
Inverse Scattering at a Fixed Energy

Ricardo Weder

University of Helsinki and Universidad Nacional

Autónoma de México.
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Abstract

We prove that the averaged scattering solutions to the Schrödinger
equation with short-range electromagnetic potentials (V, A) where
V (x) = O(|x|−ρ), A(x) = O(|x|−ρ), |x| → ∞, ρ > 1, are dense in the set
of all solutions to the Schrödinger equation that are in L2(K) where K
is any connected bounded open set in Rn, n ≥ 2, with smooth boundary.
We use this result to prove that if two short-range electromagnetic
potentials (V1, A1) and (V2, A2) in Rn, n ≥ 3, have the same scattering
matrix at a fixed positive energy and if the electric potentials Vj and
the magnetic fields Fj := curlAj, j = 1, 2, coincide outside of some ball
they necessarily coincide everywhere.
In a previous paper of Weder and Yafaev the case of electric potentials
and magnetic fields in Rn, n ≥ 3, that are asymptotic sums of homoge-
neous terms at infinity was studied. It was proven that all these terms
can be uniquely reconstructed from the singularities in the forward
direction of the scattering amplitude at a fixed positive energy.
The combination of the new uniqueness result of this paper and the
result of Weder and Yafaev implies that the scattering matrix at a fixed
positive energy uniquely determines electric potentials and magnetic
fields that are a finite sum of homogeneous terms at infinity, or more
generally, that are asymptotic sums of homogeneous terms that actually
converge, respectively, to the electric potential and to the magnetic
field.
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We consider the Schrödinger operator in Rn,

H := (i∇ +A)2 + V = H0 +Q,

where the free Hamiltonian, H0 := −∆ is a self-adjoint operator with domain the

Sobolev space H2 and

Q := 2iA · ∇ + iDivA+A2 + V

is the perturbation.

For the purpose of this talk we assume, for simplicity, that A, V are C∞ and that,

|∂αA(x)| + |∂αV (x)| ≤ C(1 + |x|)−ρ−|α|, ρ > 1,

but if fact many of the results that I will discuss hold under weaker conditions.

The Schrödinger operator H is self-adjoint and bounded below with domain H2. It

has no singular–continuous spectrum , its absolutely–continuous spectrum is [0,∞)

and it has no positive eigenvalues. The negative spectrum consists of eigenvalues

with finite multiplicity and they can only accumulate at zero.

We state below standard results in the limiting absorption principle and in scattering

theory that we need [1, 2, 3]
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To state the limiting absorption principle we introduce weighted L2 spaces for s ∈ R.

L2
s :=

{
f : (1 + |x|2)s/2f(x) ∈ L2

}
, ‖f‖L2

s
:= ‖(1 + |x|2)s/2f(x)‖L2,

and for any α, s ∈ R,

Hα,s :=
{
f(x) : (1 + |x|2)s/2f(x) ∈ Hα

}
, ‖f‖Hα,s := ‖(1 + |x|2)s/2f(x)‖Hα.

Hα denotes the standard Sobolev spaces. C± designates, respectively, the upper,

lower, complex half-plane.

The limiting absorption principle is the following statement. For z in the resolvent

set of H let R(z) := (H − z)−1 be the resolvent. Then, for every E ∈ (0,∞) the

following limits,

R(E ± i0) := lim
ε↓0

R(E ± iε),

exist in the uniform operator topology in B
(
L2

s,H
α,−s

)
, s > 1/2, |α| ≤ 2. The func-

tions,

R±(E) :=

R(E), ImE 6= 0,

R(E ± i0) , E ∈ (0,∞),

defined for E ∈ C± ∪ (0,∞) with values in B
(
L2

s,H
α,−s

)
are analytic for ImE 6= 0

and locally Hölder continuous for E ∈ (0,∞) with exponent γ satisfying γ < 1, γ <

s− 1/2.
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The wave operators,

W± := s − lim
t→±∞

eitH e−itH0

exist as strong limits and are complete, i.e., Range W± = Hac where Hac denotes the

subspace of absolute continuity of H. Moreover, they have the intertwining property,

HW± = W±H0.

The scattering operator,

S := W ∗
+W−

is unitary.

Let us denote by T0(E) the following trace operator,

(T0(E)φ)(ω) := 2−1/2E(n− 2)/4 1

(2π)n/2

∫
Rn

e−iE
1/2x · ω φ(x) dx,

that is bounded from L2
s, s > 1/2, into L2(Sn−1), and furthermore, the operator valued

function E → T0(E) from (0,∞) into B(L2
s, L

2(Sn−1)) is locally Hölder continuous

with exponent γ < 1, γ < s− 1/2. Moreover, the operator,

(F0φ) (E,ω) := (T0(E)φ) (ω),

extends to a unitary operator from L2 onto Ĥ := L2((0,∞);L2(Sn−1)) that gives a

spectral representation for H0, i.e.,
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F0H0F∗
0 = E,

the operator of multiplication by E in Ĥ.

The perturbed trace operators are defined as follows,

(T±(E)φ) (ω) := T0(E)(I −QR±(E))φ,

for E ∈ (0,∞). They are bounded from L2
s, s > 1/2, into L2(Sn−1), and furthermore,

the operator valued functions E → T±(E) from (0,∞) into B(L2
s, L

2(Sn−1)) are locally

Hölder continuous with exponent γ < 1, γ < s− 1/2. The operators,

(F±φ) (E,ω) := (T±(E)φ) (ω),

extend to unitary operators from Hac onto Ĥ and they give spectral representations

for the restriction of H to Hac,

F±HF∗
± = E,

the operator of multiplication by E in Ĥ. Furthermore, the stationary formulae for

the wave operators hold,

W± = F∗
± F0.
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As S commutes with H0, we have that,

(
F0SF∗

0φ
)
(E,ω) = S(E)φ,

where S(E), E > 0, is unitary on L2(Sn−1). The operator S(E) is the scattering

matrix.

This time-dependent definition of the scattering matrix generalizes to general short-

range potentials the definition given in terms of scattering solutions that satisfy the

Sommerfeld radiation condition.

The scattering matrix has the following stationary representation,

S(E) = I − 2πiF0Q [I −R+(E)Q] F∗
0 , E ∈ (0,∞). (1)

The scattering matrix can be represented in terms of averaged scattering solutions

as follows. For any f ∈ L2(Sn−1) let us define the unperturbed averaged scattering

solutions as,

φ0,f(x;E) :=

∫
Sn−1

eiE1/2x·ω f(ω) dω.

Observe that φ0,f ∈ L2
−s, s > 1/2, and that H0 φ0,f = E φ0,f . The perturbed averaged

scattering solutions are defined as,

φ+,f(x;E) := [I −R+(E)Q]φ0,f , E ∈ (0,∞), f ∈ L2(Sn−1).

Then, φ+,f ∈ L2
−s, s > 1/2, and Hφ+,f = Eφ+,f .
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By (1) for f, g ∈ L2(Sn−1),

(S(E)f, g)L2(Sn−1) = (f, g)L2(Sn−1) − i
E(n−2)/2

2(2π)n−1
(Qφ+,f , φ0,g)L2 .

If ρ > (n + 1)/2, V,A,A2,DivA ∈ L2
s, s > 1/2, and we can define the scattering

solution,

φ+(x, ω;E) := eiE1/2x·ω −R+(E)
(
QeiE1/2x·ω

)
.

In this case

φ+,f(x;E) =

∫
Sn−1

φ+(x, ω;E) f(ω) dω,

what justifies the name averaged scattering solutions.

Note that it follows from the definition of the wave operators that the scattering oper-

ator S and the scattering matrix S(E) are invariant under the gauge transformation,

A → A+ ∇ψ, where |ψ(x)| ≤ C(1 + |x|)−µ, |∇ψ(x)| ≤ C(1 + |x|)−1−µ, µ > 0.

The magnetic field is defined as follows,

F := curlA, F (ij) = ∂iAj − ∂jAi.

7



THEOREM 1. (W., CPDE 2007 [4])

Suppose that n ≥ 3. Let Sj(E) be the scattering matrices corresponding, respectively,

to (Vj, Fj), j = 1, 2. Then, if some E > 0, S1(E) = S2(E) and V1(x) = V2(x), F1(x) =

F2(x) for |x| ≥ R > 0, we have that the electric potentials and the magnetic fields

coincide everywhere, i.e. V1(x) = V2(x), F1(x) = F2(x), x ∈ Rn.

This theorem extends the result of W. Inv. Prob. 1991 [5], where the case F = 0

and ρ > (n+ 1)/2 was considered.

An essential tool on the proof of this theorem is the completeness of the averaged

scattering solutions: we prove that the set,

{φ+,f(x;E)}
f ∈ LSn−1

is dense in the set of all solutions to

Hϕ = Eϕ

in L2(K) for any connected, open, bounded set K, with a regular boundary.

In the case that F = 0, ρ > n the completeness of the scattering solutions was proved

by Eidus, CPDE 1982 [6], and for F = 0, ρ > (n + 1)/2 in W., Inv. Prob. 1991 [5].

See also Sylvester and Uhlmann, 1990 [7], Ramm, 1992 [8] and Isakov, 1998 [9].
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We know consider a different type of uniqueness result where the asymptotics at

infinity of the electric potential and the magnetic field are uniquely reconstructed

from the singularity of the scattering amplitude in the forward direction.

The scattering matrix is an integral operator on L2(Sn−1) with integral kernel s(ω, ω′;E),

S(E)ϕ(ω) =

∫
Sn−1

s(ω, ω′;E)ϕ(ω′) dω′.

s(ω, ω′;E) is C∞ away from the diagonal ω = ω′.

Let us denote by Ṡ−ρ the set of C∞(Rn \ {0})-functions f(x) such that ∂αf(x) =

O(|x|−ρ−|α|) as |x| → ∞ for all α. An important example of functions from the class

Ṡ−ρ are homogeneous functions f ∈ C∞(Rn \ {0}) of order −ρ such that f(λx) =

λ−ρf(x) for all x ∈ Rn, x 6= 0, and λ > 0.

Let the functions fj ∈ Ṡ−ρj where ρj → ∞ (but the condition ρj < ρj+1 is not

required). The notation

f(x) '
∞∑

j=1

fj(x) (2)

means that, for any N , the remainder

f −
N∑

j=1

fj ∈ Ṡ−ρ where ρ = min
j≥N+1

ρj. (3)

In particular, if the sum (3) consists of a finite number N of terms, then the inclusion

(3) should be satisfied for all ρ. A function f ∈ C∞ is determined by its asymptotic

expansion (2) up to a term from the Schwarz class S = S−∞.
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We assume that V and F admit the asymptotic expansions,

V (x) '
∞∑

j=1

Vj(x), F (x) '
∞∑

j=1

Fj(x). (4)

THEOREM 2. ( W. and Yafaev, Inv. Prob. 2005 [10]) Suppose that an electric

potential V (x) and a magnetic field F (x) that are C∞(Rn)−functions, n ≥ 3, admit

the asymptotic expansions (4) and where Vj(x) and Fj(x) are homogeneous functions

of orders −ρj and −rj, respectively, where 1 < ρ1 < ρ2 < · · · and 2 < r1 < r2 < · · ·.

Then, the scattering data consisting of the kernel s(ω, ω′;E) of the scattering matrix

at a fixed positive energy E in a neighborhood of the diagonal ω = ω′ uniquely

determines each one of the Vj(x) and the Fj(x).

We also have formulae for the reconstruction of the Vj and the Fj, j = 1, 2, · · ·

For the case of long-range potentials see Weder and Yafaev 2007 [11].

For previous results see: Joshi and Sa Barreto 1988 [12], 1999 [13], and Joshi 2000

[14].
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Combining these two theorems we obtain our main result,

THEOREM 3. (W., 2007, [4]) Let the electric potentials Vj and the magnetic fields

Fj be C∞(Rn)− functions, n ≥ 3, j = 1, 2, and assume that they satisfy,

|∂αVj(x)| ≤ C(1 + |x|)−ρ−|α|, |∂αFj(x)| ≤ C(1 + |x|)−1−ρ−|α|, ρ > 1,

for all α. Moreover, suppose that they admit the asymptotic expansions

Vj(x) '
∞∑

l=1

Vj,l(x), Fj(x) '
∞∑

l=1

Fj,l(x), j = 1, 2, (5)

where Vj,l and Fj,l are homogeneous functions of orders, respectively, −ρj,l and −rj,l,

with, 1 < ρj,1 < ρj,2 < · · ·, and 2 < rj,1 < rj,2 < · · · , j = 1, 2. Assume, moreover, that

the asymptotic expansions (5) actually converge, respectively, to Vj and Fj, j = 1, 2,

in pointwise sense, for |x| large enough, or just that the sums in (5) are finite. Let

Sj(E) be, respectively, the scattering matrices corresponding to (Vj, Fj), j = 1, 2.

Then, if for some E > 0, S1(E) = S2(E), we have that V1(x) = V2(x) and F1(x) =

F2(x), x ∈ Rn.

It is known since quite some time that the scattering matrix at a fixed positive energy

uniquely determines electric potentials and magnetic fields if strong restrictions on

the decay at infinity are imposed. Ramm 1987, 1988 [8], Nakamura, Uhlmann and

Sun 1995 [15] consider potentials of compact support, and Novikov R G 1994 [16],

Eskin and Ralston 1995 [17], and Uhlmann and Vasy 2002 [18], potentials decaying
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exponentially at infinity. In W. 2004 [19] the uniqueness at a fixed quasi-energy was

proven for potentials periodic in time, that decay exponentially at infinity.

On the contrary, for general short-range potentials the scattering matrix at a fixed

positive energy does not determine uniquely the potential. Indeed, in Chadan and

Sabatier 1989 [20] examples -in three dimensions- are given of non-trivial radial os-

cillating potentials with decay as |x|−3/2 at infinity such that the corresponding scat-

tering amplitude is identically zero at some positive energy. Moreover, in dimension

two there are examples by Grinevich 1986 [21] of potentials with a regular decay as

|x|−2 at infinity that have zero scattering amplitude at some positive energy. W. and

Yafaev 2005 [10] give an example in two dimensions of a potential that decays as |x|−2

where the leading order of the scattering amplitude is zero for all energies.

Nevertheless, as we discussed above if two general short-range electric potentials and

magnetic fields coincide outside of some ball and if they have the same scattering

matrix at some positive energy they are equal everywhere.

Theorem 3 shows a new aspect of the inverse scattering problem at a fixed energy.

Namely, that uniqueness holds for general short-range electric potentials and mag-

netic fields without strongly restricting the decay at infinity, provided that the electric

potential and the magnetic field have a regular behavior at infinity. Of course, this

eliminates the oscillations and hence there is no contradiction with the examples of

Chadan and Sabatier 1989 [20].
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Furthermore, as we consider three or more dimensions there is no contradiction with

the two dimensional examples of Grinevich 1986 [21].

Idea of the Proof of Theorem 1

1) Completeness of Averaged Scattering Solutions.

Let K ⊂ Rn be connected, open, bounded and with a regular boundary. Suppose

that ϕ ∈ L2(K) is a solution to

Hϕ =
[
(i∇ +A)2 + V

]
ϕ = Eϕ

that is orthogonal to all the averaged scattering solutions, i.e.,

(ϕ, φ+,f)L2(K) = 0, f ∈ L2(Sn−1), (6)

and define,

ψ := R+(E)ϕ,

where we have extended ϕ by zero to Rn \K.

Using (6) we prove that,

T−(E)ϕ = 0.

Then, by the Agmon-Kuroda argument, ψ ∈ L2
−s, s < 1/2, and as

Hψ = Eψ + ϕ,

13



with ϕ(x) = 0, for x ∈ Rn\K, it follows from unique continuation that ψ is identically

zero on Rn \K and then,

‖ϕ‖2

L2(K)
= ((H − E)ψ,ϕ)L2(K) = (ψ, (H − E)ϕ)L2(K) = 0,

and it follows that ϕ = 0.

2) The Identity.

For simplicity we assume that Fj = 0, j = 1, 2. We prove that,

φ
(1)
+,f(x;E) = φ

(2)
+,f(x;E), for |x| ≥ R, f ∈ L2(Sn−1),

and using this result we obtain that,

∫
BR

(V2 − V1)φ
(1)
+,f φ

(2)
+,g dx = 0, f, g ∈ L2(Sn−1).

Then, by the completeness of the averaged scattering solutions,∫
BR

(V2 − V1)ϕ1 ϕ2 dx = 0 (7)

for every ϕj ∈ H2(BR) that are solutions to,

(H0 + Vj)ϕj = Eϕj, j = 1, 2.

3) The Faddeev Solutions.

For every p ∈ Cn \ Rn, with p2 = E and |p| large enough we construct the Faddeev’s

solutions, ϕj(x, p) ∈ H2
loc(R

n) to the equations

(H0 + χBR
(x)Vj)ϕj(x, p) = Eϕj(x, p), j = 1, 2,
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where χBR
is the characteristic function of BR, such that,

ϕj(x, p) = eip·x(1 + ψj(x, p)),

where ‖ψj(x, p)‖H1
−s

≤ Cs, s > 1/2, and

s− lim
|p|→∞

‖ψj(x, p)‖L2
−s

= 0.

Given any ξ ∈ Rn take a sequence p
(j)
l such that,

∫
BR

eiξ·x (V2(x) − V1(x)) dx = lim
l→∞

∫
BR

(V2(x) − V1(x))ϕ1(x, p
(1)
l )ϕ2(x, p

(2)
l ) dx = 0,

where we used (7). It follows that V1(x) = V2(x), x ∈ BR.

Idea of the proof of Theorem 2

s(ω′, ω;E) − δ(ω′, ω) = C(E) f(ω′, ω;E),

where C(E) is a constant, and f is the scattering amplitude.

We have that,

f ≈ e−πi(n−1)/4k(n−1)/2(2π)−(n−1)/2

∫
Πω

eik〈y, ω − ω′〉R(y, ω;E; V) dy, ω′ → ω,

where, k = E1/2, V = (V,A), and Πω is the hyperplane orthogonal to ω, and
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R(y, ω;E; V) := (2ik)−1

∫ ∞

−∞
(V (y + tω) − 2k〈ω,A(y + tω)〉) dt.

We define,

Re(y, ω;V ) :=

∫ ∞

−∞
V (y + tω) dt, ω ∈ Sn−1, y ∈ Πω, that is even inω, (8)

and

Rm(y, ω;A) :=

∫ ∞

−∞
〈ω,A(y + tω)〉 dt, ω ∈ Sn−1, y ∈ Πω, that is odd inω. (9)

If we know R(y, ω;E; V), ω ∈ Sn−1, we uniquely reconstruct V and F := curlA from

the X–ray transforms (8) and (9), respectively.

To handle the high-order terms we consider S(E) as a pseudodifferential operator on

L2(Sn−1) with symbol a(y, ω;E), where y is the variable in the hyperplane orthogonal

to ω.

s(ν, ω;λ) = (2π)−d+1kd−1

∫
Πω

e−ik〈y,ν〉a(y, ω;λ) dy

so that the scattering matrix S(λ) can be regarded as a pseudodifferential operator

on Sd−1 with right symbol a(y, ω;λ).

Note that the symbol a(y, ω;λ) can be recovered from the kernel s(ν, ω;λ) by the

inversion of the Fourier transform,

a(y, ω;λ) =

∫
Πω

eik〈y,η〉s(t(η), ω;λ)γ(η) dη, y ∈ Πω,
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where γ ∈ C∞
0 (Rd−1) is an arbitrary function such that γ(η) = 1 in some neighbour-

hood of zero and γ(η) = 0 for, say, |η| ≥ 1/2.

Remark that by eventually adding terms that are identically zero we can always

assume that rj = ρj + 1.

We prove that a admits the expansion into the asymptotic sum

a(y, ω;E) ' 1 +
∞∑

n=1

∞∑
m=0

∑
j1,j2,...,jn

an,m;j1,j2,...,jn(y, ω;E),

where jk = 1, 2, . . . for all k = 1, . . . , n,m = 0, 1, . . ., the functions an,m;j1,j2,...,jn(y, ω;E)

only depend on Vj1, Vj2, . . . ,Vjn and are homogeneous of order

n−m− ρj1 − ρj2 − . . .− ρjn

in the variable y. In particular,

a1,0;j(y, ω;E) = R(y, ω;E; Vj)

is a homogeneous function of order −ρj + 1.

This allows us to uniquely reconstruct each Vj, Fj in a recursive way as follows.

Let us denote by T the mapping that sends V into the function a − 1. Of course, it

is defined up to a symbol from the class S−∞. Thus, we put

T (y, ω;λ; V) = a(y, ω;λ) − 1.

Moreover, we distinguish the leading order term, R, of the linear part of T , and set

Q(y, ω;λ; V) = T (y, ω;λ; V) −R(y, ω;λ; V).

We need the following simple property of the mapping Q.
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PROPOSITION 1. Suppose that V(j) ∈ S−ρ(j)
, j = 1, 2, where ρ(2) > ρ(1) > 1. Then

Q(V(1) + V(2)) −Q(V(1)) ∈ S−ρ(2)+1−ε, ε = min{ρ(1) − 1, 1} > 0.

It is convenient to introduce the following notation. Suppose that some function

f admits the expansion in the asymptotic series (2) of homogeneous functions. By

taking sums of such functions it cannot be excluded that some terms will be equal to

zero. Therefore we define f ] as the highest order homogeneous term fk in (2) that is

not identically zero. For example, f ] = 0 if f ∈ S.

Suppose now that we have found the coefficients Vk for all k = 1, . . . , n − 1, n ≥ 2.

Let us reconstruct Vn. We apply Proposition 1 to the functions V(1) =
∑n−1

j=1 Vj,

V(2) = V − V(1) where ρ(1) = ρ1, ρ
(2) = ρn. This yields

Q(V) −Q(

n−1∑
j=1

Vj) ∈ Ṡ−ρn+1−ε, ε > 0,

and thus, for an arbitrary ρn, this term can be neglected compared to R(Vn). All

terms R(Vj), j ≥ n+ 1, are also negligible compared to R(Vn). Therefore,

R(Vn) +
∑

j≥n+1

R(Vj) + (Q(V) −Q(

n−1∑
j=1

Vj)) = a− 1 − T (

n−1∑
j=1

Vj)

and selecting terms of the highest order, we obtain that

R(Vn) = (a− 1 − T (

n−1∑
j=1

Vj))
].

Having found R(Vn), we recover the functions Vn, Fn using the inversion of the

two-dimensional Radon transform.
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Let me briefly explain how this is done.

For v ∈ S−ρ(R2), ρ > 1, the Radon (or X-ray, which is the same in the dimension

two) transform is defined by the formula

r(ω, y; v) =

∫ ∞

−∞
v(ωt+ y)dt, ω ∈ S, 〈ω, y〉 = 0. (10)

Obviously, r(ω, y) = r(−ω, y). The Fourier transform v̂ of v and hence the function

v itself can be recovered in the following way. Let ωξ be one of the two unit vectors

such that 〈ωξ, ξ〉 = 0. Then

v̂(ξ) = (2π)−1

∫ ∞

−∞
e−i|ξ|sr(ωξ, sξ̂; v)ds, ξ̂ = ξ|ξ|−1. (11)

We apply this method for the reconstruction of a homogeneous function V ∈ C∞(Rd\

{0}) of order −ρ < −1 from its X-ray transform

Re(y, ω;V ) :=

∫ ∞

−∞
V (y + tω) dt,

known for all ω ∈ Sd−1 and y ∈ Πω, y 6= 0. For an arbitrary x ∈ Rd \ {0}, consider

some two-dimensional plane Λx orthogonal to x and, for y ∈ Λx, set vx(y) = V (x+y).

Then for all ω ∈ Λx, |ω| = 1, and all y ∈ Λx, 〈ω, y〉 = 0,

r(ω, y; vx) = Re(ω, x+ y;V ). (12)

Since x + y 6= 0, the function vx ∈ S−ρ(R2) so that we can recover the function vx

and, in particular, vx(0) = V (x) by formula (11). This procedure is used for the

reconstruction of the asymptotics of the electric potentials.
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In the magnetic case we are given only the integral

Rm(y, ω;A) :=

∫ ∞

−∞
〈ω,A(y + tω)〉 dt, ω ∈ Sn−1, y ∈ Πω, that is odd inω.

for all ω ∈ Sd−1 and y ∈ Πω, y 6= 0. Since this integral is zero if A(x) = gradφ(x) and

φ(x) → 0 as |x| → ∞, we cannot hope to recover A from this equation. Nevertheless,

the corresponding magnetic field F (x) = curlA(x) can be recovered. Assume again

that A ∈ C∞(Rd \ {0}) is a homogeneous vector-valued function of order −ρ < −1.

Let us consider one of the components of F (x), for example, F (12)(x). We will

first show how F (12)(x) can be reconstructed everywhere except the plane L12 where

x3 = . . . = xd = 0. Let ω = (ω1, ω2, 0, . . . , 0) be any unit vector in the plane L12, let

ν = (−ω2, ω1, 0, . . . , 0) be the unit vector obtained by rotating ω in the plane L12 by

the angle π/2 in the counter-clockwise sense and let x̃ = (0, 0, x3, . . . , xn) 6= 0 be an

arbitrary vector that is orthogonal to L12. Set f
(12)
x̃ (y) = F (12)(x̃+ y) for y ∈ L12. It

is easy to see that

r(ω, y; f
(12)
x̃ ) = −∂Rm(ω, sν + x̃;A)/∂s, y = sν. (13)

Indeed, since F (12) is invariant under rotations in the plane L12, it suffices to check

(13) for the case ω1 = 1, ω2 = 0 when (13) reads as∫ ∞

−∞
F (12)(t, s, x3, . . . , xn)dt = −

∂

∂s

∫ ∞

−∞
A(1)(t, s, x3, . . . , xn)dt.

For the proof of this relation, we have only to use the definition F (12) = ∂A(2)/∂t−

∂A(1)/∂s and the fact that the integral of ∂A(2)/∂t is zero. Finding expression (13),
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we can recover F (12)(y + x̃) for all y ∈ L12 by formula (11). By virtue of the homo-

geneity of the function F (12), this yields F (12)(x) everywhere except the plane L12.

Thus, the magnetic field F (x) is reconstructed for all x 6= 0.

Formula (13) can of course be rewritten in the invariant way. For example, in the

case d = 3 it means that, for arbitrary ω, n ∈ S2, 〈ω, n〉 = 0,

∫ ∞

−∞
〈n, curlA(tω + x)〉dt = 〈ω ∧ n,∇x

∫ ∞

−∞
〈ω,A(tω + x)〉dt〉,

where the symbol “ ∧ ” means the vector product.

Finally, if only the combination

R(y, ω;E; V) := (2ik)−1

∫ ∞

−∞
(V (y + tω) − 2k〈ω,A(y + tω)〉) dt.

is known, then using that Re and Rm are even and odd functions of ω ∈ Sd−1,

respectively, we obtain that

Re(y, ω;V ) = ik(R(y, ω;E; V) +R(y,−ω;E; V)),

Rm(y, ω;A) = i2−1(R(y,−ω;E; V) −R(y, ω;E; V)).

This allows us to reconstruct the functions V and F by the formulae given above.

An Adapted Gauge.

|∂αF (x)| ≤ C(1 + |x|)−r−|α|, r > 2.
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We define

A
(i)
reg :=

∫ ∞

1

s
n∑

j=1

F (ij)(sx)xjds,

A(i)
∞ := −

∫ ∞

0

s

n∑
j=1

F (ij)(sx)xjds.

We have that,

A∞(λx) = λ−1A∞(x), curlA∞(x) = 0, x 6= 0.

Moreover,

Atrans = Areg +A∞.

Define,

U(x) :=

∫
Γx0x

〈A∞(y), dy〉, x 6= 0, 0 6= Γx0x.

gradU(x) = A∞(x).

Then,

A(x) := Areg(x) + grad ((1 − η(x))U(x)) = Areg(x) + (1 − η(x))A∞(x)−

U(x)gradη(x),

η ∈ C∞(R3), η(x) = 0, |x| ≤ ε, η(x) = 1, |x| ≥ 1.
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