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Rotating Bose Gases

Ultra-cold dilute Bose gases in rotating traps show appearance of quantized vortices.
These are well described by the Gross-Pitaevskii (GP) equation:

Experiments: [Madison et at.,
Phys. Rev. Lett. 84, 806 (2000)]

Prediction of GP equation: [Castin,
Dum, Eur. Phys. J. D 7, 399 (1999)]
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The Gross-Pitaevskii Equation

The GP equation originates from the GP energy functional

EGP[φ] = 〈φ|H0|φ〉+ 4πg

∫

R3
|φ(x)|4d3x .

With Ω the angular velocity vector and V (x) the trap potential,

H0 = −∆ + V (x)− Ω · L

The GP energy is
EGP(g, Ω) = inf

‖φ‖2=1
EGP[φ] ,

and any minimizer satisfies the GP equation

−∆φ(x) + V (x)φ(x)− Ω · Lφ(x) + 8πg|φ(x)|2φ(x) = µφ(x)

For axially symmetric V (x) and Ω 6= 0, symmetry is broken ⇒ many GP minimizers!
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The Many-Body Problem

Hamiltonian for N bosons with repulsive pair interaction va(x):

HN =
N∑

i=1

H
(i)
0 +

∑

1≤i<j≤N

va(xi − xj) .

Acts on HN , the symmetric functions in
⊗N

L2(R3).

As before, H0 = −∆ + V (x)− Ω · L, with lim|x|→∞
(
V (x)− 1

4 |Ω ∧ x|2) = ∞.

va(x) ≥ 0, short range, with finite scattering length a. (Example: hard spheres of
diameter a.) We write

va(x) = a−2w(x/a) ,

with w(x) ≥ 0 having scattering length 1. We can then vary a (equivalent to scaling the
trap potential!). In particular,

E0 = inf spec HN = E0(N, a,Ω) .
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Main Theorem 1

Expect
E0(N, a,Ω) ≈ NEGP(Na, Ω)

for dilute gases, i.e, when a3ρ̄ ¿ 1. In particular satisfied if N À 1, Na = O(1).

Theorem 1. For any g ≥ 0,

lim
N→∞

E0(N, g/N, Ω)
N

= EGP(g, Ω)

Theorem 1 holds for all angular velocities Ω. It extends previous results on the case Ω = 0
[Lieb, Seiringer, Yngvason, PRA 61, 043602 (2000)].

It is essential to restrict to symmetric wave functions (bosons) in Theorem 1!

Note the independence of w(x). In dilute limit only scattering length matters. Note also
that the result cannot be obtained by simple perturbation theory; in particular, the

∫ |φ|4
term in the GP functional is partly kinetic energy!
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Bose-Einstein Condensation

The GP minimizers also tell us something about the one-particle density matrix

γ
(1)
N (x, x′) = N

∫

R3(N−1)
Ψ0(x, x2, . . . , xN )Ψ∗0(x

′, x2, . . . , xN )d3x2 · · · d3xN

and about Bose-Einstein condensation (BEC) in the ground state of HN .

BEC means that γ
(1)
N has an eigenvalue of order N . The corresponding eigenfunction is

the condensate wave function. For dilute systems, one expects complete BEC, and

γ
(1)
N (x, x′) ≈ NφGP(x)φGP(x′).

For Ω = 0 it was shown [Lieb, Seiringer, PRL 88, 170409 (2002)] that

lim
N→∞

1
N

γ
(1)
N (x, x′) = φGP

g (x)φGP
g (x′)

in the GP limit N →∞, Na → g. Here, φGP
g is the GP minimizer for coupling constant

g ≥ 0, which is unique for Ω = 0.
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BEC in Rotating Case

For Ω 6= 0, the result is more complicated because of non-uniqueness of φGP.

Look at set of all approximate ground states: A sequence of bosonic N -particle
density matrices γN with TrHNγN ≈ NEGP.

One can then expect that the reduced one-particle density matrix γ
(1)
N of any such approx-

imate ground state is a convex combination

γ
(1)
N (x, x′) ≈

∑

i

λiφ
GP
i (x)φGP

i (x′)∗

where φGP
i is a GP minimizer, and

∑
i λi = N .

The mathematical precise formulation is complicated by the fact that the set of GP mini-
mizers is, in general, not countable.
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Main Theorem 2

Let Γ be the set of all limit points of 1pdm of approximate ground states:

Γ =
{

γ : ∃ sequence γN , lim
N→∞, Na→g

1
N

Tr HNγN = EGP(g, Ω), lim
N→∞

1
N

γ
(1)
N = γ

}
.

Compactness implies that Tr γ = 1 for all γ ∈ Γ.

Theorem 2. (i) Γ is a compact and convex subset of the set of all trace class op-
erators.

(ii) Let Γext ⊂ Γ denote the set of extreme points in Γ. We have Γext = {|φ〉〈φ| :
EGP[φ] = EGP(g, Ω)}.

(iii) For each γ ∈ Γ, there is a positive (regular Borel) measure dµγ , supported in
Γext, with

∫
Γext

dµγ(φ) = 1, such that (in weak sense)

γ =
∫

Γext

dµγ(φ) |φ〉〈φ|
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Remarks

• As typical for superfluids, angular momentum is acquired by the system in terms
of quantized vortices. These can be seen by solving the GP equation.

• Theorem 2 shows the occurrence of spontaneous symmetry breaking. Axial
symmetry of the trap V (x) ⇒ non-uniqueness of GP minimizer for g large enough
[Seiringer, CMP 229, 491 (2002)]. Uniqueness can be restored by perturbing H0 to
break the symmetry and favor one of the minimizers. This then leads to complete
BEC.

• As in the case of the energy discussed above, the situation is very different for the
absolute ground state. The set Γ consists of only one element in this case
(namely the minimizer of the density matrix functional discussed below, which is
unique for any value of Ω and g). In particular, there is no spontaneous symmetry
breaking in the absolute ground state.
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The Absolute Ground State

The absolute ground state can be described by a GP density matrix functional

EDM[γ] = Tr [(−∆− Ω · L + V ) γ] + 4πg

∫
ργ(x)2d3x.

This functional always has a unique minimizer γDM (under the normalization condition
Tr γ = 1)! Denote the corresponding energy by EDM(g, Ω) = EDM[γDM], and the absolute
ground state energy of HN by Eabs(N, a, Ω).

Theorem 3. For any fixed g ≥ 0 and Ω,

lim
N→∞

Eabs(N, g/N, Ω)
N

= EDM(g, Ω) and lim
N→∞

1
N

γ
(1)
abs = γDM

Note that EGP is the restriction of EDM to rank one projections. In the case of symmetry
breaking (i.e., for g large enough), rank γDM ≥ 2, and hence EDM < EGP. The absolute
and bosonic ground state differ significantly!
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Ideas in the Proof of Theorem 1

On bosonic Fock space F =
⊕

N HN , the Hamiltonian can be written in terms of a†j
and aj , the creation and annihilation operators of ϕj :

H =
∑

j≥1

eja
†
jaj + 1

2

∑

ijkl

a†ia
†
jakal Wijkl , (1)

where H0 =
∑

j ej |ϕj〉〈ϕj | and Wijkl = 〈ϕi ⊗ ϕj |va|ϕk ⊗ ϕl〉.

Two main steps:

1. Eq. (1) not necessarily well defined (e.g. Wijkl ≡ ∞ for hard-core interaction).
Show that, for a lower bound, one can replace va by a “soft” and smooth potential
U(x) (with the same scattering length), at the expense of the high-momentum part
of the kinetic energy.

2. Show that one can replace the operators a†j and aj by complex numbers zj =⇒ GP

functional EGP[φz] with φz(x) =
∑

j zjϕj(x).
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Step 1: Generalized Dyson Lemma

Separate high momentum from low momentum. High momentum for scattering of two
particles, low momentum for H0-part in GP functional.

Lemma 1. Let v have scattering length a and range R0. Let θR be the characteristic
function of {|x| < R}. Let 0 ≤ χ(p) ≤ 1, such that h(x) ≡ 1̂− χ(x) is bounded and
integrable,

fR(x) = sup
|y|≤R

|h(x− y)− h(x)|, and wR(x) =
2
π2

fR(x)
∫

R3
fR(y)d3y.

Then for any ε > 0 and any positive radial function UR(x) supported in R0 ≤ |x| ≤ R
with

∫
UR = 4π we have the operator inequality

−∇χ(p)θR(x)χ(p)∇+ 1
2v(x) ≥ (1− ε)aUR(x)− a

ε
wR(x).

The parameter R is chosen such that a ¿ R ¿ N−1/3.

Proof: [Lieb, Seiringer, Solovej, PRA 71, 053605 (2005)]
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The Kinetic Energy Separation

p2(1− χ(p)2)
Low momentum regime

1/3ρ
p

p2χ(p)2

High momentum regime

1/3ρ
p
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Step 2: Coherent States

F =
⊗

j Fj , with Fj spanned by (a†j)
n|0〉. Coherent state |zj〉 = exp[−|zj |2/2+zja

†
j ] |0〉

for zj ∈ C. Completeness property
∫

dz|z〉〈z| = I.

Upper symbols: aj =
∫

dzj zj |zj〉〈zj |, but a†jaj =
∫

dzj (|zj |2 − 1)|zj〉〈zj |. The (-1)
is unwanted! Hence we introduce coherent states only for modes j ≤ J for some J À 1.

I.e., F = F<⊗F>. For z = (z1, . . . , zJ) ∈ CJ and Π(z) = |z1⊗ · · ·⊗ zJ〉〈z1⊗ · · ·⊗ zJ |,
we can then write

H =
∫

dzΠ(z)⊗ U(z) ,

where, for fixed z, U(z) is an operator on F>. Hence inf spec H ≥ infz inf spec U(z).

One then shows that U(z) ≈ EGP[φz]− controllable terms. These terms are operators
on F> which describe the interaction between particles in modes j ≤ J and j > J .
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Ideas in the Proof of Theorem 2

Griffiths’ argument together with first order perturbation theory yields:
For any γ ∈ Γ, and any bounded hermitian operator S,

Tr Sγ ≥ min
φ=φGP

〈φ|S|φ〉 . (2)

It is not too difficult to show that |φGP〉〈φGP| ∈ Γ. Now use convexity theory.

An exposed point of a convex set C is an extreme point p with the additional property
that there is a tangent plane to C containing p but containing no other point of C.
Hence, for γ̃ ∈ Γ an exposed point, there exists an S such that

TrSγ̃ ≤ TrSγ for all γ ∈ Γ . (3)

with equality if and only if γ = γ̃. Hence, with φGP minimizing the right side of (2) for
this S, and γ = |φGP〉〈φGP| ⇒ γ̃ = |φGP〉〈φGP|, i.e., all exposed points are of this form!!

Extension to all extreme points: Straszewicz’s Theorem: the exposed points are a
dense subset of the extreme points (at least in finite dimensions).
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Conclusions

• Rigorous justification of Gross-Pitaevskii approximation for sufficiently dilute
rotating Bose gases. For large N and both Na and Ω of order 1, the ground state
of the Bose gas is well approximated by the solution to the GP equation. This is
true both for the energy and the reduced density matrices.

• In particular, appearance of quantized vortices and spontaneous symmetry
breaking for either g or Ω large enough.

• GP equation in 2D can be derived by scaling V (x):

V (x) = r−2V ⊥(x⊥/r) + `−2V ‖(z/`) , x = (x⊥, z)

with a ¿ ` ¿ r. Effective 2D parameter g depends non-trivially on the particular
scaling limit. [J. Yin, 2007]

• For the future: Study the case of very rapid rotation, i.e., Ω À 1 for super-
harmonic traps, or Ω → Ωc for harmonic traps. The GP description is expected to
break down once the number of vortices is comparable to the number of particles.
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