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Abstract

Consider a periodic Schrödinger operator in two dimensions, perturbed by
a weak magnetic field whose intensity slowly varies around a positive
mean. We show in great generality that the bottom of the spectrum of the
corresponding magnetic Schrödinger operator develops spectral islands
separated by gaps, reminding of a Landau-level structure.

H. D. Cornean, B. Helffer, R. Purice: Low lying spectral gaps induced by
slowly varying magnetic fields, Journal of Functional Analysis 273 (1),
2017, pp. 206-282
http://dx.doi.org/10.1016/j.jfa.2017.04.002
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The Problem

The Problem
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The Problem

The periodic Hamiltonian.

On the configuration space X := R2 we consider a lattice Γ ⊂ X
generated by two linearly independent vectors {e1, e2} ⊂ X .

We also consider a smooth, Γ-periodic potential V : X → R.

Let us fix an elementary cell :

E :=
{
y =

2∑
j=1

tjej ∈ R2 | −1/2 ≤ tj < 1/2 , ∀j ∈ {1, 2}
}
.

We consider the quotient group X/Γ that is canonically isomorphic to
the 2-dimensional torus T.

Consider the differential operator −∆ + V , which is essentially
self-adjoint on the Schwartz set S (X ).
Denote by H0 its self-adjoint extension in H := L2(X ) with domain
the Sobolev space H 2(X ).
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The Problem

The Bloch-Zak representation.

The dual basis {e∗1 , e∗2} ⊂ X ∗ is defined by 〈e∗j , ek〉 = (2π)δjk , and

Γ∗ = ⊕2
j=1Ze∗j , T∗ := X ∗/Γ∗,

E∗ :=
{
θ =

2∑
j=1

tje
∗
j ∈ R2 | −1/2 ≤ tj < 1/2 , ∀j ∈ {1, 2}

}
.

The map(
VΓϕ

)
(θ, x) := |E |−1/2

∑
γ∈Γ

e−i<θ,x−γ>ϕ(x−γ) , ∀ (θ, x) ∈ X×E∗, ∀ϕ ∈ S (X ) ,

(where |E | is the Lebesgue measure of the elementary cell E ) induces
a unitary operator VΓ : L2(X )→ L2

(
E∗; L

2(T)
)
.

Its inverse is given by:

(V −1
Γ ψ)(x) = |E∗|−

1
2

∫
E∗

e i<θ,x>ψ(θ, x) dθ .
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The Problem

The Bloch-Floquet theory.

Ĥ0 := VΓH
0V −1

Γ =
∫ ⊕
E∗

Ĥ0(θ)dθ

with Ĥ0(θ) :=
(
− i∇− θ

)2
+ V in L2(T).

The map E∗ 3 θ 7→ Ĥ0(θ) has an extension to X ∗ that is analytic in
the norm resolvent topology and is given by

Ĥ0(θ + γ∗) = e i<γ
∗,·>Ĥ0(θ)e−i<γ

∗,·>.

There exists a family of continuous functions E∗ 3 θ 7→ λj(θ) ∈ R
with periodic continuous extensions to X ∗ ⊃ E∗, indexed by j ∈ N
such that λj(θ) ≤ λj+1(θ) for every j ∈ N and θ ∈ E∗, and

σ
(
Ĥ0(θ)

)
=
⋃
j∈N
{λj(θ)}.

There exists an orthonormal family of measurable eigenfunctions
E∗ 3 θ 7→ φ̂j(θ, ·) ∈ L2(T), j ∈ N, such that ‖φ̂j(θ, ·)‖L2(T) = 1 and

Ĥ0(θ)φ̂j(θ, ·) = λj(θ)φ̂j(θ, ·).
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The Problem

The first Bloch band.

W. Kirsch, B. Simon, Comm. Math. Phys. 97 (1985)

The first Bloch eigenvalue λ0(θ) is always simple in a neighborhood of
θ = 0 and has a nondegenerate global minimum on E∗ at θ = 0.

Up to a shift in energy we may take this minimum to be equal to zero.

Because H0 has a real symbol, we have Ĥ0(θ) = Ĥ0(−θ) .

Since λ0(·) is simple, it must be an even function λ0(θ) = λ0(−θ).
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The Problem

Non-crossing Hypothesis.

H.1: Non-crossing condition with a gap.

sup(λ0) < inf(λ1).

or

H.2: Non-crossing condition with range overlapping and no gap.

The eigenvalue λ0(θ) remains simple for all θ ∈ T∗, but sup(λ0) ≥ inf(λ1).
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The Problem

The magnetic field.

We consider a 2-parameter family of magnetic fields

Bε,κ(x) := εB0 + κεB(εx),

indexed by (ε, κ) ∈ [0, 1]× [0, 1] .

B0 > 0 is constant.

B : X → R is smooth and bounded together with all its derivatives.

We choose some smooth vector potentials A0 : X → X and A : X → X
such that:

B0 = ∂1A
0
2 − ∂2A

0
1 ,B = ∂1A2 − ∂2A1 ,

Aε,κ(x) := εA0(x) + κA(εx) , Bε,κ = ∂1A
ε,κ
2 − ∂2A

ε,κ
1 .

The vector potential A0 is always in the transverse gauge, i.e.

A0(x) = (B0/2)
(
− x2, x1

)
.
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The Problem

The magnetic periodic Hamiltonian.

We consider the following magnetic Schrödinger operator:

Hε,κ := (−i∂x1 − Aε,κ1 )2 + (−i∂x2 − Aε,κ2 )2 + V ,

essentially self-adjoint on S (X ).

When κ = ε = 0 we recover the periodic Schrödinger Hamiltonian without
magnetic field H0.
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The Problem

The main result, for Bε,κ(x) = εB0 + κεB(εx).

Theorem (H. Cornean, B. Helffer, R.P.: JFA (2017).)

Consider either Hypothesis H.1 or Hypothesis H.2. Fix an integer N > 1.
Then there exist some constants C0,C1,C2 > 0 , and ε0, κ0 ∈ (0, 1) , such
that for any κ ∈ (0, κ0] and ε ∈ (0, ε0] there exist
a0 < b0 < a1 < · · · < aN < bN with a0 = inf{σ(Hε,κ)} so that:

σ(Hε,κ) ∩ [a0, bN ] ⊂
N⋃

k=0

[ak , bk ] , dim
(
RanE[ak ,bk ](H

ε,κ)
)

= +∞ ,

bk − ak ≤ C0 κε+ C1 ε
4/3 , 0 ≤ k ≤ N ,

ak+1 − bk ≥ C−1
2 ε , 0 ≤ k ≤ N − 1 .

Moreover, given any compact set K ⊂ R, there exists C > 0 , such that,
for (κ, ε) ∈ [0, 1]× [0, 1] , we have (here distH means Hausdorff distance):

distH
(
σ(Hε,κ) ∩ K , σ(Hε,0) ∩ K

)
≤ C
√
κε.
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The Problem

The existing result, for Bε(x) = εB0.

Theorem (B. Helffer, J. Sjöstrand, LNP 345 (1989).)

Suppose fixed some E > 0 small enough. Under Hypothesis H.1,
∀L ∈ N∗,
there exist ε0 > 0 and C > 0, such that for ε ∈ (0, ε0] there exist N(ε) and
a0 < b0 < ... < aN < bN such that:

a0 = inf{σ(Hε,0)},
σ(Hε,0) ∩ (−∞,E ) ⊂

⋃N
k=0[ak , bk ],

|bk − ak | ≤ C εL for 0 ≤ k ≤ N(ε),

ak+1 − bk ≥ ε/C for 0 ≤ k ≤ N(ε)− 1.

ak is determined by a Bohr-Sommerfeld rule ak = f ((2k + 1)ε, ε),
where t 7→ f (t, ε) has a complete expansion in powers of ε,
f (0, 0) = inf λ0 and ∂t f (0, 0) 6= 0
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Main Steps of the Proof

Main Steps of the Proof

Radu Purice (IMAR) Spectral gaps Metz, May 2017 14 / 51



Main Steps of the Proof

Step 1: Construction of an effective magnetic matrix. (A)

1 Being assumed to be isolated, we can associate with λ0(θ) an
orthonormal projection π0 commuting with H0.
This might not be a spectral projection for H0, unless there is a gap
between the first band and the rest (Hypothesis H.1).

2 Results by Nenciu, Cornean-Helffer-Nenciu and
Fiorenza-Monaco-Panati show that in both cases
the range of π0 has a basis consisting of exponentially localized
Wannier functions.

3 When ε and κ are small enough, we can construct an orthogonal
system of exponentially localized magnetic almost Wannier functions
starting from the unperturbed Wannier basis of π0; the corresponding
orthogonal projection πε,κ0 is almost invariant for Hε,κ.
In the case with a gap (H.1), πε,κ0 is a spectral projection for Hε,κ.
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Main Steps of the Proof

Step 1: Construction of an effective magnetic matrix. (B)

1 Using a Feshbach-type argument, we prove that the bottom of the
spectrum of Hε,κ is at a Hausdorff distance of order ε2 from the
spectrum of the reduced operator πε,κ0 Hε,κπε,κ0 .

2 In the basis of magnetic almost Wannier functions, the reduced
operator πε,κ0 Hε,κπε,κ0 defines an effective magnetic matrix acting on
`2(Γ).

Conclusion 1.

If the effective magnetic matrix has spectral gaps of order ε, the same
holds true for the bottom of the spectrum of Hε,κ.
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Main Steps of the Proof

Step 2: Replacing the magnetic matrix with a magnetic
pseudodifferential operator with periodic symbol.

1 For κ = 0, i.e. for a constant magnetic field εB0, we define a periodic
magnetic Bloch band function λε which is a perturbation of order ε of
the first Bloch eigenvalue λ0.

2 We define the magnetic quantization OpA
ε,κ

(λε) of this magnetic
Bloch band function considered as a periodic symbol, in the magnetic
field Bε,κ.

3 It turns out that the spectrum of OpA
ε,κ

(λε) is located at a Hausdorff
distance of order κε from the spectrum of the effective operator
πε,κ0 Hε,κπε,κ0 .

Conclusion 2.

Hence if OpA
ε,κ

(λε) has gaps of order ε (provided that κ is smaller than
some constant independent of ε), the same is true for the bottom of the
spectrum of Hε,κ.
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Main Steps of the Proof

Step 3: Spectral analysis of OpA
ε,κ

(λε).

1 We compare the bottom of the spectrum of OpA
ε,κ

(λε) with the
bottom of the spectrum of an unbounded quadratic symbol defined
using the Hessian of λε near its simple, isolated minimum; this is
achieved by proving that the magnetic quantization of an explicitly
defined symbol is in fact a quasi-resolvent for the magnetic
quantization of λε.

2 An important technical component is the development of a magnetic
Moyal calculus for symbols with weak spatial variation that replaces
the Moyal calculus for a constant field as appearing in the previous
papers by Helffer and his coworkers.
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

Let us denote by X ∗ the dual of X (the momentum space) with
〈·, ·〉 : X ∗ ×X → R denoting the duality map.

Let Ξ := X × X ∗ be the phase space with the canonical symplectic
form

σ(X ,Y ) := 〈ξ, y〉 − 〈η, x〉,

for X := (x , ξ) ∈ Ξ and Y := (y , η) ∈ Ξ∗.

We consider the spaces BC (V) of bounded continuous functions on any
finite dimensional real vector space V with the ‖ · ‖∞ norm.

We shall denote by C∞(V) the space of smooth functions on V and by
C∞pol(V) (resp. by BC∞(V)) its subspace of smooth functions that are
polynomially bounded together with all their derivatives, (resp. smooth
and bounded together with all their derivatives), endowed with the usual
locally convex topologies.
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

Given a vector potential A with components of class C∞pol(X ),
for any tempered distribution F ∈ S ′(Ξ)
we can associate the following linear operator (defined as oscillatory
integral):

S (X ) 3 u 7→
(
OpA(F )u

)
(x) :=

= (2π)−2
∫
X

∫
X∗

e i〈ξ,x−y〉e
−i

∫
[x,y ]

A
F

(
x + y

2
, ξ

)
u(y) dξ dy .

Remark

The application OpA extends to a linear and topological isomorphism
between S ′(Ξ) and L

(
S (X ); S ′(X )

)
(considered with the strong

topologies).
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

The operator composition of the operators OpA(F ) and OpA(G ) induces a
magnetic Moyal product, such that

OpA(F )OpA(G ) = OpA(F ]B G ).

This product depends only on the magnetic field B and is given by the
following oscillating integrals:(

F ]B G
)
(X ) := π−4

∫
Ξ

dY

∫
Ξ

dZ e−2iσ(Y ,Z)e
−i

∫
T (x,y,z)

B
F (X − Y )G(X − Z)

= π−4

∫
Ξ

dY

∫
Ξ

dZ e−2iσ(X−Y ,X−Z)e
−i

∫
T̃ (x,y,z)

B
F (Y )G(Z),

where T (x , y , z) is the triangle of vertices x − y − z , x + y − z , x − y + z
and T̃ (x , y , z) the triangle in X of vertices x − y + z , y − z + x , z − x + y .
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

Hörmander type symbols

For any s ∈ R and any ρ ∈ [0, 1], we denote by

S s
ρ(Ξ) := {F ∈ C∞(Ξ) | νs,ρn,m(F ) < +∞ , ∀(n,m) ∈ N× N} ,

where νs,ρn,m(f ) := sup
(x ,ξ)∈Ξ

∑
|α|≤n

∑
|β|≤m

∣∣∣〈ξ〉−s+ρm
(
∂αx ∂

β
ξ f
)
(x , ξ)

∣∣∣.
S∞ρ (Ξ) :=

⋃
s∈R

S s
ρ(Ξ) and S−∞(Ξ) :=

⋂
s∈R

S s
ρ(Ξ).

Remark

For symbols of class S0
0 (Ξ) the associated magnetic pseudodifferential

operator is bounded in H.
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

For any symbol F we denote by F−B its inverse with respect to the
magnetic Moyal product, if it exists.

Proposition

1 For any m > 0 and for a > 0 large enough (depending on m) the
symbol sm(x , ξ) :=< ξ >m +a, has an inverse for the magnetic Moyal
product.

2 If F ∈ S0
ρ (Ξ) is invertible for the magnetic Moyal product, then the

inverse F−B also belongs to S0
ρ (Ξ) .

3 For m < 0, if f ∈ Sm
ρ (Ξ) is such that 1 + f is invertible for the

magnetic Moyal product, then (1 + f )−B − 1 ∈ Sm
ρ (Ξ) .

4 Let m > 0 and ρ ∈ [0, 1] . If G ∈ Sm
ρ (Ξ) is invertible for the magnetic

Moyal product, with OpA
(
sm ]

BG−B
)
∈ L

(
L2(X )

)
, then

G−B ∈ S−mρ (Ξ) .
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The magnetic ΨD calculus.

The magnetic pseudodifferential calculus

Definition

A symbol F in S s
ρ(Ξ) is called elliptic if there exist two positive constants

R and C such that
|F (x , ξ)| ≥ C 〈ξ〉s ,

for any (x , ξ) ∈ Ξ with |ξ| ≥ R .

Remark

For any real elliptic symbol h ∈ Sm
1 (Ξ)Γ (with m > 0) and for any A in

C∞pol(X ,R2), the operator OpA(h) has a closure HA in L2(X ) that is
self-adjoint on a domain Hm

A (a magnetic Sobolev space) and lower
semibounded. Thus we can define its resolvent (HA − z)−1 for any
z /∈ σ(HA) and it exists a symbol rBz (h) ∈ S−m1 (Ξ) such that

(HA − z)−1 = OpA(rBz (h)).
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The magnetic ΨD calculus.

Weak magnetic fields

Let Bε := εB0
ε , with B0

ε ∈ BC∞
(
X
)

uniformly for ε ∈ [0, ε0].
Let Hε be the self-adjoint extension of Opε(h) for an elliptic real symbol
h ∈ Sm

1 (Ξ) with m > 0. For z ∈ ρ(Hε), let r εz(h) ∈ S−m1 (Ξ) denote the
symbol of (Hε − z)−1.

Proposition

For any compact subset K of C \ σ(H), there exists ε0 > 0 such that:

1 K ⊂ C \ σ(Hε) , for ε ∈ [0, ε0] .

2 The following expansion is convergent in L(H) uniformly with respect
to (ε, z) ∈ [0, ε0]× K :

r εz(h) =
∑
n∈N

εnrn(h; ε, z), r0(h; ε, z) = r0
z (h), rn(h; ε, z) ∈ S

−(m+2n)
1 (Ξ).

3 The map K 3 z 7→ r εz(h) ∈ S−m1 (Ξ) is a S−m1 (Ξ)-valued analytic
function, uniformly in ε ∈ [0, ε0] .
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The magnetic ΨD calculus.

Slowly varying symbols

Definition

For any (m, ρ) ∈ R× [0, 1] and for some ε0 > 0, we denote by Sm
ρ (Ξ)• the

families of symbols {F ε}ε∈[0,ε0] satisfying the following properties:

1 F ε ∈ Sm
ρ (Ξ) , ∀ε ∈ [0, ε0];

2 ∃ lim
ε↘0

F ε := F 0 ∈ Sm
ρ (Ξ) in the topology of Sm

ρ (Ξ);

3 ∀(α, β) ∈ N2 × N2, ∃Cαβ > 0 such that

sup
ε∈(0,ε0]

ε−|α|
∥∥∥∂αx ∂βξ F ε∥∥∥∞ ≤ Cαβ.

The following seminorms indexed by (p, q) ∈ N2

F • 7→ ν̃m,ρp,q (F •) := sup
ε∈[0,ε0]

ε−p
∑
|α|=p

∑
|β|=q

sup
(x,ξ)∈Ξ

< ξ >−(m−qρ)
∣∣∣(∂αx ∂βξ F ε)(x , ξ)∣∣∣

define the topology on Sm
ρ (Ξ)•.
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The magnetic ΨD calculus.

Slowly varying symbols

Remark

Defining F̃ ε(x , ξ) := F ε(ε−1x , ξ), it is easy to see that
{F ε}ε∈[0,ε0] ⊂ Sm

ρ (Ξ) belongs to Sm
ρ (Ξ)• if and only if it is of the form

F ε(x , ξ) = F̃ ε(εx , ξ) for some bounded family {F̃ ε}ε∈[0,ε0] ⊂ Sm
ρ (Ξ)

verifying the condition

∃ lim
ε↘0

F̃ ε(0, ·) := F 0 ∈ Sm
ρ (Ξ)

⋂
C∞pol(X ∗).
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The magnetic ΨD calculus.

Slowly varying symbols

Suppose Bε,κ(x) = εB0 + κεB(εx).

Proposition

If f • ∈ Sm
ρ (Ξ)• and g• ∈ Sp

ρ (Ξ)
•
, then {f ε ]Bε,κg ε}ε∈[0,ε0] belongs to

Sm+p
ρ (Ξ)• uniformly with respect to κ ∈ [0, 1] .

Proposition

If f • ∈ Sm
ρ (Ξ)• and if the inverse (f ε)− ≡ (f ε)−Bε,κ ∈ S−mρ (Ξ) exists for

every ε ∈ [0, ε0], then {(f ε)−}ε∈[0,ε0] ∈ S−mρ (Ξ)•.
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Magnetic almost-Wannier Functions

Magnetic almost-Wannier Functions
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Magnetic almost-Wannier Functions

The Wannier functions.

Under any Hypothesis H.1 or H.2,

the analyticity (in rezolvent norm) of the application
X ∗ 3 θ → Ĥ0(θ),

the contour integral formula for the spectral projection,

allow one to define a L2-normalized eigenfunction for the eigenvalue λ0 as
an analytic function X ∗ 3 θ → φ̂0(θ, ·) ∈ L2(T) such that

φ̂0(θ + γ∗, x) = e i<γ
∗,x>φ̂0(θ, x),

Ĥ0(θ) φ̂0(θ, ·) = λ0(θ) φ̂0(θ, ·).

Then the principal Wannier function φ0 is defined by:

φ0(x) =
[
V −1

Γ φ̂0

]
(x) = |E∗|−

1
2

∫
E∗

e i<θ,x>φ̂0(θ, x) dθ.
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Magnetic almost-Wannier Functions

The Wannier functions.

φ0 has rapid decay

∃C > 0 such that ∀α ∈ N2, ∃Cα > 0 such that

|∂αx φ0(x)| ≤ Cα exp(−|x |/C ) , ∀x ∈ R2 .

We shall also consider the associated orthogonal projections

π̂0(θ) := |φ̂0(θ, ·) >< φ̂0(θ, ·)| , π0 := V −1
Γ

(∫ ⊕
E∗

π̂0(θ)dθ

)
VΓ.

Remark

The family {φγ := τ−γφ0}γ∈Γ is an orthonormal basis for π0H.

Remark

Under Hypothesis H.1, π0 is the spectral projection associated to λ0.
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Magnetic almost-Wannier Functions

The magnetic almost-Wannier functions.

Let us consider first the constant magnetic field Bε := εB0.

Definition

1 For any γ ∈ Γ and with A0 defined above we define:

◦
φεγ(x) := Λε(x , γ)φ0(x − γ), Λε(x , y) := exp

{
−i ε

∫
[x ,y ]

A0

}
.

2 π̃ε0: the orthogonal projection on the closed linear span of {
◦
φεγ}γ∈Γ.

3 Gε
αβ := 〈

◦
φεα,

◦
φεβ〉H: the infinite Gramian matrix, indexed by Γ× Γ.

4 Fε :=
(
Gε
)−1/2

.
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Magnetic almost-Wannier Functions

The magnetic almost-Wannier functions.

Proposition

The matrix Gε defines a positive bounded operator on `2(Γ).
Fε has the following properties:

1 Fε ∈ L(`2(Γ)) ∩ L(`∞(Γ)).

2 For any m ∈ N, there exists Cm > 0 such that

sup
(α,β)∈Γ×Γ

< α− β >m
∣∣Fεαβ − 1l

∣∣ ≤ Cm ε , ∀ε ∈ [0, ε0].

3 There exists a rapidly decaying function Fε : Γ→ C such that for any
pair (α, β) ∈ Γ× Γ we have:

Fεα,β = Λε(β, α)Fε(β − α).
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Magnetic almost-Wannier Functions

The magnetic almost-Wannier functions.

For all ε ∈ [0, ε0] we can define the following orthonormal basis of π̃ε0H:

φεγ :=
∑
α∈Γ

Fεαγ
◦
φεα , ∀γ ∈ Γ.

Proposition

With ψε0 in S (R2) defined by

ψε0(x) =
∑
α∈Γ

Fε(α) Λε(α, x)φ0(x − α),

we have
φεγ = Λε(·, γ)(τ−γψ

ε
0) , ∀γ ∈ Γ.
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Magnetic almost-Wannier Functions

The magnetic almost-Wannier functions.

Consider now Bε,κ := εB0 + κεB(εx)
let us choose some smooth vector potential A(y) such that dA = B
and introduce

Aε(x) := A(εx) and Λ̃ε,κ(x , y) := exp

{
−iκ

∫
[x ,y ]

Aε

}
,

Definition
◦
φε,κγ = Λ̃ε,κ(·, γ)φεγ .

π̃ε,κ0 the orthogonal projection on the closed linear span of {
◦
φε,κγ }γ∈Γ.

{φ̃ε,κγ }γ∈Γ the orthonormal basis of π̃ε,κ0 obtained from {
◦
φε,κγ }γ∈Γ by

the Gramm-Schmidt procedure.
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Magnetic almost-Wannier Functions

The magnetic almost-Wannier functions.

The explicit form of the symbols of the projections π̃ε,κ0 and π0 allow us to
use the magnetic pseudodifferential calculus with slowly varying symbols in
order to prove that:

Proposition

There exist ε0 > 0 and C > 0 such that, for any (ε, κ) ∈ [0, ε0]× [0, 1] ,
the range of π̃ε,κ0 belongs to the domain of Hε,κ and∥∥[Hε,κ, π̃ε,κ0

]∥∥
L(H)

≤ C ε.

Definition

We call quasi-band magnetic Hamiltonian, the operator π̃ε,κ0 Hε,κπ̃ε,κ0 and

quasi-band magnetic matrix, its form in the orthonormal basis {φ̃ε,κγ }γ∈Γ.
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Magnetic almost-Wannier Functions

The magnetic quasi Bloch function.

Definition

We define hε ∈ `2(Γ) by:

hε(γ) := 〈ψε0 , Λε(x , γ)τ−γH
εψε0〉H =

〈
φε0 , H

εφεγ
〉
H for γ ∈ Γ,

and the magnetic quasi Bloch function λε as its discrete Fourier transform:

λε : T∗ → R, λε(θ) :=
∑
γ∈Γ

hε(γ)e−i<θ,γ>.

Proposition

There exists ε0 > 0 such that, for ε ∈ [0, ε0] and κ ∈ [0, 1] , the Hausdorff
distance between the spectra of the magnetic quasi-band Hamiltonian
π̃ε,κ0 Hε,κπ̃ε,κ0 and Opε,κ(λε) is of order κε.
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The Feshbach type argument

The Feshbach type argument
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The Feshbach type argument

The Feshbach type argument

In order to apply a Feshbach type argument we need to control the
invertibility on the orthogonal complement of π̃ε,κ0 H.
Let us define

1 π̃ε,κ⊥ := 1l − π̃ε,κ0 .

2 m1 := inf
θ∈T∗

λ1(θ) where λ1 is the second Bloch eigenvalue.

3 K ε,κ := Hε,κ + m1 π̃
ε,κ
0 .

Proposition

There exist ε0 and C > 0 such that, for ε ∈ [0, ε0], K ε,κ ≥ m1 − Cε > 0.

Proposition

There exists ε0 > 0 such that for ε ∈ [0, ε0], the Hausdorff distance
between the spectra of Hε,κ and π̃ε,κ0 Hε,κπ̃ε,κ0 , both restricted to the
interval [0, m1

2 ], is of order ε2.
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The magnetic quantization of the magnetic quasi Bloch function

The magnetic quantization of the magnetic quasi
Bloch function
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The magnetic quantization of the magnetic quasi Bloch function

Properties of the magnetic quasi Bloch function

Proposition

For the magnetic quasi Bloch function λε defined above
there exists ε0 > 0 such that λε(θ) = λ0(θ) + ερε(θ), with
ρε ∈ BC∞(T∗) uniformly in ε ∈ [0, ε0] and such that ρε − ρ0 = O(ε).

A consequence of this Proposition is that the modified Bloch
eigenvalue λε ∈ C∞(X ∗) also has an isolated non-degenerate
minimum at some point θε ∈ X ∗ ε-close to 0 ∈ X ∗.
λ0 being an even function we get that in a neighborhood of 0 ∈ T∗
we have the expansions

λ0(θ) =
∑

1≤j ,k≤2

ajkθjθk + O(|θ|4) , ajk :=
(
∂2
jkλ0

)
(0);

λε(θ)−λε(θε) =
∑

1≤j ,k≤2

aεjk(θj−θεj )(θk−θεk)+εO(|θ−θε|3)+O(|θ−θε|4).
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The magnetic quantization of the magnetic quasi Bloch function

The Hessian at the minimum of the magnetic quasi Bloch
function

There exists ε0 > 0 such that, for ε ∈ [0, ε0] , we can choose a local
coordinate system on a neighborhood of θε ∈ X ∗ that diagonalizes
the symmetric positive definite matrix aε and we denote by
0 < mε

1 ≤ mε
2 its eigenvalues.

We denote by 0 < m1 ≤ m2 the two eigenvalues of the matrix ajk .
We notice that

mε
j = mj + εµj + O(ε2) for j = 1, 2,

with µj explicitly computable.

Our goal is to obtain spectral information concerning the Hamiltonian
Opε,κ(λε) starting from the spectral information about Opε,κ(hmε) with

hmε(ξ) := mε
1ξ

2
1 + mε

2ξ
2
2 ,

defining an elliptic symbol of class S2
1 (Ξ) that does not depend on the

configuration space variables.
Radu Purice (IMAR) Spectral gaps Metz, May 2017 43 / 51



The magnetic quantization of the magnetic quasi Bloch function

The model Landau Hamiltonian

We compare the bottom of the spectra of the following two operators

the magnetic Hamiltonians Opε,κ(hmε),

the constant field magnetic Landau operator Opε,0(hmε).

Proposition

For any compact set M in R, there exist εK > 0 , C > 0 and κK ∈ (0, 1] ,
such that for any (ε, κ) ∈ [0, εK ]× [0, κK ] , the spectrum of the operator
Opε,κ(hmε) in εM is contained in bands of width Cκε centered at the
points {(2n + 1) εmε B0}n∈N.
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The resolvent of Opε,κ(λε)

The resolvent of Opε,κ(λε)
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The resolvent of Opε,κ(λε)

Isolating the minimum

We choose an even function χ in C∞0 (R) with 0 ≤ χ ≤ 1 , with
supp χ ⊂ (−2,+2) and χ(t) = 1 on [−1,+1].

For δ > 0 we define g1/δ(ξ) := χ
(
hmε(δ

−1ξ)
)
, ξ ∈ X ∗.

We choose δ0 such that D(0,
√

2m−1
1 δ0) ⊂ E

◦

∗ where D(0, ρ) denotes

the disk centered at 0 of radius ρ and E
◦

∗ denotes the interior of E∗.

For any δ ∈ (0, δ0] we associate δ◦ :=
√
m1/2m2 δ so that we have

g1/δ◦ = g1/δ g1/δ◦ .

For any δ ∈ (0, δ0], g1/δ ∈ C∞0 (E∗).

We may consider it as an element of C∞0 (X ∗) by extending it by 0.

We may define its Γ∗-periodic continuation to X ∗:

g̃1/δ(ξ) :=
∑
γ∈Γ∗

g1/δ(ξ − γ),
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The resolvent of Opε,κ(λε)

The ε-dependent cut-off

Hypothesis

We shall impose the following scaling of the cut-off parameter δ > 0:

ε = δ3.

Then we have the following estimation near the minimum:

λε(ξ)g1/δ(ξ) = g1/δ(ξ) hmε(ξ) +O(δ4), with δ4 = ε4/3.
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The resolvent of Opε,κ(λε)

The shift outside the minimum

For the region outside the minima, we need the operator:

Opε,κ
(
λε + (δ◦)2g̃1/δ◦

)
.

Proposition

There exists ε0 > 0 and for (ε, κ, δ) ∈ [0, ε0]× [0, 1]× (0, δ0] , there exist
some constants C > 0 and C ′ > 0 such that:

Opε,κ
(
λε + (δ◦)2 g̃1/δ◦

)
≥
(
C δ2 − C ′ ε

)
1l.

Remark

We have that C δ2 − C ′ ε > C ′′ε2/3 >> ε and for 0 ≤ z ≤ C ′′ε2/3, we

denote by rδ,ε,κ(z) the symbol of
(
Opε,κ

(
λε + (δ◦)2 g̃1/δ◦

)
− z1l

)−1
.
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The resolvent of Opε,κ(λε)

The ”quasi-inverse”.

Let us fix some compact set K ⊂ C such that:

K ⊂ C \ {(2n + 1)mB0}n∈N.

There exist εK > 0 and κK ∈ [0, 1] such that for
(ε, κ) ∈ [0, εK ]× [0, κK ] and for a ∈ K , the point εa ∈ C belongs to
the resolvent set of Opε,κ(hmε).

We denote by r ε,κ(εa) the magnetic symbol of
(
Opε,κ(hmε)− εa

)−1
.

The quasi-inverse

For a ∈ K we want to define the following symbol in S ′(X ∗) as the sum
of the series on the right hand side:

r̃λ(εa) :=
∑
γ∗∈Γ∗

τγ∗
(
g1/δ ]

ε,κ r ε,κ(εa)
)

+
(
1− g̃1/δ

)
]ε,κ rδ,ε,κ(εa) , δ = ε1/3.
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The resolvent of Opε,κ(λε)

The ”quasi-inverse”.

Proposition

For K as above, there exist C > 0, κ0 ∈ (0, 1] and ε0 > 0 such that for
(κ, ε, a) ∈ [0, κ0]× (0, ε0]× K , the symbol r̃λ(εa) is well defined and we
have

‖Opε,κ(r̃λ(εa))‖ ≤ Cε−1,

and(
λε − εa

)
]ε,κ r̃λ(εa) = 1 + rδ,a, with ‖Opε,κ(rδ,a)‖ ≤ C ε1/3.

For N > 0 , there exist C , ε0 and κ0 such that
the spectrum of Opε,κ(λε) in [0, (2N + 2)mB0ε] consists of spectral islands
centered at (2n + 1)mB0ε, 0 ≤ n ≤ N , with a width bounded by
C (εκ+ ε4/3).
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Thank you for your attention.
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