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In this talk I would like to show an example of an

interaction between

mathematical physics

and

partial differential equations.

Let us consider one of our favourite operators:

e−it∆ :L2(Rn) −→ L2(Rn) .

This Schrödinger propagator, e−it∆, is unitary on any

Sobolev space, so regularity is not improved in propagation.



About 20 years ago, Sjölin, Vega, and also Constantin-Saut

discovered that the regularity improves when we integrate in

time and cut-off in space:∫ T

0
‖χ exp(−it∆)u‖2

H1/2 dt≤C‖u‖
2
L2 , χ∈C∞c (Rn) .

In Rn we can take T =∞ , and χ(x) = 〈x〉−1/2−ε.

This much exploited effect is known as

LOCAL SMOOTHING.



∫ T

0
‖χ exp(−it∆)u‖2

H1/2 dt≤C‖u‖
2
L2 , χ∈C∞c (Rn) .

Proof: [due to Burq] The bound is equivalent to

boundedness of

T : L2
x −→L2

tH
1/2
x , Tu(x, t) :=χ(x)(e−it∆u)(x) ,

or, equivalently,

TT ∗ : L2
tH
−1/2
x −→L2

tH
1/2
x ,

TT ∗f(x, t) =

∫ ∞
−∞

(χe−i(t−s)∆χ)f(x, s) ds



TT ∗f(x, t) =

∫ ∞
−∞

(χe−i(t−s)∆χ)f(x, s) ds

=
∑
±

(
1±[0,∞)(•)χe−i•∆χ

)
∗f(•, x)(t) .

We want to show that∫ ∞
−∞
‖(1±[0,∞)(•)χe−i•∆χ)∗f(•, x)(t)‖2

H
1/2
x

dt

≤C
∫ ∞
−∞
‖f(t, x)‖2

H
−1/2
x

dt ,

or by Plancherel’s Theorem,∫ ∞
−∞
‖Ft7→λ

(
1±[0,∞)(t)χe−it∆χ

)
(λ)f̂(λ, x)‖2

H
1/2
x

dλ

≤C
∫ ∞
−∞
‖f̂(λ, x)‖2

H
−1/2
x

dλ ,





∫ ∞
−∞
‖Ft7→λ

(
1±[0,∞)(t)χe−it∆χ

)
(λ)f̂(λ, x)‖2

H
1/2
x

dλ

≤C
∫ ∞
−∞
‖f̂(λ, x)‖2

H
−1/2
x

dλ

We recognize that

Ft7→λ
(
1±[0,∞)(t)χe−it∆χ

)
(λ) =χ(−∆− λ∓ i0)−1χ .

So, all we need is:

χ(−∆− λ∓ i0)−1χ=O(1) :H−1/2 −→ H1/2 ,

and that is the same as:

χ(−∆− λ∓ i0)−1χ=O
(

1
√
λ

)
:L2 −→ L2 .



The estimate

χ(−∆− λ∓ i0)−1χ=O
(

1
√
λ

)
:L2 −→ L2 .

is a quantitative version of the limiting absorbtion principle

established by many authors Jensen-Mourre-Perry,

Robert-Tamura, Gérard-Martinez, Wang, Robert... And in

more geometric setting by Vasy-Zworski, Vodev.

We have established that local smoothing is related to

standard issues of mathematical physics.

Local smoothing plays a crucial rôle in the study of

nonlinear Schrödinger equations and is closely related to

Strichartz estimates. Burq used results of Ikawa to obtain

local smoothing estimates for some exterior problems.



Geometric setting

Instead of Rn we can consider (X, g), a Riemannian

manifold close to Rn near infinity.

Local smoothing for ∆g, the Laplace-Beltrami operator

means: ∫ T

0
‖χ exp(−it∆g)u‖2

H1/2(X)
dt≤C‖u‖2

L2(X)
, (1)

Doi (1996) proved a remarkable result that (1) implies that

the metric is non-trapping. Roughly, that means that all

geodesics, escape to infinity. But that is natural since

non-trapping assumptions are needed for

χ(−∆− λ∓ i0)−1χ=O
(

1
√
λ

)
:L2 −→ L2 .



On the other hand, Burq’s proof shows that

χ(−∆g − λ∓ i0)−1χ=O
(

1

λα/2

)
:L2 −→ L2 .

gives a weaker version of local smoothing:∫ T

0
‖χ exp(−it∆g)u‖2

Hα/2(X)
dt≤C‖u‖2

L2(X)
, χ∈C∞c (X) .

but that is sufficient for many applications – Burq,

Christianson.



This is is useful when there is trapping! Simplest case:

Theorem 1.(Nonnenmacher-Zworski 2007) Suppose that

(X, g) is a surface Euclidean outside of a compact set and

that the geodesic flow is hyperbolic on the trapped set.

If the dimension of the trapped set (inside of the three

dimensional S∗X) is less than two then

χ(−∆g − λ∓ i0)−1χ=O
(

logλ
√
λ

)
:L2 −→ L2 .

and consequently,∫ T

0
‖χ exp(−it∆g)u‖2

H1/2−ε(X)
dt≤C‖u‖2

L2(X)
, χ∈C∞c (X) .



Remarks.

1. The resolvent bound is probably optimal. Examples of

Colin de Verdière-Parisse, Christianson,

Alexandrova-Bony-Ramond, give

‖χ(−∆g − λ∓ i0)−1χ‖L2→L2 ≥

(√
logλ
√
λ

)

2. Resolvent estimates are closely related to having a gap

between quantum resonances and the real axis.

Hence the tools needed to prove Theorem 1 are closely

related to the tools needed to understand the behaviour of

resonances in chaotic scattering.



Quantum mechanical perspective

Classically we consider

H = ξ2 + V (x) , x ∈ R2

( n = 2 for simplicity only) and on the quantum level,

Ĥ = −h2∆ + V (x) .



The resonances of Ĥ are defined as the poles of the

meromorphic continuation of the resolvent:

(Ĥ − z)−1 : C∞c −→C∞ .

So it is not surprising that a presence of resonances near

the real axis will destroy good bounds on the resolvent.

The nontrapping bounds correspond, after rescaling to

χ(Ĥ − E ± i0)−1χ=O
(

1

h

)
:L2 −→ L2 ,

and the bounds in Theorem 1 to

χ(Ĥ − E ± i0)−1χ=O
(

log(1/h)

h

)
:L2 −→ L2, ,



We assume that the flow is hyperbolic on the trapped set:

KE = Γ+
E ∩ Γ−E

where Γ±E =

{(x, ξ) : ξ2 + V (x) = E , (x(t), ξ(t)) 6→ ∞ , t→ ∓∞} ,

and the flow is defined by Newton 1687

x′(t) = 2ξ(t) , ξ′(t) = −∇V (x(t)) ,

x(0) = x , ξ(0) = ξ .



Where do the resonant state live?

In phase space they live on Γ+
E .

Theorem 2.(Nonnenmacher-Rubin 2006) Let u(hk) be

resonant states corresponding to z(hk). with

Re z(hk) = E + o(1) and Im z(h) ≥ −Ch. Let µ be a

semiclassical measure associated to u(hk): Then

suppµ ⊂ Γ+
E ,

∃ λ > 0 , lim
k→∞

Im z(hk)/hk = −λ/2 ,

Lµ = λµ ,

where L is the Lie derivative along the flow.



A potential with a simple trapped set.



The “first” resonant function for h = 1/16.



The resonant state thanks to David Bindel

www.cims.nyu.edu/∼dbindel

FBI transform thanks to Laurent Demanet

www.math.stanford.edu/∼laurent



The trapped set KE lives in the three dimensional energy

surface and looks similar to

This is actually a picture of a Julia set but the similarity is

more than formal and similar ideas apply to zeros of Ruelle

zeta functions.



We say that the flow Φt(x, ξ) = (x(t), ξ(t)) is hyperbolic on

KE, if any ρ ∈ KE, the tangent space to H−1(E) at ρ splits

into the flow, unstable and stable directions:

• Tρ(H−1(E)) = R〈2ξ(ρ),−∇V (x(ρ))〉⊕E+
ρ ⊕E−ρ

• dΦt
ρ(E

±
ρ ) = E±

Φt(ρ)

• ∃ λ > 0 , ‖dΦt
ρ(v)‖ ≤ Ce−λ|t| ‖v‖

for all v ∈ E∓ρ , and ±t ≥ 0.

Verification of this is not easy but in our setting it is

available thanks to the work of Sinai, Ikawa, Sjöstrand, and

Morita.



The Poincaré section is given by a surface in H−1(E)

transversal to the flow:

We write the Hausdorff dimension of KE as

dimKE = 2dE + 1 .

Pesin-Sadovskaya 2001



Theorem 3.(Sjöstrand-Zworski 2005)

Let R(h) denote the set of resonances of

Ĥ = −h2∆ + V (x) .

Under the assumptions of hyperbolicity near energy E,

|R(h) ∩ [E − h,E + h]−i[0,Mh]| = O(h−dE) .

This is the analogue of the counting law for eigenvalues of

a closed system. Classically everything is trapped in a

closed system, so dimKE = 3, dE = 1 and the number of

eigenvalues is asymptotic to

CEh
−1 .



If u is a resonant state for

z = E −i Γ

then

exp(−itĤ/h)u = e−itE/h−tΓ/hu .

Hence states with Γ� h decay too fast to be visible.

Interpretation of the imaginary part as decay rate brings us

to the next theorem.



Question: What properties of the flow Φt, or

of KE alone, imply the existence of a gap γ > 0

such that, for h > 0 sufficiently small,

z ∈ R(h) , Re z ∼ E =⇒ Im z < −γh?

In other words, what dynamical conditions

guarantee a lower bound on the quantum decay

rate?
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Theorem 4.(Nonnenmacher-Zworski 2006)

Suppose that the dimension dE satisfies

dE <
1

2
.

(That is, the dimension of the trapped set inside the energy

surface is less than two.)

Then there exists δ, γ > 0 such that

R(h) ∩
(
[E0 − δ, E0 + δ]− i[0, hγ]

)
= ∅ .

What is γ? It can be described using the topological

pressure of the flow on KE.



We can take any γ satisfying

0 < γ < min
|E0−E|≤δ

(−PE(1/2)) ,

PE(s) = pressure of the flow on KE.

The existence of a resonance gap depends on the sign of

the pressure at s = 1/2, PE(1/2).

The connection between the pressure and the quantum

decay rate first appeared in the physics/chemistry literature

in the work of Gaspard-Rice 1989.



Numerical results (Lin 2002):

Quantum resonances for the three bumps potential.

This and also some quantum map rigorous models of

Nonnenmacher-Zworski 2005 suggest that Theorem 2 is

optimal.



Preliminary experimental results (Kuhl-Stöckmann 2006):



Preliminary experimental results (Kuhl-Stöckmann 2006):



Preliminary experimental results (Kuhl-Stöckmann 2006):



The optimality of Theorem 4 is not clear even on the

heuristic or numerical grounds.

In the analogous case of scattering on convex co-compact

hyperbolic surfaces the results of Dolgopyat, Naud, and

Stoyanov show that the resonance free strip is larger at

high energies than the strip predicted by the pressure.

That relies on delicate zeta function analysis following the

work of Dolgopyat: at zero energy there exists a

Patterson-Sullivan resonance with the imaginary part

(width) given by the pressure but all other resonances have

more negative imaginary parts.


