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N
Abstract

Consider a periodic Schrodinger operator in two dimensions, perturbed by
a weak magnetic field whose intensity slowly varies in space. We show in
great generality that the bottom of the spectrum of the corresponding
magnetic Schrodinger operator develops spectral islands separated by gaps,
reminding of a Landau-level structure.

In the spectral analysis of periodic pseudodifferential operators a very
important ingredient is the existence of so-called Wannier basis for a
spectral island of the operator. Nevertheless, in most generic situations the
existence of such Wannier basis is either difficult to prove or even false.

In our work we provide a general method to obtain significant spectral
information without Wannier basis, using some kind of deformed Wannier
basis that are easy to construct in very general situations.
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Let us consider a periodic Scrédinger operator in dimension d = 2.
More precisely:

@ Suppose that in the 2-dimensional configuration space X' = R?
we are given a 2-dimensional regular lattice I = 72 C X.

@ We consider the following differential operator:

HO = 37 (=g — Al(x)® + Vr(x)

1<j<d
where ==

o Al € BC®(X') and Al (x +7) = Al (x), ¥(x,7) € X' xT,
o Vr e BC®(X) and Vr(x+7v) = Vr(x), ¥(x,7) € X xT.

o We shall perturb it by a weak magnetic field of the form

Bc (x) = €By + keB(ex)
with By constant and B having components of class BC*(X).

o We denote by H9" the perturbed Hamiltonian.
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Notations & Reminder of Bloch-Floquet Theory.

Notations & Reminder of Bloch-Floquet Theory |
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Notations & Reminder of Bloch-Floquet Theory.

Notations:

@ JX* the dual of X with generic elements £,7,(, ... and duality map
< > X x X =R

@ = := X x X* the phase space with the canonical symplectic form
o((x:€),(y,n) =< &y >— <nx>.

e V(F,z) e (X)) x X, (ZF)(qﬁ) = F(¢porz), Vo € .L(X),
T2(x) =x+zVx e X.

@ Similar notations for translations on X* and =.

o # = L*(X).

e HO and H" are the unique self-adjoint extensions in # of the given
periodic differential operators.
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Notations & Reminder of Bloch-Floquet Theory.

Then {7, },er induces a unitary representation of Z2 on #¢ that commutes
with the self-adjoint operator HO.

We may decompose this representation with respect to the family of
irreducible representations of Z9 that are indexed by its dual group X* /T,
where [* is the dual lattice:

e = {£eX™ | <¢&y>e2nZ,VyeTl}

in order to obtain the Bloch-Floquet representation.
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Notations & Reminder of Bloch-Floquet Theory.

The non-trivial group extension structure.

We have
XJr XM, =[S =T {z=(a,2) € C?, |a| = || = 1}.
and the short exact sequence of topological groups
022 5 R2 ST 1,
with

@ j: 7Z? — R? the embedding map

o ¢o(t) :=exp(2mit) € St := {2z € C, |z| =1} for any t € R

e s5(z):=(1/27mi)In(z) € [-1/2,1/2) C R

o and ¢? := (¢,¢) : R? = T, 52 := (s,5) : T — R2.
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Notations & Reminder of Bloch-Floquet Theory.

The Bloch-Floquet representation.

The Bloch-Floquet representation.

We have the following unitary equivalence:
Y 12(X) S5 9

(16)(@.€) == D _e <O (3 £ 5%(2)), W(z,6) € Tux X
~yer

Radu Purice (IMAR) Peierls substitution April 8, 2019 9 /58



The Bloch-Floquet Theorem.

o The operator H? := ¥+ HO¥ ! decomposes in the Bloch-Floquet
representation, defining a family of operators indexed by X*:

[0 + &) = UK APEUT () ™M e prer e
o HO(£) is the unique self-adjoint extension in L2(T) of the differential
operator . ~ N ~
Yo (i +&-A(x) + Wr(x), E€E.
1<j<d
having compact resolvent and defining an analytic family of type A in
the sense of Kato.

@ There exists a family of continuous functions T, > 0 — \j(z) € R
indexed by j € N, called the Bloch eigenvalues, such that

)\j(Z) < )\j+1(2), V(j,Z) € N x T,
o (F(2(2) = (@)
JEN
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The Bloch Projections.

@ For each fixed & € X* we can define the Riesz spectral projections :

i

Ta(€) - (5 — H(¢)) " d3

_27r G

for ¢, a closed contour isolating A,(¢?(£)) from the rest of the
spectrum of HO(¢).

@ The Bloch eigenvalues are smooth functions
E.DOW3z— A\y(2z) R

on any open subset W on which they have constant multiplicity.

@ The Bloch projections 7,(£) have discontinuities at points where
the multiplicity of the corresponding eigenvalue \,(¢?(¢)) changes.
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Onsager-Peierls substitution for an isolated Bloch band.

Onsager-Peierls substitution
for an isolated Bloch band.
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Onsager-Peierls substitution for an isolated Bloch band.

The isolated Bloch band.

Suppose we have a Bloch eigenvalue
An @ Ty — R that has constant multiplicity 1 on T,.

It follows that the graph of A\, does not intersect any graph of a
different Bloch eigenvalue.
@ Thus:

o T. > 5+ Ap(03) € R is smooth (and evidently periodic)
o the family {7,(&)}¢cx+ defines a smooth rank 1 sub-bundle
TG — T, .

Is it possible to find a smooth section 1; : Tx — mp @G of unit vectors?

(]

This is equivalent with the triviality of the sub-bundle 7,G — T..

This is the case for Hamiltonians commuting with complex
conjugation, for d=2,3. (G. Panati)
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Onsager-Peierls substitution for an isolated Bloch band.

The Wannier functions.

Suppose:
@ )\, : T, — R has constant multiplicity 1 on T,.

@ there exists a smooth section 1; : Ty — o of unit vectors.

Define:

W(y+5%) = (%) (v + %) = (2r) ¢ . 20799(z, %) dz.

Then:
o Ve /(X).
e {JyW}, cr is an orthonormal basis for MM,# with I, := 7/r_17r,,”1/r.
o (T.V, HOT3W) , = Xy(a — B) := (2m) 7t [ 2o \,(2) dz.

*
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Onsager-Peierls substitution for an isolated Bloch band.

The Onsager-Peierls substitution.

o Let Iy := \s(T,) CR.
@ Then Iy C o(H) and dy(l,o(H®) \ ) > 0.
@ Thus for € > 0 and s > 0 small enough, there exist an interval
lex. C R such that
o dH(Io, Ie,n) = 0(6)
o I, Co(H")
o di(lw, 5(H)\ Ix) >0

The Onsager-Peierls conjecture: if we denote by
Ec = Ei, (He"‘) the spectral projection of H" on the interval /.,
and by A“" a vector potential for B, , we have that

EIF’E(Hc,n)Hc,nEIF’R(Hc,/@) — >\n( o /V o AC,I{(Q)) +0(6).

(Here dy(My, My) is the Hausdorff distance between two subsets of R).

Radu Purice (IMAR) Peierls substitution April 8, 2019 15 / 58



Onsager-Peierls substitution for an isolated Bloch band.

The Onsager-Peierls substitution
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The main result

The main result. )
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The problem.

H i (104, — AT — AR 4 (-i0, — A5 — A" + Vi
ASR — 6A0(X) + HA(GX). Beﬁ(x) = 6BO + HGB(GX)’
Ao(x) 1= (1/2)Box, Ac(x) = A(ex), Be(x):= B(ex),
dAO = 807 dAE = EBg.

Hypothesis
The Bloch eigenvalue \p : T, — R has a unique non-degenerate global
minimum value realized for 6y € E, and Ao(6) = 0.

Consequence: There exists b > 0 such that:
o For every 0 < b < b the set ¥, := 2 ([0, b)) C E. is diffeomorphic
to the open unit disc in R?, has a smooth boundary and contains 6 .
@ The function Ag is smooth on X} and its Hessian matrix is positive.
e For 0 outside of ¥}, we have H°(6) > b.
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The main result

The magnetic quantization.

We recall that given a magnetic field B with components of class
BC°(X') we may replace the usual Weyl quantization by a magnetic
quantization defined by an associated vector potential A (chosen to have

o0 .
components of class CJ5(X):

L(Z) > f s Op'(F) € L(S(X); (X)),

O (o)) 1= @r) [ gy [ aee = e e (x4 ) /2.0)60),

Vo € S (X).
We also recall that there is also a magnetic Moyal product associated to
this magnetic quantization:

Opi(FOpi(g) = Op(Fife),
(fﬁBg)(X) _ szd/_dy/_dz 6721'(7()(7Y,XfZ)efiFB(x,y,z)f(Y)g(Z)

V(f,g) € [#(Z)7, where FB(x,y, z) is the integral of the 2-form B over
the triangle with vertices x —y +z,y —z+ x,z—x+y.
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The main result

The main result.

Let H" ((e, k) € [0,1] x [0,1]) be as above with H° satisfying the
Hypothesis above and let b be as in the remark above.
Then 3b € (0, b) and a smooth real function }“: T — R such that:

QO Vk €N, 3C, > 0 such that V0 € X, and |a| = k
[(8°X)(0) = (0%X0)(8)] < Cre.
@ X (0) > b/2 outside ¥}, if € is small enough.

@ VN € N* there exist Co > 0 and (eo, ko) € (0, b/N) x (0,1), such
that V(e, x) € (0, €] % (0, ko],

dH( (Ho*) ([0, Ne], o (Dp55(X4)) ([0, /vf]) < Golke+é).

X€:X* = Ris the periodic extension of X¢: T, — R as a tempered
distribution on = constant along X x {0}.
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The main result

The spectral result.

Applying to the operator Dpe’“()frve) the spectral analysis elaborated in:

Horia D. Cornean, Bernard Helffer, Radu Purice: Low lying spectral gaps
induced by slowly varying magnetic fields, Journal of Functional
Analysis 273, (1), (2017), pp. 206-282.

we obtain the following results concerning the spectrum of H%" in the
neighbourhood of A\g(fp) = 0.
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The main result

Consequence 1:

Under our hypothesis, for any integer N > 1, there exist positive constants
Co, C1, G2, and (eg, ko) € (0, b/N) x (0,1), such that for any

(e,k) € (0,€e0] x (0, ko] there exist ag < by < a1 < --- < an < by, with
ap = inf{o(H“")} so that:

N
a(H") N [ao, b € | J[aw, bil |,

k=0
by — ak < Coe(r + C1e/®) for 0 < k < N, (1)
ak+1—bk2C126,for0§k§N—l, (2)
dim (RanEp,, p,1(H")) = 4o00. (3)
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The main result

Consequence 2:

Assume B" = 0. Then for any integer N > 1, there exist some constants
Co, C1, G > 0, and (€o, ko) € (0,b/N) x (0,1), such that, for any

(e, k) € (0,€0] x (0, ko], there exist ag < by < a1 < --- < ay < by, with
ap = inf{o(H“")} so that:

N
a(H") N [ao, bn] € | Jlaw, bl |,
k=0
bk—akSCOE(fi—i-ClElB),ngg/\/, (4)
1
ak+1—bk2f€70§k§/v—1, (5)
G
dim(RanE[ak,bk](Hﬁ’“)) = +o0. (6)
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The 'quasi’ Wannier functions

The ‘quasi’” Wannier functions. |
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The 'quasi’ Wannier functions

The free 'quasi’” Wannier function.

o Let 7 := L%(T).
o Let us choose ¢ € mo(6o).# with |goll» = 1.

o Let us fix some b € (0, b) such that ||mo(8) — mo(fo)|z(r) < 1/2 and
use the Sz. Nagy formula to define a unitary intertwining operator
H(0,00) : mo(6o)H# — mo(0)# as a smooth function of § € ¥p.

o We define ¢(0) := %(6, 6o)¢o as a local smooth section ¥, — Gls,
with [|¢(6)] =1 for any 6 € .

Proposition A
There exists a global smooth section {/;0 : T« — @, such that:

° wo( )= gzﬁ( ) for any 6 € ¥},
° H¢0( )|+ =1 for any 6 € T,.
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Proof of Proposition A. (1)

When 6 is close to 6y, the eigenvector gg(@,x) can be chosen to be smooth
as a function of x € T due to elliptic regularity.
It is also smooth as a function of # on a small neighbourhood of 6.
o Forj € {1,2} let f; € Cg°(6), with ||fj[| 26y = 1
and such that fi(x)f(x) = 0 for all x.
@ Let us define E(Q,x) = 7Irf;.
o We can check that f (6, x)f(6, x) = 0 for all x € T, thus their scalar
product in £ equals zero.
@ Moreover both have norm one at any fixed 6.
Remark: ¢(f, -) is certainly not parallel with both 5(90, ), j=1,2
(that are orthogonal to each other)

Thus there must exist a j € {1,2} (without loss of generality take j = 1)
such that

(660, -), (6o, ))| < 1/V2.
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Proof of Proposition A. (2)

@ Due to continuity in 6, there exists a ball B,(6p) C ¥, where
(B(8,-), 7(8,)) x| <3/4, W8 € Bi(bo).

o Let g € C5°(Xp: [0, 1]) with support in B,(6b) and g = 1 on B, /»(fh).
@ Define

h(0, x) := g(0)¢(0, x) + (1 — g(0))f (6, x).

Then |[h(0,-)||> > 1/8 and N
Yo(0, x) := h(0,x)||h(0, x)|| "L € 2 is a smooth extension of ¢ to a global
section.

|
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The 'quasi’ Wannier functions

The free 'quasi’ Wannier function.

Definition
® g = “I/r_lzzo € L2(X) is the free ‘quasi’ Wannier function,
o Vyerl: v, =T i € L2(X),
that we call the quasi Wannier system for the energy window |0, b].
o 7 € B(#) the projection on #g := Lin{, : v €T} C L?(X).

Proposition
@ Y € 5”(1‘)
e The family {1, : v €} C L?(X) is an orthonormal system.

o 7 C D(H®) and thus the products HO7 and mHO define bounded
operators on # = L?(X).

o m = Op(p) with p € S™°(Z) being I'.-periodic.

v
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The 'quasi’ Wannier functions

The magnetic 'quasi’ Wannier system.

Q |J5(x) == A(xo(x =) b A(x,y) = eieS bealo

Gop = (35, &%)ﬂ, Fe .= (Ge)fl/2 e B(£3(IN),

¢S (x) = Fonbh | 7 =2 cr l65)(¢5 ],

3100 1= Ao U0 = )| A y) = e et
GGy = (06", 85w, For = (Gor) 2 e B(2(N)),

© |9 = D Fide” |, o i= Toer 105705,

ael

ael

Remark: 0f(x) = A“(x,7)5(x =), 057 (x) = A“"(x,7)¢5(x)-
Peierls substitution April 8, 2019
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The 'quasi’ Wannier functions

The magnetic 'quasi’ band. Properties.

There exists €g > 0 such that:
Q@ Vme N, 3C,, > 0 such that:

<o —B>"|Fis = dap| < Cme, ¥(a, B) € T2, Ve € [0, €]
@ VYm < N and Va € N?, there exists Cm,a > 0 such that

SUE, < x >M[(075) (x) — (7o) (x)| < Cmae, Vee[0,e0].
x€

@ Vm e N, there exists C,,, > 0 such that

sup <a—p3>7
(a,B)er?

Q There exists ¢y > 0 such that for any (¢, k) € [0, €g] x [0, 1] we have
T " H C D(H"),
while H®7%% € B(#) and 79" H%* has a bounded closure.
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The 'quasi’ Wannier functions

The magnetic 'quasi’ band. Properties of the symbols.

We prove that:
o 1 = Op°(pe) with the I-periodic symbol p. € S™°(=).
o 1" = Op“"(p. ) with the symbol p., € S™(=).
Proposition
There exists €9 > 0 such that for any seminorm v on $™°°(Z), there exists

C, > 0 such that

v(p¢ —p) < CGoeand v(p™" — p°) < C ke, V(e, k) € [0,€e0] x [0,1].

Note that the commutator [HF"H,Wg"H} is not small, due to the arbitrary
deformation which was made in constructing the quasi Wannier function.

Radu Purice (IMAR) Peierls substitution April 8, 2019 31 /58



Proof of the main result Step I.

Proof of the main result. )
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sl
Step |: Reduction to the energy band subspace.

First, let us compare the real perturbed Hamiltonian H%"
with
the magnetic 'band’ Hamiltonian 7&*HS" &R,

We compare the bottoms of their spectra by using a variant of the
Feshbach-Schur argument.

The difficulty comes from the fact that

the norm of the bounded operator [Tr(*”, H(’”] is not 'small"!

We use the resolvent equation and consider the energy window around the
minimum of \o as small parameter!
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Proof of the main result Step I.

From our Hypothesis we have deduced that:

(7] HOR xR ] > b ], b >0,
Let us define

o R = ([ Hen[er] M) e B([ne] at)
° Ye,n = gER | o HER [ﬂ.e,n] 1 [Rj:'f] 2 |:7.‘.6,:‘i:| J-He,,‘{ﬂ.e,,‘f > 1ok,
o The 'dressed’ band Hamiltonian: HZ, :=
Y€7_H1/2 (71'6"% HEH Hpel — p&hk Hek [ﬂ.e,n] 1 Ri"i [ﬂ.e,n] 1 He,nﬂ.e,n) Y€7_H1/2

€ B(n" #).
Result of Step I

If the 'dressed’ band Hamiltonian ﬁfK has N spectral gaps in the compact
interval | C R, then the perturbed Hamiltonian H*" has N spectral gaps
in the compact interval I C R.
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Proof of the main result Step I.

The abstract reduction argument.

We consider the following situation:
@ H is a positive self-adjoint operator,

e [1is an orthogonal projection such that HI (and thus MH) is
bounded,

e 38 > 0 such that M-HM+ > 281+,

This implies that M+(H — E)N+ is invertible in M43 for E € [0,23) and
we denote by R (E) € B(M+#) its inverse.
The spectral theorem gives: supgcp g [|RL(E)|| < Bt

We do not suppose that [H, ] € B(#) is small!
Instead we suppose E > 0 small (of the order ¢).
and use the resolvent equation:

Ri(E) = R.(0) + RL(0)? + E°R.(0)*R_(E).
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sl
The Feshbach - Schur argument.

In the above setting:
For E € [0, 5]
(H — ET) is invertible in #  if and only if ~ S(E) is invertible in M#
and S(E)"' =N(H-EL)"'N
where
S(E):=T(H—-EDN — NHR(E)HN e B(N#).

Definition:

o Y =M+ NHNR (0)2N+HM. Remark: Y > T,

o H:=Y~V2[NHN - NHNLR (0)NHHN] Y~1/2 € B(N#).
Remark: S(E) = Y'Y2(H — E1) Y2  E2NHR (0)RL(E)RL(0)HM.
Proposition I: V3’ € [0, 5] we have

dn{o(H)N[0,87,0(H) N[0, 31} < |[HN|? (82572,
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Proof of the main result Step I.

Proof of Proposition I.

Assume E € [0, /] ﬂp(ﬁ).
S(E) = YY2{1 4 Y-Y2MHX(E)HNY ~Y2(H — E)"Y)}(H — E)YY/2.

~1/2 ~1/2(f _ F\-1 g2|HN|>3 3 : /
|Y~2NHX(EYHNY ~Y2(H — E)7Y| < Tt ECT) if E € [0, 5]

Thus: dist(E, o(H)) > 82||HN|]2373 implies E € p(H).
E € p(H) N[0, 8] implies dist(E,a(H) N[0, 8)) > B2|HN|?53.

Assume E € [0, '] Np(H).
Thus: S(E) is invertible in M# with S(E)~* = N(H — E]l)_lﬂ

but YY/2(H — E1)YY/? = S(E) — E?NHR(0)R.(E)RL(0)HM
Thus: dist(E,o(H)) > 872||HN|[23~3 implies H — ET invertible.

E € p(H) N[0, 8] implies dist(E,o(H) N[0, 8)) > B72|HO|?873.
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Proof of the main result Step I.

Corollary 1
Let 0 < Dy < Dy < 3/ < f3 and assume (Dl, Dy)Nno(H ) 0. Then, if

we have |[HN|1? (8873 < §(D2 — D)
(Dl + ||H|_|||2 (ﬁ/)26—3 ,D, — ||Hn||2 (ﬂ,)25_3) N O‘(H) —0.

Let's consider a family of triples (H(n), M(n), ) indexed by n € [0, €1].

Corollary 2
Let 0 < Dy < Dy < 8 < 3 and assume (D1, D>) Na(H(n)) = 0, for all
n € [0,€e1]. Then, if
D:= sup [HmN(m)|* (8)°67° < (Dz —D1),
776[0,61]

(Dy+ D, Dy — DYNa(H(n)) =10.

we have

We only have to take 23 = E, Dy = Gie, Dy = Gae, B/ = (G + 1)e.
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Proof of the main result Step Il

Step Il: Reduction to the 'mean’ constant field.

A straightforward analysis shows that we can apply the same 'modified’
Feshbach-Schur argument to the pair (HE,WE) with the constant magnetic

field eBy and define a similar 'dressed’ band Hamiltonian H¢ .
Our second step is to prove that in the fixed spectral region,
the spectrum of HZ, is at a Hausdorff distance of order e from the
spectrum of the dressed Hamiltonian Flf associated to the constant
magnetic field €Bp.
Let G(T) be the symbol of T € B(.(X');.#"(X)) for the eAg
quantization and denote by

° he e e(ﬂ_eHe e)

@ hf =& (r°H(1— 7))

Q r.:= (‘56(( — )R (1— 7))
e = & (n° (v) )
@ =y, —p~.
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Sl
Result of Step II.

We prove that:
Proposition B.

(05 Ry, = Rl B) (65, OV (HIG5),, +
+K€’H(0¥a 5)<O; J DPF(EF)”@% +0(ke)

where £ := ho 13 + 3 1M D o + 0] p ENGE T BN E Y] )
is the contribution of the ‘dressing’ factors and terms.
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Proof of the main result Step Il

Control of the rest O(ke).

There are mainly two corrections that have to be controlled:
Phase decomposition:
o N&F — KE’H/\C, KE,I{(X7y) — e_i'{f[x,y] Ac
coming from A" = €Ay + KA.

Orthonormation corrections:

o | X N FFGO s — 95 < Cmre<a—B>"m.
o'erper

€,K l6,58 6K €K . er)—1/2
Gl = (35", 85", For = (G=) 2 e B(E(I)),
for any uniformly bounded coefficients $";.
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Proof of the main result Step Il

Control of the rest: first estimation.

Passing from H%" to H¢:
° (—iv—AM(x))ﬁv-K(X B) = A, ) (1Y = AG) + mac(x,B))
H . 1
with: ac(x,p); = k/ ijk eﬁJrse xfﬂ))s ds for j=1,2,
0
and using ]af(x,ﬂ)\ <Ce<x—p>.
@ Moreover we have
A (x, @) TR (x, B) = A&, B) Q" (@, x, B)

1Q%(a, x, ) — 1| < Crelx —al||x — .
@ Finally we use the decay of 7,1 and Jgvy.
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Proof of the main result Step Il

Control of the rest: second estimation.

For Op“"(F) integral operator with regular kernel Kg(x, y):

o [A“r(a!,)0pt ()N (-, B)u] (x) =
= (@, )R (0%, ) [ dy Q" (., BN (x, ) K (x, y)u()

o We use _
Q' x, ) ~ 1] < Crelx — o/ x = B,

’ﬁe’”(x,x—l—zﬁl) - 1‘ < Crelz| |x = B'].

@ Finally we use the decay of J,vq, T3, and the off-diagonal decay of
the integral kernel of Op(F)
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Step Ill: The constant field situation.

We have to control the 'dressing’ contribution.
Let us define:
he == hS + ¢

K(7) o= A (B, @) (5, Op(h)85)
XE(0) = D e IK).

yel

—

A0, B) = N (e, B)k (o = B) = N (@, )Xo

Proposition C.

The Hausdorff distance between the spectra of the operator
Oper(Xe) € IB%((%) and the hermitian operator associated with the matrix
M, B) in £2(T) for the canonical orthonormal basis is of order re.

This finishes the proof of point (3) of our main Theorem.
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Proof of Proposition C

Let us consider the following 3 unitaries:
o W L2(X) = (M) @ L2(8), (Hru)(v.{x}):=u(y+ {x}).
o % cU(P(N) @ L3(8)), (ZP)(a,{x}):=A({x},a)d(c,{x}).
o Vi € U(A(N) @ L2(8)), (Yer®) (e, {x}) =
= A" (0, a0 + {x}) (e, {x}).
and W = A UM - L2(X) = (T @ L2(8).

The operator #/ << OpSF(X)(w <F)~1

has the integral kernel

8 (o ) (8. () = )

A, B) (@ (o @ {x, B+ (XD (e B+ {x3,8)) K- = B)oo({x} — {¥}).

Q" (o, + {x}, B+ {x}) — 1| < Crela—Bl, |@"(a, 8+ {x},8) ~ 1| < Crela—p].
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Step IV: Properties of X-°.

Proposition D.

For b € (0, b) as in the statement of our main Theorem
there exists ¢g > 0 and C > 0 such that,
for any § € ¥}, and any € € [0, €],

X (6) — Mo(0)] < Ce.

This clearly implies the first 2 points of the Theorem.
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Proof of the main result Step IV

Proof of Proposition D.

Step 1.

Recall that X< (0) = Ze—’<977>/\57“(ﬁ7a)<¢77 pe(b )¢>o>gg

~yer
Let us compute: > e <IN (3 ) <¢§7 Op° >
ver

_ Z e—i<9,'y> <¢7’ H0¢o>% _ )\0(9) + ﬁ(e) =

yel

W) '<1/3o(9) : </3n(<9)>%

neN

— Xo(8

2
—Xo(0) + O(e) =

= 0(e), VOe€ Xy
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Proof of Proposition D.

Step 2.
Let us compute: X(0) — ( ;,Dpe(hg)%ﬁe) =
= S e i< (65, Op (b )b — (0%, OB (HE)d5hac) =

yer

= S e <0 (g, Zopo) g + O€) = Z(0) + O(e) = O(e), V0 € L,

er
whére
Z:=H (Y2 1) + (Y2 )H + (Y2 - 1)H (Y2 - 1)

Y RO R KoY Y2 = 0t ([ a0 Z(6)) 4
Y = nHrt Rt HO = 7 (f;'i do \7(9)) %
But: nHont =% (ff doK(6)) 7
and  K(0) = $o(6)) (b (6 )I(ZA (0)1én(0 )><$n(9)\)(11— |60(6)) {@0(0)]) = 0
VO € ¥p.
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The spectral gaps.

The spectral gaps. N
Analysis of the resolvent of Op“" (X )
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Taylor development of X near the minimum.

Proposition

There exists €9 > 0 such that X (0) = \o(0) + €p(f), with
p¢ € BC®(T,) uniformly in € € [0, €] and such that p¢ — p° = & ().

@ Thus X“e C*(X™*) also has an isolated non-degenerate minimum at
some point 0¢ € X" e-close to 0 € X*.

o On a neighbourhood of 0 € T, denoting by af, := (aj-ka\rg )(0);
we have the expansions

X)) =X (0) = Y a8 —65)(6x — 65) + 0(16 — 6

1<j,k<2
XO) =X (0= a(0—05)(0k—0i) T (16—6°)+ O(lo—67").
1<),k<2
if Ao is symmetric around its minimum (as in the case Br = 0)
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The spectral gaps.

The Hessian at the minimum of the modified Bloch band.

@ There exists g > 0 such that, for € € [0, €] , we can choose a local
coordinate system on a neighbourhood of #¢ € X* that diagonalizes
the symmetric positive definite matrix a¢ and we denote by
0 < mj < mj its eigenvalues.

@ Let 0 < my < mo be the eigenvalues of the matrix aj = (81-2,()\0)(0).

o We notice that

m; = mj + eu; + O(?) for j=1,2,

with p; explicitly computable.
Our goal is to obtain spectral information concerning the Hamiltonian

Op©T(A-€) starting from the spectral information about Op“"(hm,e) with

hme (€) == mi&d + msé3,

defining an elliptic symbol of class S?(=) that does not depend on the
configuration space variables.
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The spectral gaps.

The model Landau Hamiltonian

We compare the bottom of the spectra of the following two operators
@ the magnetic Hamiltonians Op“"(hpme),

@ the constant field magnetic Landau operator Op©0(hpme).

Proposition

For any compact set M in R, there exist ex >0, C > 0 and kk € (0,1],
such that for any (¢, k) € [0, ex] x [0, kK], the spectrum of the operator
Op*(hme) in €M is contained in bands of width Cke centred at the
points {(2n+ 1) e m By} pen.
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The spectral gaps.

Isolating the minimum

@ We choose an even function x in Cg°(R) with 0 < x <1, with
supp x C (—2,42) and x(t) =1 on [-1,+1].
o For § > 0 we define g1/5(¢) := x(hme(67%)), &€ X

@ We choose dp such that BF (0) C E, where B —— (0)
2my 1o \/2mit

my ~do

denotes the disk centred at 0 of radius p and E. denotes the interior
of E,.

e For any 0 € (0, dp] we associate §° := /m1/2my § so that we have
81/5° = 81/5 81/6°-

For any § € (0, do], g1/5 € Cg°(Ex).
e We may consider it as an element of C3°(X*) by extending it by 0.
@ We may define its I,-periodic continuation to J*:

El/é(f) = Z gl/a(f -,

yer*
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The e-dependent cut-off

Hypothesis
We shall impose the following scaling of the cut-off parameter § > 0:

e=0", pu>1.

Then we have the following estimation near the minimum:

A (£)&1/5(€) = 81/5() hme(£) + O(5%),

or in the symmetric case:

We can thus take: 1 < o < 3 in the general case,
resp.
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The spectral gaps.

The shift outside the minimum

For the region outside the minima, we need the operator:

Op (A + (6°)°81/50)-
Proposition

There exists g > 0 and for (¢, x,0) € [0, €g] x [0,1] x (0, o], there exist
some constants C > 0 and C’ > 0 such that:

Opr (A + (5°) B1ys0) > (C6° = C'e) 1.

Remark
Taking 2 < 12 we have that C62 — C'e > C"e2/F >> ¢ and for 0 < z < ce,

-1
we denote by 5 .(z) the symbol of (Dpe’“ (A +(6°)2 81y50) — z]l)
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The spectral gaps.

The "quasi-inverse”.

@ Let us fix some compact set K C C such that:
KcC \ {(2!7 + 1)m BO}nEN-

@ There exist ex > 0 and ki € [0, 1] such that for
(e,k) € [0,ex] x [0, kK] and for a € K, the point ea € C belongs to
the resolvent set of Op“"(hpme).

o We denote by r*(ea) the magnetic symbol of (Op“"(Ame) — ea)fl.

The quasi-inverse

For a € K we want to define the following symbol in ./(X*) as the sum
of the series on the right hand side:

An(ea) = D T (grys 197 " (ea)) + (1= Buys) 89" ricnlea), 6= €l/r.
y*erl
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The spectral gaps.

The "quasi-inverse”.

Proposition
For K as above, there exist C > 0, kg € (0, 1] and €y > 0 such that for
(k,€,a) € [0, k0] % (0,€0] x K, the symbol 7\(ea) is well defined and we

have
|Op“*(P(ea))|| < Coe ™,

and
(/\6 — ea) 19" (ea) = 1+ v55, with [[Op®"(t5,)|| < C o2,

For N > 0, there exist C, ¢y and kg such that

the spectrum of Op“"(A.) in [0, (2N + 2)mBye| consists of spectral islands
centred at (2n+ 1)mBye, 0 < n < N, with a width bounded by

C (ek + et n=2)/m),

We may take ;. = 5/2 in the general case or
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Thank you for your attention! |
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