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0. Introduction, Motivation and Pair Boson Model

e T he first version of Hamiltonian with BCS-Bose interaction,
(Pair Boson Hamiltonian (PBH), or BCS-Bose model) was
proposed by Zubarev and Tserkovnikov [Sov.Phys.Acad.Docl.1958].
Intention was to generalize the Bogoliubov model of the Weakly
Imperfect Bose Gas by including more terms of the total interac-
tion, without losing the possibility of having an ' exact” solution.
e Two-body v(xz — y) interacting Bose-gas in A C RY:

1 _
Hp = > e(k)ajar + v > o(g) a,’21_|_qa}';2_qak2akl,
keN® k1,k2,qeN*

e Truncations: (a) WIBG " 2-zero-momentum” BEC cut: {k1 =

ko = 0}, {k1 = —q,k2 =q}, {k1 = 0,k> =¢q},..., {k12 = q = 0}.

(b)"BCS" 1-constraint: {k1 = —k» =p} (p =0 cut = WIBG)=
1

v Z v(p — p’)a;/a*_p/ a—pap (If 9(p — p) = )\_p)\;j — BCS — Bose)

p,p EN*



1.1 BCS-Bose Hamiltonian

e Let A C RY be a cube of volume V = |A| centered at the origin.
The Kkinetic energy operator for a particle of mass m enclosed
into the cubic box A, is a self-adjoint extension of the operator
th = (—A/2m) in 95 = L2(A) with e.g., periodic boundary
conditions, i.e. with eigenvalues and eigenfunctions:

e(k) = ||k||?/2m, fiu(z) = e*/VV | ke N = {2rs/V/¥|s € 7V}

e Let fr — a*(f)(= af) and fi — a(fr)(= a;) be CCR rep-
resentation by the creation and annihilation operators in the
boson Fock space §(Hp): [a*(fx), a(fi)] = (fx, fir)g,- Then
N = a;;ak IS the k-mode particle number operator and Np =
> kenx Ni Is the total number operator. The kinetic-energy op-
erator Th :=dI(tp) (Perfect Bose-gas Hamiltonian), is

Th = Z e(k)a};a,k.
kEeN*



e ToO introduce a pairing term in the BCS-Bose Hamiltonian we
need the operators A, = A_; .= aja_;, kK € \* and

Qn = > Ak)A.
kEN*
e The function X : RY — C satisfies the following conditions:
IX(K)] < |X(0)| =1, Xk) =X(=k) forall kcR",
and there exists € < oo, 6 > 0 such that
¢
1 4_||k”rnax(y,y/24—1)4—5'
This implies that X € L1(R¥) and existence of M < oo that

mp = Y (XK < MV, np = Y e(B)AK)[Z < MV,
keN* kEN*

IA(R)| <

cp = sup e(k)|A(k)|? < M.
keN*



e [ he constant couplings u,v Pair Boson Hamiltonian is :

H —T/\——Q/\Q/\-I-
o Let ¢ :=argA(0) and A\(k) := A(k)e_'% Then A(O) =1 and
Hp —T/\——Q/\Q/\-I-

with Q/\ L= ZkE/\* )\(k)Ak, where |)\(l€)| < )\(O) = 1.

e We shall assume that v > 0 and a:=v—wu > 0. This condition

ensures the (super)stability of the model.

e REMARK: In the case u« <0 (BCS repulsion), the second

condition « > 0O is satisfied and the PBH gives the same ther-

modynamics as the Mean-Field (I\/IF) Bose-gas Hamiltonian:
H/]v — T/\ + ﬁ N )

but not the same Bose-Einstein Condensation (BEC) !!!
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1.2 Thermodynamics of the BCS-Bose Hamiltonian
e T he grand-canonical pressure corresponding to Hamiltonian Hp

1
PALHA] = 3 In Trexp {—B(HA — uNp)}.

e Theorem 1: The limiting pressure for the PBH model with
u > 0 (BCS attraction) has the form

L . 2)
= lim Ha| = sup inf H( : :
p = limpp[HA] qZOpZJ(q,p)ZOp[ A (g, p)]
while with « < 0 (BCS repulsion) it has the form

N __ : (2)
= Iim Hal = inf f H
p '/\ PALHA] (}gop:aég,p)zop[ A (q,p)] ,

2 1 v v
H? (g, p) 1= Tp + vpNp = Su(Qhg + Qaa") — Svp® + Sulaf? |
where g € C, p € R4 and the function:

a(q,p) = infrcre(f(k, p) — |h(k,q@)]) = vp — pu — |ulq.



2.1 CCR and Quasi-Free States
o Let f— b(f) :=a(f) + a*(f) on the Fock space F(L2(R¥) and
(Weyl operators) W(f) :=exp(ib(f)). Then CCR take the form

W(HW(g) = e SDW(F+9), o(f,g) = Tm(f,9).

e Truncated states on 2(b) are defined recursively:

w(b(f))t = w(b(f)), w(b(f)b(g)) = w(b(f)b(g))t + w(b(f))tw(b(g))t,
w(b(f1)--b(fn)) = Y wO(f)-- )t w(.b(fi))t,
e Quasi-Free states(QF) on the Weyl algebra 24(b) are :

w(W([f)) = exp{iw(b(f)) — 1w(b(f)b(f))t}-

For them all truncated functions of order n > 2 vanish:
o(f) = w(a*(f)), {f, Rg) = w(a*(f)a(g))—w(a*(f))w(alg)), (f,Sg) =
w(a(f)a(g)) —w(a(f))w(a(g)).
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2.2 Equilibrium States of the BCS-Bose Hamiltonian

e Theorem 2: Pure Gibbs state wa(—) = limpwpg, (—) generated
by the BCS-Bose Hamiltonian is Quasi-Free with parameters
defined by Theorem 1: ¢ = /pge’® = limp wyy, (ap=0/VV)

wlajar) = (f, Rfi) + 1c|*Vro,  wlaga_g) = (¢, Sér) + 2V 0,
for V—oo with p(k) = r(k), p = [dk p(k)4po and o = [dk X(k)s(k).

o Since f(k) = e(k)—putvp, Ek) = { F2(k) —u2A(k)[2(o0 + |02} /.

7= o ey () Ot 2IE® 1} + g0
ullo v 2
(lo| + po) = ( |2+ ro) - (;:;,, %2)' coth %ﬁE(k) + po -

e Chemical potential and the "spectrum’:

p=vp+u(po+lo|)) & E(k=0)=0.



3. Condensations, Pairing and Type III BEC

3.1 Let u > 0 (BCS-Bose attraction), v > 0 and v —u > O
(stability).

e For large u there is u_; (u) < pe: 0 0, po = 0 and "gap”,
when pz (u) < p < pe = vpt BC.
e For uc < u: pg > 0(one-mode BEC) = o # 0 and no "gap".

3.2 Let u < 0 (BCS-Bose repulsion).

e Pressure for BCS-Bose = Mean-Field model (v > 0).
e Condensations: ¢ =0 and pg =0 !
e BEC # 0 for pu > pe = vpl’BG and is type III.



