- We may consider it as an element of $C_0^{\infty}(\mathcal{X}^*)$ by extending it by 0.
- We may define its Γ_{*}-periodic continuation to X^{*}:

$$\widetilde{g}_{1/\delta}(\xi) \coloneqq \sum_{\gamma \in \mathsf{F}^*} g_{1/\delta}(\xi - \gamma),$$

The ϵ -dependent cut-off

Hypothesis

We shall impose the following scaling of the cut-off parameter $\delta > 0$:

 $\epsilon = \delta^3$.

Then we have the following estimation near the minimum:

 $\lambda^{\epsilon}(\xi)g_{1/\delta}(\xi) = g_{1/\delta}(\xi) h_{m^{\epsilon}}(\xi) + \mathcal{O}(\delta^4), \quad \text{with } \delta^4 = \epsilon^{4/3}.$

The shift outside the minimum

For the region outside the minima, we need the operator:

$$\mathfrak{Op}^{\epsilon,\kappa}(\lambda^{\epsilon} + (\delta^{\circ})^2 \widetilde{g}_{1/\delta^{\circ}}).$$

Proposition

There exists $\epsilon_0 > 0$ and for $(\epsilon, \kappa, \delta) \in [0, \epsilon_0] \times [0, 1] \times (0, \delta_0]$, there exist some constants C > 0 and C' > 0 such that:

 $\mathfrak{O}\mathfrak{p}^{\epsilon,\kappa}\big(\lambda^{\epsilon} + (\delta^{\circ})^2\,\widetilde{g}_{1/\delta^{\circ}}\big) \geq \big(\mathit{C}\,\delta^2 - \mathit{C}'\,\epsilon\,\big)\,\,\mathbb{1}\!\!1.$

Remark

We have that $C \,\delta^2 - C' \,\epsilon > C'' \epsilon^{2/3} >> \epsilon$ and for $0 \le z \le C'' \epsilon^{2/3}$, we denote by $r_{\delta,\epsilon,\kappa}(z)$ the symbol of $\left(\mathfrak{Op}^{\epsilon,\kappa}(\lambda^{\epsilon} + (\delta^{\circ})^2 \,\widetilde{g}_{1/\delta^{\circ}}) - z\mathbb{1}\right)^{-1}$.

イロト イポト イヨト イヨト 二日

The "quasi-inverse".

• Let us fix some compact set $K \subset \mathbb{C}$ such that:

 $K \subset \mathbb{C} \setminus \{(2n+1)m B_0\}_{n \in \mathbb{N}}.$

- There exist ε_K > 0 and κ_K ∈ [0, 1] such that for
 (ε, κ) ∈ [0, ε_K] × [0, κ_K] and for a ∈ K, the point εa ∈ C belongs to
 the resolvent set of 𝔅𝔅^{ε,κ}(h_mε).
- We denote by $r^{\epsilon,\kappa}(\epsilon a)$ the magnetic symbol of $(\mathfrak{Op}^{\epsilon,\kappa}(h_{m^{\epsilon}}) \epsilon a)^{-1}$.

The quasi-inverse

For $a \in K$ we want to define the following symbol in $\mathscr{S}'(\mathcal{X}^*)$ as the sum of the series on the right hand side:

$$\widetilde{r}_{\lambda}(\epsilon a) := \sum_{\gamma^* \in \Gamma_*} au_{\gamma^*}ig(g_{1/\delta} \ \sharp^{\epsilon,\kappa} \ r^{\epsilon,\kappa}(\epsilon a) ig) + ig(1 - \widetilde{g}_{1/\delta} ig) \ \sharp^{\epsilon,\kappa} \ r_{\delta,\epsilon,\kappa}(\epsilon a) \,, \quad \delta = \epsilon^{1/3}.$$

The "quasi-inverse".

Proposition

For K as above, there exist C > 0, $\kappa_0 \in (0, 1]$ and $\epsilon_0 > 0$ such that for $(\kappa, \epsilon, a) \in [0, \kappa_0] \times (0, \epsilon_0] \times K$, the symbol $\tilde{r}_{\lambda}(\epsilon a)$ is well defined and we have

 $\|\mathfrak{Op}^{\epsilon,\kappa}(\widetilde{r}_{\lambda}(\epsilon a))\| \leq C\epsilon^{-1},$

and

$$ig(\lambda_\epsilon-\epsilon aig)~\sharp^{\epsilon,\kappa}~\widetilde{r_\lambda}(\epsilon aig)~=~1+\mathfrak{r}_{\delta,a},~~ ext{with}~~~\|\mathfrak{Op}^{\epsilon,\kappa}(\mathfrak{r}_{\delta,a})\|~\leq~C~\epsilon^{1/3}$$

For N > 0, there exist C, ϵ_0 and κ_0 such that the spectrum of $\mathfrak{Op}^{\epsilon,\kappa}(\lambda_{\epsilon})$ in $[0, (2N+2)mB_0\epsilon]$ consists of spectral islands centered at $(2n+1)mB_0\epsilon$, $0 \le n \le N$, with a width bounded by $C(\epsilon\kappa + \epsilon^{4/3})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Thank you for your attention.

3

<ロ> (日) (日) (日) (日) (日)