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Quantization in a magnetic field

Together with Marius Măntoiu we have considered quantum hamiltonians
with magnetic fields and replaced the usual translations with magnetic
translations, generalizing some former results from constant magnetic
fields to bounded smooth magnetic fields.

This approach allowed us to obtain a pseudodifferential Weyl calculus,
twisted by a 2-cocycle associated to the flux of the magnetic field and we
developped this calculus in colaboration with V. Iftimie.

An interesting fact that we pointed out is that the algebra of observables
is defined only in terms of the magnetic field without the need of a vector
potential.

Together with M. Măntoiu and S. Richard we have defined some families
of ’magnetic’ coherent states and a Berezin magnetic quantization.
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References

M.V. Karasev and T.A. Osborn, Symplectic Areas, Quantization and
Dynamics in Electromagnetic Fields, J. Math. Phys. 43 (2002),
756–788.
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Introduction

States and Observables

The system S

the family of pure states: P(S)

the family of observables: O(S)

Mathematical description:

Classical Quantum
a symplectic manifold the projective space

P(S) (
Ξ, σ

)
P(H )

the Poisson algebra the self adjoint operators
O(S)

C∞
(
Ξ;R

)
S(H )

on some complex Hilbert space H
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Introduction

Quantization in a magnetic field

Our aim will be to study the relation between the classical and the
quantum descriptions for a Hamiltonian system in a smooth magnetic field
constant in time, focussing on the so-called pure state quantization.

The mathematical formulation of the above mentioned relation is focussed
on the understanding of the limit of considering the Planck’s constant ~
approaching 0.

Thus, a basic element will be a parameter ~ ∈ I0 where

I0 ⊂ R+, 0 /∈ I0,

but 0 is an accumulation point for I0.
We shall always denote by I := I0 ∪ {0}.
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Introduction

Quantization in a magnetic field

We shall study a classical Hamiltonian system that can be described on
the phase space

(
Ξ, σ0

)
associated to a configuration space of the type

X ∼= Rd for some d ≥ 2.

We have:

X ∗ the dual of X with the duality < ξ, x >:= ξ(x), ∀(x , ξ) ∈ X × X ∗.

Ξ := T∗X ∼= X × X ∗, σ0

(
(x , ξ), (y , η)

)
:=< ξ, y > − < η, x >.
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Introduction

The magnetic field

The magnetic field is described by a closed 2-form B on X :

B(x) =
∑

1≤j ,k≤d
Bjk(x)dxj ∧ dxk , Bjk(x) = −Bkj(x), dB = 0.

On X := Rn the equations B = dA have always a solution, definig a
vector potential A for B.

A(x) =
∑

1≤j≤d
Aj(x)dxj , Bjk(x) =

(
∂jAk

)
(x)−

(
∂kAj

)
(x).

Gauge transformations. B = dA = dA′ is equivalent to the
existence of Φ such that A′ = A + dΦ.

These equations can be considered either in D′ or on smaller spaces like
C∞ or C∞pol.
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Introduction

The gauge invariant formalism

Let π̃ : Ξ→ X , (x , ξ) 7→ x , be the canonical projection.

Let σB := σ + π̃∗[B].

σBz ((x , ξ), (y , η)) := σ((x , ξ), (y , η)) + B(z)(x , y), ∀z ∈ X

This σB defines a new symplectic form on Ξ.

We associate to σB a new Poisson bracket:{
f , g
}B

:= σB(j−1
B (df ), j−1

B (dg))

where jB is the canonical isomorphism

jB : Ξ→ Ξ∗, < jB(X),Y >:= σB(X,Y).
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Introduction

The gauge invariant formalism

Using the canonical global coordinates we have:{
f , g
}B

(x , ξ) :=

=
n∑

j=1

[(
∂ξj f

)
(x , ξ)

(
∂xj g

)
(x , ξ)−

(
∂xj f

)
(x , ξ)

(
∂ξj g

)
(x , ξ)

]
+

n∑
j ,k=1

Bjk(x)
(
∂ξj f

)
(x , ξ)

(
∂ξk g

)
(x , ξ)
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Introduction

The quantum dynamics

The main point in passing to a quantic description

consists in introducing a non-commutativity
between positions (in X ) and momenta (in X ∗).

The canonical commutation relations between
the position observables {q1, . . . , qn}
and the momenta {p1, . . . , pn}
must be of the form:

[qi , qj ] = 0, [pi , pj ] = 0, [pi , qj ] = −i~δij , i , j = 1, . . . , n.

A way to introduce these commutation relations in a mathematical precise
form is the Weyl system.
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Introduction

The quantum dynamics

The Weyl system

Consists in a complex Hilbert space H
and two strongly continuous unitary representations:

X 3 x 7→ U~(x) ∈ U(H)
X ∗ 3 ξ 7→ V (ξ) ∈ U(H)

satisfying the Weyl commutation relations:

U~(x)V (ξ) = e i~<ξ,x> V (ξ)U~(x), x ∈ X , ξ ∈ X ∗.
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Introduction

The quantum dynamics

We may put the definition of the Weyl system in the following form
involving the symplectic form on Ξ:

The Weyl system - symplectic form

Is given by a complex Hilbert space H
and a strongly continuous map

Ξ 3 X 7→W~(X ) ∈ U(H),

satisfying the relations

W~(X )W~(Y ) = exp

{
i~
2
σ(X ,Y )

}
W~(X + Y ), W~(0) = 1.

(just take W~(x , ξ) := e(i~/2)<ξ,x>U~(−x)V (ξ))
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Introduction

The quantum dynamics

The quantum observables

For any test function φ ∈ S(Ξ)

we can define the associated quantum observable

Op~(φ) := (2π)−d
∫

Ξ
[F−1φ](X ) W~(X ) dX ∈ B(H)

where F−1 is the inverse Fourier transform on S(Ξ).
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Introduction

The Schrödinger representation

H := L2(X ),

[U~(x)f ](y) := f (y − ~x),

[V (ξ)f ](y) := e−i<ξ,y>f (y),

Then we have

[W~(x , ξ)f ](y) = e−iξ(y+(~/2)x)f (y + ~x),

[Op~(φ)f ](y) = (2π~)−d
∫
X dz

∫
X ′ dζ e(i/~)ζ(y−z)φ

( y+z
2 , ζ

)
f (z),

and we can extend Op~ to a map

Op~ : S(Ξ)′ → B(S(X );S(X )′)

that is an isomorphism of linear topological spaces.
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Introduction

The magnetic Schrödinger representation

Suppose chosen a gauge A for the magnetic field B.

We have to define a functional calculus for the family of
non-commuting operators

Q1, . . . ,Qn; ΠA
1 := D1 − iA1, . . . ,Π

A
n := Dn − iAn

[Qj ,Qk ] = 0, [ΠA
j ,Qk ] = −i~δjk , [ΠA

j ,Π
A
k ] = i~Bjk(Q).

representing the canonical variables in the magnetic field.

We shall use the unitary groups associated to the above 2n
self-adjoint operators and define the Magnetic Weyl system:

W A
~ ((x , ξ)) := e−i<ξ,(Q+(~/2)x)> e

−(i/~)
∫

[Q,Q+~x] A e i~<x ,P>
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Introduction

The magnetic algebra of quantum observables (1)

For any test function f : Ξ→ C we define the associated magnetic
Weyl operator:

OpA~ (f ) := (2π)−d
∫

Ξ
dX f̂ (X )W A

~ (X ) ∈ B[H]

In fact for any tempered distribution F ∈ S ′(Ξ) we can define the
linear operator:

OpA~ (F ) := (2π)−d
∫

Ξ
dX F̂ (X )W A

~ (X ) ∈ B[S(X );S ′(X )]

It defines a linear bijection [M.P., J. Math. Phys. 04].

Observation:Gauge covariance

The Schrödinger representations associated to any two gauge-equivqlent
vector potentials are unitarily equivqlent:

A′ = A + dϕ ⇒ OpA
′

~ (f ) = e iϕ(Q)OpA~ (f )e−iϕ(Q).
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Introduction

The magnetic algebra of quantum observables (2)

Hypothesis

The magnetic field B has components of class C∞pol(X ).

The magnetic Moyal product

The above functional calculus induces a magnetic composition on the
complex linear space of test functions S(Ξ):

OpA~ (f ]B~ g) := OpA~ (f ) · OpA~ (g)

Explicitely we have:

(f ]B~ g)(X ) := (π~)−2d

∫
Ξ

dY

∫
Ξ

dZ e
−(i/~)

∫
TX (Y ,Z) σ

B

f (X − Y ) g(X − Z )

where TX (Y ,Z ) is the triangle in Ξ having vertices:

X − Y − Z , X + Y − Z , X − Y + Z .
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Introduction

The magnetic algebra of quantum observables (3)

By the Schwartz Kernel Theorem, any operator T ∈ B
(
S (X ); S ′(X )

)
is

an integral operator with a distribution kernel K(T ) ∈ S ′(X × X ).
For F ∈ S ′(X × X ) let I(F ) ∈ B

(
S (X ); S ′(X )

)
be the associated

operator.

We consider the change of variables:

m~ : S ′(Ξ)→ S ′(Ξ),
(
m~
)
(x , ξ) := F (x , ~ξ),

Θ : S ′(X×X )→ S ′(X×X ),
(
Θ(F )

)
(x , y) := F

(
x + y

2
, y − x

)
.

The inverse Fourier transform in the second variable:
F := 1l⊗F− : S ′(Ξ)→ S ′(X × X )

and the operator eA~ of multiplication on S ′(X × X ) with the C∞

function e
−(i/~)

∫
[x,y ] A (we choose the components of A in C∞pol).

Then, for F ∈ S ′(Ξ) we have
OpA~ (F ) = I

(
eA~ ◦Θ ◦ F ◦m~(F )

)
, all the applications being bijective.
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Introduction

Strict deformation quantization

Let us recall:

Definition

A Poisson algebra is a triple (A , ◦, {·, ·}), where A is a real vector
space, ◦, {·, ·} are bilinear maps : A ×A → A such that ◦ is associative
and commutative, {·, ·} is antisymmetric and for each ϕ ∈ A , {ϕ, ·} is a
derivation both with respect to ◦ and to {·, ·}. Thus, aside bilinearity, the
two maps satisfy for all ϕ,ψ, ρ ∈ A :
(i) ψ ◦ ϕ = ϕ ◦ ψ, (ψ ◦ ϕ) ◦ ρ = ψ ◦ (ϕ ◦ ρ),
(ii) {ψ,ϕ} = −{ϕ,ψ},
(iii) {ϕ,ψ ◦ ρ} = ψ ◦ {ϕ, ρ}+ {ϕ,ψ} ◦ ρ (Leibnitz rule),
(iv) {ϕ, {ψ, ρ}} = {{ϕ,ψ}, ρ}+ {ψ, {ϕ, ρ}} (Jacobi’s identity).

Let A0 be a Poisson algebra which is densely contained in the self-adjoint
part C0

R of an abelian C ∗-algebra C0.
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Introduction

Strict deformation quantization

Definition

A strict quantization of the Poisson algebra (A0, ◦, {·, ·}) is a family
of maps

(
Q~ : A0 → C~

R
)
~∈I , where

(i) ∀~ ∈ I0, C
~ is a C ∗-algebra, with product ]~ and norm ‖ · ‖~.

(ii) Q~ : A0 → C~
R is R-linear ∀~ ∈ I0 and Q0 is just the inclusion map,

and the following axioms are fulfilled:
(a) RIEFFEL’S CONDITION:
I 3 ~→‖ Q~(ϕ) ‖~∈ R+ is continuous ∀ϕ ∈ A0.
(b) VON NEUMANN CONDITION: For ϕ,ψ ∈ A0,
lim
~→0
‖ 1

2

(
ϕ~]~ψ~ + ψ~]~ϕ~)−Q~(ϕ ◦ ψ) ‖~→ 0.

(c) DIRAC’S CONDITION: For ϕ,ψ ∈ A0,
lim
~→0
‖ 1

i~
(
ϕ~]~ψ~ − ψ~]~ϕ~)−Q~ ({ϕ,ψ}) ‖~→ 0.

(e) COMPLETENESS: Q~(A0) is dense in C~
R for all ~ ∈ I .
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Introduction

Strict deformation quantization

A strict quantization
(
Q~ : A0 → C ~

R
)
~∈I is called a strict deformation

quantization if for each ~, Q~ (A0) is a subalgebra of C ~
R and Q~ is

injective.

Let us consider:

A0 := S (Ξ) with ◦ the usual pointwise multiplication and
{., .} = {., .}B the Poisson bracket associated to the ’magnetic’
simplectic form on Ξ.

C0 := C∞(Ξ) (continuous functions vanishing at infinity).

∀~ > 0, C~ := B∞
(
L2(X )

)
(the compact operators in the Schrödinger

representation of the magnetic Weyl system).

Q~(ϕ) := OpA~ (ϕ) for some vector potential A associated to B.

Theorem [MP JMP’05]

The above family is a strict deformation quantization.
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Introduction

Weyl coherent states

Suppose given a Weyl system W~ : Ξ→ U(H) for some ~ ∈ I0.

For any fixed vector ϕ ∈ H \ {0} we can define the family

{ϕ~(X )}X∈Ξ , ϕ~(X ) := W~(−~−1X )ϕ.

Proposition

For any two vectors (ϕ,ψ) ∈
(
H \ {0}

)2

the map Ξ 3 X 7→ W~
ϕ,ψ(X ) := (ϕ~(X ), ψ)H ∈ C is of class L2(Ξ) for

the measure d̄d
~ X := dX d

(2π~)d
.

and using the canonical Riesz anti-isomorpism R : H → H∗
the map H∗ ⊗H 3 R(ϕ)⊗ ψ 7→ W~

ϕ,ψ ∈ L2
(
Ξ, dX d

(2π~)d

)
is unitary.
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Introduction

Weyl coherent states

Let us consider the vector ϕ ∈ H to be of unit norm and let us denote its
associated orthogonal projection in H by

Pϕ ≡ |ϕ >< ϕ| ∈ P(H).

Thus, chosing any two vectors (ψ1, ψ2) ∈ H2 we have

(ψ1, ψ2)H =

∫
Ξ
W~
ϕ,ψ1

(X )W~
ϕ,ψ2

(X )
dX d

(2π~)d
=

∫
Ξ

(
ψ1,Pϕ~(X )ψ2

)
H

dX d

(2π~)d
.

Thus
∫

Ξ Pϕ~(X )
dX d

(2π~)d
= 1l

in the weak operator topology on B(H).
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The Projective Space

The Projective Space
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The Projective Space

P(H) as a metric space.

Definition

Given a complex Hilbert space H,

P(H) :=
{

P ∈ B1(H) | P2 = P = P∗, TrP = 1
}
.

∀(P,Q) ∈ P(H)2 we have that 0 ≤ Tr(PQ) ≤ 1.

The following applications define equivalent metrics on P(H):

dp(P,Q) := ‖P − Q‖p ≡
(
Tr|P − Q|p

)(1/p)
, 1 ≤ p ≤ ∞.

d̃(P,Q) := arccos Tr(PQ).

We notice that: d∞(P,Q) =
√

1− Tr(PQ).
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The Projective Space

P(H) as a quotient space.

Let S(H) := {ψ ∈ H | ‖ψ‖H = 1}.
We have the group action U(1)× S(H) 3 (λ, ψ) 7→ λψ ∈ S(H).

Then P(H) ∼= S(H)/U(1) as metric spaces; i.e. the quotient metric

d̂([φ], [ψ]) := inf
λ∈U(1)

‖φ− λψ‖H =
√

2
(
1− [Tr(PφPψ)]1/2

)
is equivalent with the above metrics,
(Here Pφψ := (φ, ψ)Hφ and we shall denote it also by Pφ ≡ |φ >< φ|.)

We also have P(H∗) ∼= H/C∗
for the natural group action H∗ × C∗ 3 (ψ, c) 7→ cψ ∈ H∗.
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The Projective Space

A group action on P(H).

Let U(H) := {U ∈ B(H) | UU∗ = U∗U = 1l} endowed with the
operator multiplication and with the topology defined by the operator
norm.

We have the topological group action
U(H)× P(H) 3 (U,P) 7→ UPU∗ ∈ P(H).

For any fixed P ∈ P(H) let

V1(P) := {Q ∈ P(H) | d∞(P,Q) < 1} = {Q ∈ P(H) | Tr(PQ) > 0}

IP := {U ∈ U(H) | UPU∗ = P},
pP : U(H)→ U(H)/IP =: U(H)P .

Let also V√2(1l) :=
{

U ∈ U(H) | ‖U− 1l‖B(H) <
√

2
}

.

Then we have an isometry hP : V1(P)
∼→ pP

(
V√2(1l)

)
⊂ U(H)P.
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The Projective Space

The manifold structure on U(H).

Differentiable curves in U(H).

γ : (−1, 1)→ U(H) continuous such that γ(0) = 1l and

∃Xγ ∈ B(H) with lim
t→0

∥∥∥γ(t)−1l
t − Xγ

∥∥∥
B(H)

= 0.

The unitarity implies that X ∗γ = −Xγ .

Thus, U(H) with the operator norm topology is an infinite
dimensional manifold of real Banach type having the tangent space at
the identity isomorphic to the real Banach space

Bah(H) := {X ∈ B(H) | X ∗ = −X}.
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The Projective Space

The manifold structure on P(H).

Let us fix P ∈ P(H) .

Let us transport any differentiable curve γ : (−1, 1)→ U(H) on P(H)
by conjugation on P: γP(t) := γ(t)Pγ(t)∗ ∈ P(H).

Then d
dt

∣∣
t=0

γP(t) =
[
Xγ ,P

]
∈ B(H).

We notice that γ(t) ∈ IP ⇔
[
Xγ ,P

]
= 0. Let

HP :=
{

X ∈ Bah(H) |
[
X ,P

]
= 0
}

.

Thus TP

[
P(H)

]
' Bah(H)/HP

Hilbertian model for TP

[
P(H)

]
.

For any φ ∈ PH
let us define Υφ : Bah 3 X 7→ ΥφX :=

(
1l− P

)
Xφ ∈ [φ]⊥ ⊂ H.

Then Υφ : Bah/HP →
(
1l− P

)
H is a bijective isometry.
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The Projective Space

The symplectic structure on P(H).

Let us notice that

Bah is closed for the commutator.

P(H) ⊂ B1(H) ∼=
[
B(H)

]∗
with the identification

P(H) 3 P 7→ P̂ ∈
[
B(H)

]∗
, P̂(X ) := Tr(PX )

and we have the following canonical symplectic form:

σ
P(H)
P (X1,X2) := P̂

([
X1,X2

])
= Tr

(
P
[
X1,X2

])
=

= −2=
(
ΥφX1,ΥφX2

)
H, for φ ∈ PH.
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Magnetic Coherent States

Magnetic Coherent States
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Magnetic Coherent States

Given a magnetic field B with bounded smooth components, we want to
construct a set of ’magnetic coherent states’, similar to the family defined
above for a Weyl system.

We want these states to provide also a kind of pure state quantization in
the sense of N.P. Landsman (that I shall briefly present further).

In fact, together with Marius Măntoiu and Serge Richard we have
constructed two types of magnetic coherent states:

both depending only on the magnetic field and not on the vector
potential,

both reducing to the usual Weyl coherent states when B = 0

but each one being more adequate to certain specific features
connected with the general properties a coherent states system is
supposed to have.
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Magnetic Coherent States

Magnetic symbols of 1-d projections

Let us consider some A with B = dA and the magnetic Weyl system with
H = L2(X ).

Let us consider φ ∈ S(H), i.e. φ ∈ L2(X ) with
∫
X |φ(x)|2dx = 1

and its associated magnetic 1-d projection Pφ ∈ P(H) given by
Pφψ = (φ, ψ)L2(X )φ.

Thus Pφ = I(p̃φ) where p̃φ(x , y) := φ(x)φ(y) is a distribution kernel in
L2(X × X ). Thus its magnetic symbol pφ ∈ L2(Ξ) satisfies:

eA~ ◦Θ ◦ F ◦m~(pφ) = p̃

and thus we would obtain a symbol depending on the vector potential A.
We prefer to ’rename’ the state vectors by making an A-dependent unitary
transformation (the transversal gauge)(

UA
~φ
)
(x) := e

(i/~)
∫

[0,x] Aφ(x).

so that PUA
~φ

= I(p̃A
φ ) with p̃A

φ (x , y) := e
(i/~)

∫
[0,x] Ae

(−i/~)
∫

[0,y ] Aφ(x)φ(y).
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Magnetic Coherent States

Magnetic symbols of 1-d projections

We define

the magnetic projection symbol associated to the vector φ ∈ S(H) to be

pB
φ,~ = m−1

~ F−1Θ−1
[
ωB
~
(
φ⊗ φ

)]
with ωB

~ (x , y) := e−(i/~)
∫
<0,x,y> B .

Then OpA(pB
φ,~)UA

~φ = UA
~φ.

We denote by PA
φ,~ := OpA(pB

φ,~)
the Schrödinger representation of a gauge invariant projection symbol.

A magnetic projection symbol

is defined as p ∈ L2(Ξ) such that p = p = p]B~ p.
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Magnetic Coherent States

Magnetic symbols of 1-d projections

We define

the magnetic projection symbol associated to the vector φ ∈ S(H) to be

pB
φ,~ = m−1

~ F−1Θ−1
[
ωB
~
(
φ⊗ φ

)]
with ωB

~ (x , y) := e−(i/~)
∫
<0,x,y> B .

Then OpA(pB
φ,~)UA

~φ = UA
~φ.

We denote by PA
φ,~ := OpA(pB

φ,~)
the Schrödinger representation of a gauge invariant projection symbol.

A magnetic projection symbol

is defined as p ∈ L2(Ξ) such that p = p = p]B~ p.

Radu Purice (IMAR) Magnetic coherent states Bia lowieża, July, 2013 37 / 54
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Magnetic Coherent States The Perelomov type magnetic coherent states
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Magnetic Coherent States The Perelomov type magnetic coherent states

The Perelomov type Magnetic Coherent States

Definition 1

Given any φ ∈ S(H) we define the following family of pure quantum states
indexed by X ∈ Ξ:

PA
φ,~(X ) := W A

~ (~X )−1PA
φ,~W A

~ (~X )

Then PA
φ,~(X ) = OpA(pB

φ,~(X )) where, if we denote by

eX (Y ) := e−(iσ(X ,Y ) (∀(X ,Y ) ∈ Ξ2) we have

pB
φ,~(X ) = e−~X ]

B
~ pB

φ,~]
B
~ e~X .

Remark: PA
φ,~(X )H = C ·W A

~ (~X )−1UA
~φ

and we also have Schrödinger representations of gauge invariant magnetic
projection symbols.

We call {PA
φ,~(X )}X∈Ξ the Perelomov type magnetic coherent states.
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Magnetic Coherent States The Perelomov type magnetic coherent states

The partition of unity property

Proposition

For any two vectors (φ, ψ) ∈
(
H \ {0}

)2

the map Ξ 3 X 7→ WA,~
φ,ψ(X ) := (UA

~ (X )φ, ψ)H ∈ C is of class L2(Ξ)

for the measure d̄d
~ X := dX d

(2π~)d
.

and using the canonical Riesz anti-isomorpism R : H → H∗
the map H∗ ⊗H 3 R(ϕ)⊗ ψ 7→ WA,~

ϕ,ψ ∈ L2
(
Ξ, dX d

(2π~)d

)
is unitary.∫

Ξ
dX d

(2π~)d
PA
φ,~(X ) = 1l in the weak operator topology.
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Magnetic Coherent States The pure state quantization

The classical limit

We are in the following special case of a ”quantization”:

Classical description:
The phase space Ξ ≡ X ×X ∗ with simplectic form σB and associated
Poisson bracket {., .}B : C∞ × C∞ → C∞.
The bounded observables BC∞(Ξ) so that f (X ) is the value of
f ∈ BC∞(Ξ) in the state X ∈ Ξ.

Quantum description:
The phase space P(H) (for some complex Hilbert space H).
The bounded observables Bh(H) := {T ∈ B(H) | T ∗ = T} so that
Tr(PT ) is the mean value of T ∈ Bh(H) in the state P ∈ P(H).

We want to connect the two descriptions when ~→ 0.
Remark: P(H) has a canonical symplectic structure with the symplectic

form σP(H). We have to work with the symplectic form σ
P(H)
~ := ~σP(H).
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Magnetic Coherent States The pure state quantization

Transition probability structure

Let us notice that in the quantum description each state P ∈ P(H) is also
a bounded observable (we have P(H) ⊂ Bh(H)).

The mean value of the observable state Q ∈ P(H) in the state P ∈ P(H),
given by Tr(PQ) ∈ [0, 1] is called the transition probability from state P to
state Q.
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Magnetic Coherent States The pure state quantization

Pure State Quantization

Definition

We call pure state quantization of a symplectic space
(
Σ, σ

)
of dimension

2d , a complex Hilbert space H together with a family of
injective applications {P~ : Σ→ P(H)}~∈I0 satisfying the following three
axioms:

Axiom I:
∫

Ξ
dX d

(2π~)d
P~(X ) = 1l in the weak operator topology.

Axiom II: lim
~→0

∫
Ξ

dX d

(2π~)d
Tr
(
P~(Z )P~(Y )

)
f (Y ) = f (Z ),

∀f ∈ BC (Σ), ∀Z ∈ Σ.

Axiom III: Let us denote by P∗~σ
P(H)
~ the pull-back on the tangent

space of Σ of the canonical symplectic form on P(H); then

lim
~→0

P∗~σ
P(H)
~ = σ.
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Magnetic Coherent States The pure state quantization

Pure State Quantization

Theorem

Taking Σ := Ξ, a magnetic field B with components of class BC∞(X ), its
associated symplectic form σB and H := L2(X )
the family of maps {PA

φ,~ : Ξ→ P(H)}~∈I0 satisfies Axioms I and II of a
pure state quantization for any φ ∈ S(H).

Remark

Concerning Axiom III we have the following result:

lim
~→0

[(
PA
φ,~
)∗
σ
P(H)
~

]
X

=

∫ 1

0
σB(sx)ds. (!)
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Magnetic Coherent States The Landsman type magnetic coherent states

The Landsman Magnetic Coherent States

Definition 1

Given any φ ∈ S(H) we define the following family of pure quantum states
indexed by X ∈ Ξ:

QA
φ,~(X ) := UA

~ (X )W 0
~ (~X )−1PφW 0

~ (~X )
[
UA
~ (Z )

]−1
,

where (
UA
~ (X )φ

)
(y) := e

(i/~)
∫

[x,y ] Aφ(y).

Then QA
φ,~(X ) = OpA(qB

φ,~(X )) .

Remark: QA
φ,~(X )H = C · UA

~ (X )W A
~ (~X )−1φ

and we also have Schrödinger representations of gauge invariant magnetic
projection symbols.

We call {QA
φ,~(X )}X∈Ξ the Landsman type magnetic coherent states.

Radu Purice (IMAR) Magnetic coherent states Bia lowieża, July, 2013 47 / 54
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Magnetic Coherent States The Landsman type magnetic coherent states

Pure State Quantization

Theorem

For Σ := Ξ, for a magnetic field B with components of class BC∞(X ) and
for the associated symplectic form σB , taking H := L2(X ) and the family
of maps {QA

φ,~ : Ξ→ P(H)}~∈I0 is a pure state quantization for any
φ ∈ S(H).
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Magnetic Coherent States Comments on the classical limit

The projective representation on P(H)

A basic step in defining a system of coherent states is:

to raise the magnetic Weyl system: W A
~ : Ξ→ U

(
L2(X )

)
to a projective automorphism representation on the algebra of
bounded observables: WA

~ : Ξ→ Aut
[
B
(
L2(X )

)]
WA

~ X := W A
~ X
(
W A

~
)−1

.

and restrict it to P
(
L2(X )

)
⊂ B

(
L2(X )

)
.

Remark

We have the evident equality

T
[
PA
φ,~(X )

]
= T

[
WA

~ Pφ
]
.
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Magnetic Coherent States Comments on the classical limit

The projective representation on P(H)

Remark

The Weyl system being not a representation of the linear group Ξ we have

WA
~ (X + tZ )P 6= WA

~ (tZ )WA
~ (X )P.

Thus:

i d
dt

∣∣
t=0
WA

~ (tZ )P = ζ · Q − z · ΠA
~ =: lA(Z ),

i d
dt

∣∣
t=0
WA

~ (X + tZ )P =

ζ · Q − z · ΠA
~ + ~

∫ 1
0 sds

∑n
j ,k=1 zjxkBjk

(
Q + (1− s)~x

)
=: ZA

~ (X ,Z ; Q,D).

Let us define

WA
~,P : TΞ 3 (X ,Z ) 7→

(
WA

~ (X )P, (1−WA
~ (X ))lA(Z )φX

)
∈ TP(H),

∀φX ∈ WA
~ (X )PH.
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Magnetic Coherent States Comments on the classical limit

The classical limit

Theorem

For a magnetic field with components of class BC∞(X ) we have

lim
~↘0

σ
P(H)

~,PA
φ(X )

(
WA

~,PA
φ

(X )Z1,WA
~,PA

φ
(X )Z2

)
= σ

B(x)
X (Z1,Z2),
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Magnetic Coherent States Magnetic Coherent States - Symbols

The symbolic calculus

Let us notice that ∀(f , g) ∈ S (Ξ)2 we have f ]B~ g ∈ S (X ).

Let us induce the following C ∗-norm on S (Ξ):
∀f ∈ S (Ξ), define ‖φ‖∗,B :=

∥∥OpA~ (f )
∥∥.

Completing now S (Ξ) for the above norm we obtain a C ∗-algebra(
S (Ξ), ]B~ , ‖ · ‖∗,B

)
that we denote by CB

0,~.

We can prove that CB
0,~
∼= B∞

(
L2(X )

)
.

Then the pure states on CB
0,~ are of the form {pB

φ,~}φ∈S
(
L2(X )

)
with pB

φ,~ = pB
ψ,~ iff ∃λ ∈ U(1), φ = λψ.

The mean value of f ∈ CB
0,~ in the state pB

φ,~ is∫
Ξ

[
pB
φ,~]

B
~ f
]

(X ) dX .
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