Spectral analysis for convolution operators on groups

Rafael Tiedra de Aldecoa (University of Cergy-Pontoise)

QMath 10, September 2007

Joint work with Marius Măntoiu (IMAR)

Contents

1	Convolution operators on groups	3
2	Theorem	5
3	Sketch of the proof	7
4	Examples	9
5	Some references	10

1 Convolution operators on groups

- X, locally compact group (LCG) with a left Haar measure λ ,
- M(X), complex bounded Radon measures,
- $C_0(X)$, continuous functions on X decaying to 0 at infinity.

For $\mu, \nu \in M(X)$ and $f \in \mathcal{H} := L^2(X, d\lambda)$ we set

$$(\mu * f)(x) := \int_X d\mu(y) f(y^{-1}x), \quad x \in X,$$
$$\int_X d(\mu * \nu)(x) g(x) := \int_X \int_X d\mu(x) d\nu(y) g(xy), \quad g \in C_0(X)$$

Given $\phi:X\to\mathbb{R}$ (nice enough), $\phi\mu\in\mathsf{M}(X)$ corresponds to the bounded functional

$$C_0(X) \ni g \mapsto \int_X \mathrm{d}\mu(x) \, \phi(x)g(x) \in \mathbb{C}.$$

The convolution operator H_{μ} , $\mu \in M(X)$, is defined by

$$(\mathsf{H}_{\mu}f)(x) := (\mu \ast f)(x) = \int_X \mathrm{d} \mu(y)\,f(y^{-1}x), \quad f \in \mathcal{H}, \ x \in X.$$

One has

$$\begin{split} &1. \ \left\|H_{\mu}\right\| \leq |\mu|(X), \\ &2. \ \left(H_{\mu}\right)^{*} = H_{\mu^{*}}, \, \mathrm{where} \,\, \mu^{*}(E) = \overline{\mu(E^{-1})} \quad (E \,\, \mathrm{Borel \,\, subset \,\, of} \,\, X). \end{split}$$

 $\implies H_{\mu}$ is bounded and selfadjoint if $\mu=\mu^{*}\in \mathsf{M}(X)\,.$

5/10

2 Theorem

- Hom(X, \mathbb{R}), continuous group morphisms $\Phi: X \to \mathbb{R}$

 $\begin{array}{lll} \textbf{Definition 2.1. } Let \ \mu = \mu^* \in \mathsf{M}(\mathsf{X}). \\ (a) \ \Phi \in \operatorname{Hom}(\mathsf{X},\mathbb{R}) \ belongs \ to \ \operatorname{Hom}^{\operatorname{ad}}_{\mu}(\mathsf{X},\mathbb{R}) \ if \\ & \Phi\mu, \Phi^2\mu, \Phi^3\mu \in \mathsf{M}(\mathsf{X}), \qquad (decay \ assumptions), \\ & (\Phi\mu)*\mu = \mu*(\Phi\mu), \qquad (first \ order \ commutation), \\ & (\Phi\mu)*(\Phi^2\mu) = (\Phi^2\mu)*(\Phi\mu), \qquad (second \ order \ commutation). \end{array}$

(b) We set

$$\mathcal{K}^{\mathrm{ad}}_{\mu} \coloneqq \bigcap_{\Phi \in \mathrm{Hom}^{\mathrm{ad}}_{\mu}(X,\mathbb{R})} \ker(H_{\Phi\mu}).$$

Theorem 2.2. Let X be a LCG and let $\mu = \mu^* \in M(X)$. Then $\mathcal{H}_{sing}(H_{\mu}) \subset \mathcal{K}_{\mu}^{ad}$.

Thus:

- H_{μ} is purely absolutely continuous if $\mathcal{K}_{\mu}^{\mathrm{ad}} = \{0\}.$

- The spectral structure of H_{μ} is somehow related to the "size" of the space $\operatorname{Hom}(X,\mathbb{R})?$

3 Sketch of the proof

Let $\Phi \in \operatorname{Hom}_{\mu}^{\operatorname{ad}}(X, \mathbb{R})$.

1. One has the (first and second order) commutation identities

$$\mathsf{K} := \mathfrak{i}[\mathsf{H}_{\mu}, \Phi] = -\mathfrak{i}\mathsf{H}_{\Phi\mu} \in \mathcal{B}(\mathcal{H}) \quad \text{and} \quad [\mathsf{H}_{\mu}, \mathsf{K}] = \mathfrak{0}.$$

2. Set
$$A := \frac{1}{2}(\Phi K + K\Phi)$$
 on $\mathcal{D}(A) := \{f \in \mathcal{H} \mid \Phi K f \in \mathcal{H}\}.$
(by analogy to $D := \frac{1}{2}(QP + PQ) = \frac{1}{2}(Qi[\frac{P^2}{2}, Q] + i[\frac{P^2}{2}, Q]Q)$
in quantum mechanics)

3. One has $i[H_{\mu}, A] = K^2 \ge 0$, and thus

$$\mathfrak{i}[H_{\mu},A]=K^2>0\quad \mathrm{on}\ [\ker(K)]^{\perp}.$$

4. Apply the following Kato-Putnam-type theorem with $\mathcal{H}_0 = [\ker(K)]^{\perp} \text{ and }$

 $A_0 = A \upharpoonright \mathcal{H}_0,$ $H_0 = H_{\mu} \upharpoonright \mathcal{H}_0.$

If H_0 is a bounded selfadjoint operator in a Hilbert space \mathcal{H}_0 , one has:

Definition 3.1. A selfadjoint operator A_0 in \mathcal{H}_0 is weakly conjugate to H_0 if $i[H_0, A_0]$ is bounded and $i[H_0, A_0] > 0$.

Theorem 3.2. Let A_0 be weakly conjugate to H_0 with $i[H_0, A_0]$ regular w.r.t. A_0 . Then the spectrum of H_0 is purely absolutely continuous.

5. Thus

$$\mathcal{H}_{\mathrm{sing}}(H_{\mu}) \subset \ker(K) = \ker(H_{\Phi\,\mu}).$$

4 Examples

Example 4.1 (Central groups). Let X be central, take a non compact element $z \in Z(X)$, and set $\mu := \delta_z + \delta_{z^{-1}}$. Choose $\Phi \in \text{Hom}(X, \mathbb{R})$ such that $\Phi(z) = \frac{1}{2}\Phi(z^2) \neq 0$. Then

$$\mathcal{H}_{\mathrm{s}}(\mathsf{H}_{\mu}) \subset \ker(\mathsf{H}_{\Phi\mu}) = \left\{ \mathsf{f} \in \mathcal{H} \mid \mathsf{f}(z^{-1} \cdot) = \mathsf{f}(z \cdot) \right\} = \{0\}.$$

Thus $\mathcal{H}_{ac}(\mathcal{H}_{\mu}) = \mathcal{H}.$

Other examples can be found on $X = S_3 \times \mathbb{Z}$, $X = SU(2) \times \mathbb{R}$, etc.

Example 4.2 (Abelian groups). Application of the Fourier transform to Theorem 2.2 gives a result on multiplication operators.

Example 4.3 (Semidirect products). $\mathcal{H}_{ac}(H_{\mathfrak{a}}) \neq \{0\}$ for appropriate functions $\mathfrak{a} = \mathfrak{a}^* \in L^1(X)$ on $X = \mathbb{N} \times_{\tau} G$, where \mathbb{N}, G are discrete with G abelian and $\tau : G \to \operatorname{Aut}(\mathbb{N})$ is a suitable group morphism.

5 Some references

• A. Boutet de Monvel and M. Măntoiu. The method of the weakly conjugate operator. *Lecture Notes in Phys.*, 1997.

• G. Georgescu and S. Golénia. Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees. *J. Funct. Anal.*, 2005.

• M. Măntoiu, S. Richard and R. Tiedra de Aldecoa. Spectral analysis for adjacency operators on graphs. *To appear in Ann. Henri Poincaré.*

• M. Măntoiu and R. Tiedra de Aldecoa. Spectral analysis for convolution operators on locally compact groups. *To appear in J. Funct. Anal.*