The Scattering Operator in the Stepwise Waveguides

I.A. Shereshevskii,
Institute for Physics of Microstructures RAS,
Nizhnii Novgorod, Russia.
e-mail: ilya@ipm.sci-nnov.ru
Waveguides...

- Cross-section
- Boundary conditions
- Refractive index
- ...
- Electrodynamics
- Acoustics
- Quantum mechanics
- Optics...
Waveguides interfaces...

Boundary conditions of different types

Different shape of cross-sections

Different materials (refractive index, potentials...)

IPM RAS, Nizhnii Novgorod, 2007

3
Scattering operator

- In- and out-waves: what they are?
- Scattering matrix and scattering operator
- What are mathematic definition?
- What are properties?
S-operator in waveguide...

\[
\begin{pmatrix}
A_{\text{out},\text{left}} \\
A_{\text{out},\text{right}}
\end{pmatrix}
= \hat{S}
\begin{pmatrix}
A_{\text{in},\text{left}} \\
A_{\text{in},\text{right}}
\end{pmatrix}
\]

\text{in-waves} (left and right)

\text{out-waves} (left and right)
Abstract waveguide operator

- Stepwise waveguide: Operator, selfadjoint extensions, scattering operator in the resolvent point
- Domain and properties
Homogeneous waveguide: mathematical model

Space: \(H_W = H \otimes L_2(\mathbb{R}), \quad \dim H \leq \infty \)

Operator:
\[
W = I \otimes \frac{d^2}{dz^2} + A \otimes I, \quad D_{\text{ess}}(W) = D(A) \otimes C_0^\infty(\mathbb{R}), \quad \dim H \leq \infty
\]

where \(\hat{A} \) is self-adjoint non-positive operator in \(H \) with compact resolvent.

Resolvent:
\[
\left(R_W(\lambda)f \right)(z) = -\frac{1}{2} \int_{-\infty}^{\infty} dy \left(\lambda - A \right)^{-1/2} e^{-A^{1/2}|z-y|} f(y)
\]

\(\text{Im}\lambda \neq 0, \quad \text{Re}\left(\lambda - \hat{A}\right)^{1/2} > 0 \)
Homogeneous waveguide: Limiting amplitude principle

\[\left(R_w \left(-\omega^2 + i0 \right) f \right)(z) = \frac{i}{2} \int_{-\infty}^{\infty} dy \left(\omega^2 + \hat{A} \right)^{-1/2} e^{i \left(\omega^2 + \hat{A} \right)^{1/2} |z-y|} f(y) \]

\(-\omega^2 \notin \text{spec } \hat{A}\)

\[D \left(R_w \left(-\omega^2 + i0 \right) \right) \supset H \otimes C_0^\infty (\mathbb{R}), \]

\[R \left(R_w \left(-\omega^2 + i0 \right) \right) = \left(H \otimes L_2 (\mathbb{R}) \right) \bigoplus \left(V_\mu \otimes \left\{ e^{i (\omega^2 - \mu)^{1/2} |z|} \right\} \right), \]

This is “propagating” “Out”-states
Stepwise waveguide: mathematical model

Space: \[H_w = H_+ \otimes L_2(\mathbb{R}_+) \oplus H_- \otimes L_2(\mathbb{R}_-) \supset \]

\[\supset D(\hat{\mathcal{W}}_0) = H_+ \otimes C_0^\infty(\mathbb{R}_+) \oplus H_- \otimes C_0^\infty(\mathbb{R}_-) \]

Operator: \[\hat{\mathcal{W}}_0 = \left(I_+ \otimes \frac{d^2}{dz^2} + \hat{A}_+ \otimes I \right) \oplus \left(I_- \otimes \frac{d^2}{dz^2} + \hat{A}_- \otimes I \right) \]

The models of the stepwise waveguide are the self-adjoint extensions \(\hat{\mathcal{W}}_V \) of \(\hat{\mathcal{W}}_0 \)

This operator is not self-adjoint!

\[V \text{ is a parameter of extension} \]

Notations:

\[B_\pm(\lambda) = (\lambda - A_\pm)^{1/2}, \quad \text{Im} B_\pm(\lambda) > 0, \quad B(\lambda) = B_+(\lambda) \oplus B_-(\lambda) \]
Stepwise waveguide: Self-adjoint extensions, von Neumann approach

The deficiency spaces: \(N_{\pm} = \ker(W_0^* \pm i) \)

The isomorphism: \(H_{A}^{\pm} \) are the augmentations of the spaces \(H_{\pm} \)

with respect the norm \(\|v\|_{H_{A}^{\pm}} = \|X_{\pm}^{-1}v\|_{H_{\pm}}, \ X_{\pm} = (B_{\pm}(i) + B_{\pm}(-i))^{1/2} \)

\[N_{\pm} \approx H_{A}^{+} \oplus H_{A}^{-} = H_{A} \]

If \(u \in D(W_0) \), then \(u(0 \pm 0) \in H_{A}^{\pm} \)

The self-adjoint extensions are parameterized by unitary operators

\(V \) in \(H_{A} : \)

\[u \in D(W_{V}) \Leftrightarrow Q_{0}u_{0} + Q_{1}u_{0}' = 0 \in H_{A}, \ u_{0}^e = u_{0}^e(0 + 0) \oplus u_{0}^e(0 - 0) \]

\[Q_{0} = (I + V)^{-1}, \ Q_{1} = (B(i) + B(-i)V)^{-1}J, \ J = I_{+} \oplus (-I_{-}) \]
Stepwise waveguide: The resolvent and the scattering operator

\[\left(R_{W_\nu}(\lambda)f \right)(z) = -\frac{1}{2} \int_0^\infty B_{\varepsilon}^{-1}(\lambda) e^{-|z-\xi|B_{\varepsilon}(\lambda)} f(\varepsilon\xi) d\xi - e^{-\varepsilon z B_{\varepsilon}(\lambda)} u_\varepsilon, \]

\[\varepsilon = \text{sign } z \in \{+,-\} \]

\[u_+ \oplus u_- = S(\lambda) \left(F_+^{\text{in}} \oplus F_-^{\text{in}} \right), \]

\[F_\varepsilon^{\text{in}} = -\frac{1}{2} \int_0^\infty B_{\varepsilon}^{-1}(\lambda) e^{-\xi B_{\varepsilon}(\lambda)} f(\varepsilon\xi) d\xi \]

\[S(\lambda) \equiv \left(-Q_0 + Q_1 B(\lambda) J \right)^{-1} \left(Q_0 + Q_1 B(\lambda) J \right) \]

This are the In- and Out- states

This is scattering operator
Questions...

\[\hat{S}(\lambda) = \left(-\hat{Q}_0 + \hat{Q}_1 B(\lambda) J \right)^{-1} \left(\hat{Q}_0 + \hat{Q}_1 B(\lambda) J \right) \]

\[Q_0 = (V + I)^{-1}, \quad Q_1 = \left(B(-i)V + B(i) \right)^{-1} J \]

The scattering operator is \textit{bounded operator} in the space H_A

All is O.K. if $\dim H_\pm < \infty$! (quantum mechanics)

1. Does the scattering operator must be bounded in H?
2. How to calculate the scattering operator in the infinite dimensional case?
The “wild” scattering operator

Theorem. There exists “abstract” infinite dimensional stepwise waveguide such that corresponding scattering operator is unbounded for all $\lambda \in \mathbb{C}$ as operator in the Hilbert space $H_+ \oplus H_-$, and its domain contains all finite elements.

Problem: What is the condition on the abstract waveguide (spaces, operators, extensions), such that corresponding scattering operator is bounded?
The “wild” scattering operator: construction

\[W(\beta): \]

\[H_+ = H_- = \mathbb{C}^2, \quad A_0 = \begin{pmatrix} 1 & 0 \\ 0 & \beta^4 \end{pmatrix}, \quad A_+ = UA_0 U^*, \quad U = U^* = U^{-1} = \frac{1}{1 + \beta^2} \begin{pmatrix} 1 - \beta^2 & 2\beta \\ 2\beta & \beta^2 - 1 \end{pmatrix} \]

\[u(0^-) = u(0^+), \quad u(0^-) = u'(0^+) \]

\[S(\beta) = \begin{pmatrix} R(\beta) & T(\beta) \\ UR(\beta) U^* & UR(\beta) U^* \end{pmatrix}, \quad R(\beta) = T(\beta) - E, \quad T_{12}(\beta) = O(\beta) \text{ when } \beta \gg |\lambda| \]

\[W = \bigoplus_{n=1}^{\infty} W(\beta_n), \quad \beta_n \to \infty \]

\[S_W = \bigoplus_{n=1}^{\infty} S(\beta_n) \]
The problem of approximation

What is finite dimensional approximation?

For space $H : \{H_n, T_n : H \to H_n\}_{n=1}^{\infty}$, $\|T_n u\|_n \xrightarrow{n \to \infty} \|u\|$

For operator in H:

\[
\begin{align*}
 H & \xrightarrow{A} H \\
 \downarrow T_n & \quad \downarrow T_n, \quad \|A_n T_n u - T_n A u\|_n \xrightarrow{n \to \infty} 0 \\
 H_n & \xrightarrow{A_n} H_n
\end{align*}
\]

Definition. Let \hat{A} be the self-adjoint operator with compact resolvent in the Hilbert space H. The element $f \in H$ is called finite with respect to the operator \hat{A} if its spectral expansion contains finite number of members.
Approximation and convergence for scattering operator

Construction of approximation. Let P_n^\pm be the orthogonal projectors in H_\pm onto the increasing finite parts of the spectra of operators \hat{A}_\pm such that $P_n^\pm \rightarrow I_\pm$. Let further for any operator Op^\pm in H_\pm
$Op^\pm_n = P_n^\pm Op^\pm P_n^\pm$ and for any operator Op in $H = H_+ \oplus H_-$
$Op_{m,n} = P_{m,n} Op P_{m,n}$
with $P_{m,n} = P_m^+ \oplus P_n^-$

Let $S^{(m,n)}$ be the scattering operator for $A^+_m, A^-_m, Q^{0,1}_{m,n}$

Theorem. For any finite vector $f \in H$ there exists the limit in H_A
$$\lim_{m,n \rightarrow \infty} S^{(m,n)} P_{m,n} f = S f$$
where S is the scattering operator for $A^+_0, A^-_0, Q^{0,1}_{m,n}$

This is the method for calculating S!
Multistep waveguide and composition of scattering operators

\[\Delta_j = (a_{j-1}, a_j) \]

Mathematics: Multipoint self-adjoint extensions

\[P_j(t) = e^{-\frac{i}{\hbar}(\lambda - A_j)^{1/2}} \]

IPM RAS, Nizhnii Novgorod, 2007
Multistep waveguide: Resolvent via scattering operators for interfaces

\[u = R_w(\lambda) f : \]

\[u(z) = -\frac{1}{2} B_j^{-1}(\lambda) \int_{\Delta_j} P_j(|z - \zeta|) f(\zeta) \, d\zeta + P_j(z - a_{j-1}) v_j^+ + P_j(a_j - z) v_j^- \]

\[
\begin{pmatrix}
 v_{j+1}^+ \\
 v_j^-
\end{pmatrix}
= S_j(\lambda)
\begin{pmatrix}
 P_{j+1}(|\Delta_{j+1}|) v_{j+1}^- + \psi_{j+1}^+ \\
 P_j(|\Delta_j|) v_j^+ + \psi_j^-
\end{pmatrix}, \quad v_0^+ = 0, \quad v_{N+1}^- = 0
\]

\[\psi_j^e = -\frac{1}{2} B_j^{-1}(\lambda) \int_{\Delta_j} P_j \left(\varepsilon \zeta + a_{j+\text{sign} \varepsilon - 1} \right) f(\zeta) \, d\zeta \]

The approximation and these formulas is the background for field calculation in the multistep waveguide.