μ - scale invariant linear relations

Adrian Sandovici

Q Math 10 Moeciu – September 10-15, 2007

 $UTU^* = \mu T$

The bounded operator case

Brooke, Busch, Pearson - 2002

The unbounded operator case

Makarov, Tsekanovskii – 2007

The multi-valued operator case

 $UTU^* = \mu T$

The bounded operator case

Brooke, Busch, Pearson – 2002

The unbounded operator case

Makarov, Tsekanovskii - 2007

The multi-valued operator case

 $UTU^* = \mu T$

The bounded operator case

Brooke, Busch, Pearson – 2002

The unbounded operator case

Makarov, Tsekanovskii - 2007

The multi-valued operator case

 $UTU^* = \mu T$

The bounded operator case

Brooke, Busch, Pearson – 2002

The unbounded operator case

Makarov, Tsekanovskii - 2007

The multi-valued operator case

 \rightarrow

Outline

- **2** μ -scale invariant relations
- Closed nonnegative forms
- Nonnegative selfadjoint extensions of nonnegative relations
- **(5)** The invariance of nonnegative selfadjoint relations

6 Examples

Let \mathfrak{H} be a complex Hilbert space.

A linear subspace A in the Cartesian product $\mathfrak{H} \times \mathfrak{H}$ is called a linear relation in \mathfrak{H} .

$$dom A = \{f \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f' \in \mathfrak{H} \},$$

$$ran A = \{f' \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f \in \mathfrak{H} \},$$

$$ker A = \{f \in \mathfrak{H} : \{f, 0\} \in A \},$$

$$mul A = \{f' \in \mathfrak{H} : \{0, f'\} \in A \}.$$

Let \mathfrak{H} be a complex Hilbert space.

A linear subspace A in the Cartesian product $\mathfrak{H} \times \mathfrak{H}$ is called a linear relation in \mathfrak{H} .

$$dom A = \{f \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f' \in \mathfrak{H} \},$$

$$ran A = \{f' \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f \in \mathfrak{H} \},$$

$$ker A = \{f \in \mathfrak{H} : \{f, 0\} \in A \},$$

$$mul A = \{f' \in \mathfrak{H} : \{0, f'\} \in A \}.$$

Let \mathfrak{H} be a complex Hilbert space.

A linear subspace A in the Cartesian product $\mathfrak{H} \times \mathfrak{H}$ is called a linear relation in \mathfrak{H} .

$$dom A = \{f \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f' \in \mathfrak{H} \},$$

$$ran A = \{f' \in \mathfrak{H} : \{f, f'\} \in A \text{ for some } f \in \mathfrak{H} \},$$

$$ker A = \{f \in \mathfrak{H} : \{f, 0\} \in A \},$$

$$mul A = \{f' \in \mathfrak{H} : \{0, f'\} \in A \}.$$

A relation A has a formal inverse $A^{-1} = \{ \{f', f\} : \{f, f'\} \in A \}.$

Let *A* and *B* be linear relations in \mathfrak{H} . Then the product *BA* is the linear relation defined by

 $BA = \{ \{f, g\} \in \mathfrak{H} \times \mathfrak{H} : \{f, \varphi\} \in A, \{\varphi, g\} \in B \text{ for some } \varphi \in \mathfrak{H} \}.$

For any $\lambda \in \mathbb{C}$ the relation $A - \lambda$ is defined by $A - \lambda = \{ \{f, f' - \lambda f\} : \{f, f'\} \in A \}.$

A relation A has a formal inverse $A^{-1} = \{ \{f', f\} : \{f, f'\} \in A \}.$

Let *A* and *B* be linear relations in \mathfrak{H} . Then the product *BA* is the linear relation defined by

 $\mathit{B}\!A=\{\,\{\!f,g\}\in\mathfrak{H}\times\mathfrak{H}:\,\{\!f,\varphi\}\in A,\,\{\varphi,g\}\in \mathit{B}\text{ for some }\varphi\in\mathfrak{H}\,\}.$

For any $\lambda \in \mathbb{C}$ the relation $A - \lambda$ is defined by $A - \lambda = \{ \{f, f' - \lambda f\} : \{f, f'\} \in A \}.$

A relation A has a formal inverse $A^{-1} = \{ \{f', f\} : \{f, f'\} \in A \}.$

Let *A* and *B* be linear relations in \mathfrak{H} . Then the product *BA* is the linear relation defined by

 $BA = \{ \{f,g\} \in \mathfrak{H} \times \mathfrak{H} : \{f,\varphi\} \in A, \, \{\varphi,g\} \in B \text{ for some } \varphi \in \mathfrak{H} \}.$

For any $\lambda \in \mathbb{C}$ the relation $A - \lambda$ is defined by $A - \lambda = \{ \{f, f' - \lambda f\} : \{f, f'\} \in A \}.$

Let *P* be the orthogonal projection from \mathfrak{H} onto $(\operatorname{mul} A)^{\perp}$.

Then each
$$\{f, f'\} \in A$$
 can be uniquely decomposed as
 $\{f, f'\} = \{f, Pf'\} + \{0, (I - P)f'\}.$

The linear relation

$$A_{s} = \{ \{f, f'\} : \{f, f'\} \in A, f' = Pf' \} = \{ \{f, Pf'\} : \{f, f'\} \in A \}$$

is called the (orthogonal) operator part of *A*: it is the graph of an operator from \mathfrak{H} to $P\mathfrak{H} \subset \mathfrak{H}$.

Let *P* be the orthogonal projection from \mathfrak{H} onto $(\operatorname{mul} A)^{\perp}$.

Then each $\{f, f'\} \in A$ can be uniquely decomposed as $\{f, f'\} = \{f, Pf'\} + \{0, (I - P)f'\}.$

The linear relation

$$A_{s} = \{ \{f, f'\} : \{f, f'\} \in A, f' = Pf' \} = \{ \{f, Pf'\} : \{f, f'\} \in A \}$$

is called the (orthogonal) operator part of A: it is the graph of an operator from \mathfrak{H} to $P\mathfrak{H} \subset \mathfrak{H}$.

Let *P* be the orthogonal projection from \mathfrak{H} onto $(\operatorname{mul} A)^{\perp}$.

Then each $\{f, f'\} \in A$ can be uniquely decomposed as $\{f, f'\} = \{f, Pf'\} + \{0, (I - P)f'\}.$

The linear relation

$$A_{s} = \{ \{f, f'\} : \{f, f'\} \in A, f' = Pf' \} = \{ \{f, Pf'\} : \{f, f'\} \in A \}$$

is called the (orthogonal) operator part of *A*: it is the graph of an operator from \mathfrak{H} to $P\mathfrak{H} \subset \mathfrak{H}$.

Define the linear relation A_{∞} by

$$A_{\infty} = A \cap (\{0\} \times \mathfrak{H}).$$

Then the linear relation A admits the orthogonal decomposition

$$A = A_s \oplus A_{\infty},$$

where the orthogonal sum is with respect to the inner product on $\mathfrak{H} \times \mathfrak{H}$.

Define the linear relation A_{∞} by

$$A_{\infty} = A \cap (\{0\} \times \mathfrak{H}).$$

Then the linear relation A admits the orthogonal decomposition

$$A=A_s\oplus A_\infty,$$

where the orthogonal sum is with respect to the inner product on $\mathfrak{H}\times\mathfrak{H}.$

The adjoint A^* of a linear relation A in \mathfrak{H} is the linear relation in \mathfrak{H} , defined by

$$A^*=\set{\{f',f\}\in\mathfrak{H} imes\mathfrak{H} imes\mathfrak{H}:\,\langle\{f',f\},\{h,h'\}
angle=0,\,\{h,h'\}\in A\,\},$$

where

$$\langle \{f',f\},\{h,h'\}
angle=(f,h)-(f',h'),\quad \{f,f'\},\{h,h'\}\in\mathfrak{H} imes\mathfrak{H}$$

The adjoint A^* is automatically closed and linear.

The resolvent set $\rho(A)$ of a closed linear relation A in \mathfrak{H} is defined by:

$$\rho(A) = \{ \lambda \in \mathbb{C} : (A - \lambda)^{-1} \in [\mathfrak{H}] \},\$$

where $[\mathfrak{H}]$ denotes the set of all bounded linear operators on \mathfrak{H} and $(A - \lambda)^{-1}$ is identified with its graph.

The adjoint A^* of a linear relation A in \mathfrak{H} is the linear relation in \mathfrak{H} , defined by

$$A^*=\set{\{f',f\}\in\mathfrak{H} imes\mathfrak{H} imes\mathfrak{H}:\,\langle\{f',f\},\{h,h'\}
angle=0,\,\{h,h'\}\in A\,\},$$

where

$$\langle \{f',f\},\{h,h'\}
angle=(f,h)-(f',h'),\quad \{f,f'\},\{h,h'\}\in\mathfrak{H} imes\mathfrak{H}$$

The adjoint A^* is automatically closed and linear.

The resolvent set $\rho(A)$ of a closed linear relation A in \mathfrak{H} is defined by:

$$\rho(A) = \{ \lambda \in \mathbb{C} : (A - \lambda)^{-1} \in [\mathfrak{H}] \},\$$

where $[\mathfrak{H}]$ denotes the set of all bounded linear operators on \mathfrak{H} and $(A - \lambda)^{-1}$ is identified with its graph.

The adjoint A^* of a linear relation A in \mathfrak{H} is the linear relation in \mathfrak{H} , defined by

$$A^*=\set{\{f',f\}\in\mathfrak{H} imes\mathfrak{H} imes\mathfrak{H}:\,\langle\{f',f\},\{h,h'\}
angle=0,\,\{h,h'\}\in A\,\},$$

where

$$\langle \{f',f\},\{h,h'\}
angle=(f,h)-(f',h'), \quad \{f,f'\},\{h,h'\}\in\mathfrak{H} imes\mathfrak{H}$$

The adjoint A^* is automatically closed and linear.

The resolvent set $\rho(A)$ of a closed linear relation A in \mathfrak{H} is defined by:

$$\rho(A) = \{ \lambda \in \mathbb{C} : (A - \lambda)^{-1} \in [\mathfrak{H}] \},\$$

where $[\mathfrak{H}]$ denotes the set of all bounded linear operators on \mathfrak{H} and $(A - \lambda)^{-1}$ is identified with its graph.

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^*)^{-1} = (A^{-1})^*$$

$$B^*A^* \subset (AB)^*$$

Lemma

Assume that A is a linear relation in \mathfrak{H} and U an invertible bounded operator. Then the following two identities hold

$$(UA)^* = A^*U^*, \quad (AU)^* = U^*A^*$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● 今 ♀ ●

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^*)^{-1} = (A^{-1})^*$$

$$B^*A^* \subset (AB)^*$$

Lemma

Assume that A is a linear relation in \mathfrak{H} and U an invertible bounded operator. Then the following two identities hold

$$(UA)^* = A^*U^*, \quad (AU)^* = U^*A^*$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^*)^{-1} = (A^{-1})^*$$

 $B^*A^* \subset (AB)^*$

Lemma

Assume that A is a linear relation in \mathfrak{H} and U an invertible bounded operator. Then the following two identities hold

$$(UA)^* = A^*U^*, \quad (AU)^* = U^*A^*$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^*)^{-1} = (A^{-1})^*$$

 $B^*A^* \subset (AB)^*$

Lemma

Assume that A is a linear relation in \mathfrak{H} and U an invertible bounded operator. Then the following two identities hold

$$(UA)^* = A^*U^*, \quad (AU)^* = U^*A^*$$

A linear relation A in \mathfrak{H} is said to be symmetric if $(f', f) \in \mathbb{R}$ for all $\{f, f'\} \in A$, or, equivalently, if $A \subset A^*$.

The relation A is said to be selfadjoint if $A = A^*$.

If the relation A is selfadjoint, then $\overline{\text{dom}}A = (\text{mul}A)^{\perp}$ and A_s is a (densely defined) selfadjoint operator in $\overline{\text{dom}}A$.

A linear relation A in \mathfrak{H} is said to be symmetric if $(f', f) \in \mathbb{R}$ for all $\{f, f'\} \in A$, or, equivalently, if $A \subset A^*$.

The relation A is said to be selfadjoint if $A = A^*$.

If the relation A is selfadjoint, then $\overline{\text{dom}} A = (\text{mul} A)^{\perp}$ and A_s is a (densely defined) selfadjoint operator in $\overline{\text{dom}} A$.

A linear relation A in \mathfrak{H} is said to be symmetric if $(f', f) \in \mathbb{R}$ for all $\{f, f'\} \in A$, or, equivalently, if $A \subset A^*$.

The relation A is said to be selfadjoint if $A = A^*$.

If the relation A is selfadjoint, then $\overline{\text{dom}}A = (\text{mul}A)^{\perp}$ and A_s is a (densely defined) selfadjoint operator in $\overline{\text{dom}}A$.

A linear relation A in a Hilbert space \mathfrak{H} is said to be nonnegative, for short $A \ge 0$, if $(f',f) \ge 0, \quad \{f,f'\} \in A.$

Clearly, every nonnegative relation is symmetric.

A linear relation A in a Hilbert space \mathfrak{H} is said to be nonnegative, for short $A \ge 0$, if $(f',f) \ge 0, \quad \{f,f'\} \in A.$

Clearly, every nonnegative relation is symmetric.

Let U be a unitary operator in a separable complex Hilbert space \mathfrak{H} and let $\mu \in \mathbb{C} \setminus \{0\}$.

Definition

A linear relation S is said to be μ - scale invariant with respect to U if the following identity is satisfied:

 $USU^* = \mu S.$

 $U^*(\operatorname{dom} S) \subset \operatorname{dom} S$

Let U be a unitary operator in a separable complex Hilbert space \mathfrak{H} and let $\mu \in \mathbb{C} \setminus \{0\}$.

Definition

A linear relation S is said to be μ - scale invariant with respect to U if the following identity is satisfied:

 $USU^* = \mu S.$

 $U^*(\operatorname{dom} S) \subset \operatorname{dom} S$

Let U be a unitary operator in a separable complex Hilbert space \mathfrak{H} and let $\mu \in \mathbb{C} \setminus \{0\}$.

Definition

A linear relation S is said to be μ - scale invariant with respect to U if the following identity is satisfied:

 $USU^* = \mu S.$

$U^*(\operatorname{dom} S) \subset \operatorname{dom} S$

Let U be a unitary operator in a separable complex Hilbert space \mathfrak{H} and let $\mu \in \mathbb{C} \setminus \{0\}$.

Definition

A linear relation S is said to be μ - scale invariant with respect to U if the following identity is satisfied:

 $USU^* = \mu S.$

 $U^*(\operatorname{dom} S) \subset \operatorname{dom} S$

Lemma

Assume that S is a linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- **()** the inverse relation S^{-1} is μ^{-1} scale invariant with respect to U;
- ② the relation *S* is also μ scale invariant with respect to the unitary transformation U^n , *n* ∈ N. That is $U^n S U^{*n} = \mu^n S$, for all *n* ∈ N;
- If the adjoint relation S^* is $\overline{\mu}$ scale invariant with respect to U.

Lemma

Assume that S is a linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the inverse relation S^{-1} is μ^{-1} scale invariant with respect to U;
- ② the relation *S* is also μ scale invariant with respect to the unitary transformation U^n , *n* ∈ \mathbb{N} . That is $U^n S U^{*n} = \mu^n S$, for all *n* ∈ \mathbb{N} ;
- If the adjoint relation S^* is $\overline{\mu}$ scale invariant with respect to U.

Lemma

Assume that S is a linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the inverse relation S^{-1} is μ^{-1} scale invariant with respect to U;
- ② the relation *S* is also μ scale invariant with respect to the unitary transformation U^n , *n* ∈ \mathbb{N} . That is $U^n S U^{*n} = \mu^n S$, for all *n* ∈ \mathbb{N} ;

If the adjoint relation S^* is $\overline{\mu}$ - scale invariant with respect to U.
Lemma

Assume that S is a linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the inverse relation S^{-1} is μ^{-1} scale invariant with respect to U;
- ② the relation *S* is also μ scale invariant with respect to the unitary transformation U^n , *n* ∈ \mathbb{N} . That is $U^n S U^{*n} = \mu^n S$, for all *n* ∈ \mathbb{N} ;
- Solution the adjoint relation S^* is $\bar{\mu}$ scale invariant with respect to U.

(i) $\mu^{-1}S^{-1} = (\mu S)^{-1} = (USU^*)^{-1} = (U^*)^{-1}S^{-1}U^{-1} = US^{-1}U^*$

(ii)

This follows by induction on $n \in \mathbb{N}$.

(iii)

$$US^*U^* = (U^*)^*S^*U^* = (SU^*)^*U^*$$
$$= (USU^*)^* = (\mu S)^* = \bar{\mu}S^*.$$

(1) $\mu^{-1}S^{-1} = (\mu S)^{-1} = (USU^*)^{-1} = (U^*)^{-1}S^{-1}U^{-1} = US^{-1}U^*$

(ii)

This follows by induction on $n \in \mathbb{N}$.

(iii)

$$US^*U^* = (U^*)^*S^*U^* = (SU^*)^*U^*$$
$$= (USU^*)^* = (\mu S)^* = \bar{\mu}S^*.$$

(1) $\mu^{-1}S^{-1} = (\mu S)^{-1} = (USU^*)^{-1} = (U^*)^{-1}S^{-1}U^{-1} = US^{-1}U^*$

(ii)

This follows by induction on $n \in \mathbb{N}$.

(iii)

$$US^*U^* = (U^*)^* S^*U^* = (SU^*)^* U^*$$

= $(USU^*)^* = (\mu S)^* = \bar{\mu}S^*.$

Let $\mathfrak{t} = \mathfrak{t}[\cdot, \cdot]$ be a nonnegative form in the Hilbert space \mathfrak{H} with domain dom \mathfrak{t} .

The inclusion $\mathfrak{t}_1\subset\mathfrak{t}_2$ for nonnegative forms \mathfrak{t}_1 and \mathfrak{t}_2 is defined by

dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2$, $\mathfrak{t}_1[h] = \mathfrak{t}_2[h]$, $h \in \operatorname{dom} \mathfrak{t}_1$.

The nonnegative form t is closed if

 $h_n \to h$, $\mathfrak{t}[h_n - h_m] \to 0$, $h_n \in \operatorname{dom} \mathfrak{t}$, $h \in \mathfrak{H}$, $m, n \to \infty$

imply that $h \in \text{dom t}$ and $\mathfrak{t}[h_n - h] \to 0$.

Let $\mathfrak{t} = \mathfrak{t}[\cdot, \cdot]$ be a nonnegative form in the Hilbert space \mathfrak{H} with domain dom \mathfrak{t} .

The inclusion $\mathfrak{t}_1 \subset \mathfrak{t}_2$ for nonnegative forms \mathfrak{t}_1 and \mathfrak{t}_2 is defined by

dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2$, $\mathfrak{t}_1[h] = \mathfrak{t}_2[h]$, $h \in \operatorname{dom} \mathfrak{t}_1$.

The nonnegative form t is closed if

 $h_n o h, \quad \mathfrak{t}[h_n - h_m] o 0, \quad h_n \in \operatorname{dom} \mathfrak{t}, \quad h \in \mathfrak{H}, \quad m, n o \infty,$

imply that $h \in \text{dom t}$ and $\mathfrak{t}[h_n - h] \to 0$.

Let $\mathfrak{t} = \mathfrak{t}[\cdot, \cdot]$ be a nonnegative form in the Hilbert space \mathfrak{H} with domain dom \mathfrak{t} .

The inclusion $\mathfrak{t}_1 \subset \mathfrak{t}_2$ for nonnegative forms \mathfrak{t}_1 and \mathfrak{t}_2 is defined by

dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2$, $\mathfrak{t}_1[h] = \mathfrak{t}_2[h]$, $h \in \operatorname{dom} \mathfrak{t}_1$.

The nonnegative form t is closed if

 $h_n \to h$, $\mathfrak{t}[h_n - h_m] \to 0$, $h_n \in \operatorname{dom} \mathfrak{t}$, $h \in \mathfrak{H}$, $m, n \to \infty$,

imply that $h \in \text{dom } \mathfrak{t}$ and $\mathfrak{t}[h_n - h] \to 0$.

The inequality $\mathfrak{t}_1 \geq \mathfrak{t}_2$ for nonnegative forms \mathfrak{t}_1 and \mathfrak{t}_2 is defined by dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2$, $\mathfrak{t}_1[h] \geq \mathfrak{t}_2[h]$, $h \in \operatorname{dom} \mathfrak{t}_1$.

 $\mathfrak{t}_1 \subset \mathfrak{t}_2$ implies $\mathfrak{t}_1 \geq \mathfrak{t}_2$

There is a one-to-one correspondence between all closed nonnegative forms t in \mathfrak{H} and all nonnegative selfadjoint relations A in \mathfrak{H} via

 $\operatorname{dom} A \subset \operatorname{dom} \mathfrak{t},$

and

 $\mathfrak{t}[f,g] = (A_{\mathfrak{s}}f,g), \quad f \in \operatorname{dom} A, \quad g \in \operatorname{dom} \mathfrak{t}.$

The inequality $\mathfrak{t}_1 \geq \mathfrak{t}_2$ for nonnegative forms \mathfrak{t}_1 and \mathfrak{t}_2 is defined by

dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2, \quad \mathfrak{t}_1[h] \ge \mathfrak{t}_2[h], \quad h \in \operatorname{dom} \mathfrak{t}_1.$

 $\mathfrak{t}_1 \subset \mathfrak{t}_2 \text{ implies } \mathfrak{t}_1 \geq \mathfrak{t}_2$

There is a one-to-one correspondence between all closed nonnegative forms t in \mathfrak{H} and all nonnegative selfadjoint relations A in \mathfrak{H} via

 $\operatorname{dom} A \subset \operatorname{dom} \mathfrak{t},$

and

 $\mathfrak{t}[f,g] = (A_{\mathfrak{s}}f,g), \quad f \in \operatorname{dom} A, \quad g \in \operatorname{dom} \mathfrak{t}.$

The inequality $t_1 \ge t_2$ for nonnegative forms t_1 and t_2 is defined by

dom $\mathfrak{t}_1 \subset \operatorname{dom} \mathfrak{t}_2$, $\mathfrak{t}_1[h] \ge \mathfrak{t}_2[h]$, $h \in \operatorname{dom} \mathfrak{t}_1$.

 $\mathfrak{t}_1 \subset \mathfrak{t}_2$ implies $\mathfrak{t}_1 \geq \mathfrak{t}_2$

There is a one-to-one correspondence between all closed nonnegative forms t in \mathfrak{H} and all nonnegative selfadjoint relations A in \mathfrak{H} via

 $\operatorname{dom} A \subset \operatorname{dom} \mathfrak{t},$

$$\mathfrak{t}[f,g] = (A_{\mathfrak{s}}f,g), \quad f \in \operatorname{dom} A, \quad g \in \operatorname{dom} \mathfrak{t}.$$

let the nonnegative form t and the nonnegative selfadjoint relation A be connected as above. If $t \ge 0$ or, equivalently, $A \ge 0$, then

 $\operatorname{dom} \mathfrak{t} = \operatorname{dom} A_s^{1/2},$

$$\mathfrak{t}[f,g] = (A_s^{1/2}f, A_s^{1/2}g), \quad f,g \in \mathrm{dom}\,\mathfrak{t}.$$

Let *S* be a not necessarily closed nonnegative relation in a Hilbert space \mathfrak{H} .

One nonnegative selfadjoint extension can be constructed as follows:

Let $\{f, f'\}, \{h, h'\} \in S$ and define $\mathfrak{s}[f, h] = (f', h)$, so that \mathfrak{s} is a nonnegative form on dom $\mathfrak{s} = \text{dom } S$. The closure t of the form \mathfrak{s} is nonnegative (and is equal to the form obtained by starting with the closure of *S*) and gives rise to a nonnegative selfadjoint relation which is called the Friedrichs extension S_F of *S*.

Let *S* be a not necessarily closed nonnegative relation in a Hilbert space \mathfrak{H} .

One nonnegative selfadjoint extension can be constructed as follows:

Let $\{f, f'\}, \{h, h'\} \in S$ and define $\mathfrak{s}[f, h] = (f', h)$, so that \mathfrak{s} is a nonnegative form on dom $\mathfrak{s} = \text{dom } S$. The closure \mathfrak{t} of the form \mathfrak{s} is nonnegative (and is equal to the form obtained by starting with the closure of S) and gives rise to a nonnegative selfadjoint relation which is called the Friedrichs extension S_F of S.

Let *S* be a not necessarily closed nonnegative relation in a Hilbert space \mathfrak{H} .

One nonnegative selfadjoint extension can be constructed as follows:

Let $\{f, f'\}, \{h, h'\} \in S$ and define $\mathfrak{s}[f, h] = (f', h)$, so that \mathfrak{s} is a nonnegative form on dom $\mathfrak{s} = \text{dom } S$. The closure t of the form \mathfrak{s} is nonnegative (and is equal to the form obtained by starting with the closure of *S*) and gives rise to a nonnegative selfadjoint relation which is called the Friedrichs extension S_F of *S*.

The so-called Kreĭn-von Neumann extension S_N of S is defined by

$$S_N = ((S^{-1})_F)^{-1}.$$

Theorem

Assume that S is a nonnegative linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the Friedrichs extension S_F of S is μ scale invariant with respect to U;
- (a) the Krein-von Neumann extension S_F of S is μ scale invariant with respect to U.

Theorem

Assume that S is a nonnegative linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the Friedrichs extension S_F of S is μ scale invariant with respect to U;
- (a) the Krein-von Neumann extension S_F of S is μ scale invariant with respect to U.

Theorem

Assume that S is a nonnegative linear relation in \mathfrak{H} which is μ - scale invariant with respect to U. Then

- the Friedrichs extension S_F of S is μ scale invariant with respect to U;
- the Krein-von Neumann extension S_F of S is μ scale invariant with respect to U.

Proof

Let $\{f, f'\} \in S_F$. Then there exists a sequence $(\{f_n, f'_n\}) \subset S$ such that $f_n \to f$, and

$$(f'_n - f'_m, f_n - f_m) \to 0$$
, as $m, n \to \infty$.

It follows from $\{f_n, \mu f'_n\} \in \mu S = USU^*$ that $\{U^*f_n, \mu U^*f'_n\} \in S.$ (1)

Furthermore.

$$U^*f_n \to U^*f,\tag{2}$$

$$\left(\mu U^* f'_n - \mu U^* f'_m, f_n - f_m\right) \to 0, \quad \text{as} \quad m, n \to \infty.$$
(3)

Proof

Let $\{f, f'\} \in S_F$. Then there exists a sequence $(\{f_n, f'_n\}) \subset S$ such that $f_n \to f$, and

$$(f'_n - f'_m, f_n - f_m) \to 0$$
, as $m, n \to \infty$.

It follows from $\{f_n, \mu f'_n\} \in \mu S = USU^*$ that $\{U^*f_n, \mu U^*f'_n\} \in S.$

Furthermore

$$U^* f_n \to U^* f, \tag{2}$$

(1)

$$\left(\mu U^* f'_n - \mu U^* f'_m, f_n - f_m\right) \to 0, \quad \text{as} \quad m, n \to \infty.$$
(3)

Proof

Let $\{f, f'\} \in S_F$. Then there exists a sequence $(\{f_n, f'_n\}) \subset S$ such that $f_n \to f$, and

$$(f'_n - f'_m, f_n - f_m) \to 0$$
, as $m, n \to \infty$.

It follows from $\{f_n, \mu f'_n\} \in \mu S = USU^*$ that $\{U^*f_n, \mu U^*f'_n\} \in S.$

Furthermore,

$$U^*f_n \to U^*f,\tag{2}$$

(1)

$$\left(\mu U^* f'_n - \mu U^* f'_m, f_n - f_m\right) \to 0, \quad \text{as} \quad m, n \to \infty.$$
(3)

(4)

Since $\{f, \mu f'\} \in \mu S_F \subset \mu S^* = US^*U^*$ it follows that $\{U^*f_n, \mu U^*f'_n\} \in S^*.$

A combination of (2), (3) and (4) leads to $\{U^*f, \mu U^*f'\} \in S_F$, so that $\{f, \mu f'\} \in US_F U^*$. This implies that $\mu S_F \subset US_F U^*$. Since both μS_F and $US_F U^*$ are selfadjoint linear relations it follows that $\mu S_F = US_F U^*$.

(4)

Since
$$\{f, \mu f'\} \in \mu S_F \subset \mu S^* = US^*U^*$$
 it follows that
 $\{U^*f_n, \mu U^*f'_n\} \in S^*.$

A combination of (2), (3) and (4) leads to $\{U^*f, \mu U^*f'\} \in S_F$, so that $\{f, \mu f'\} \in US_F U^*$. This implies that $\mu S_F \subset US_F U^*$. Since both μS_F and $US_F U^*$ are selfadjoint linear relations it follows that $\mu S_F = US_F U^*$.

Extremal extensions

A nonnegative selfadjoint extension \widetilde{A} of S is called *extremal* when

$$\inf\{(f'-h',f-h): \{h,h'\} \in S\} = 0 \text{ for all } \{f,f'\} \in \widetilde{A}.$$

The Kreĭn-von Neumann extension S_N and the Friedrichs extension S_F are extremal extensions.

Extremal extensions

A nonnegative selfadjoint extension \widetilde{A} of S is called *extremal* when

$$\inf\{(f'-h',f-h): \{h,h'\} \in S\} = 0 \quad ext{for all} \quad \{f,f'\} \in \widetilde{A}.$$

The Kreĭn-von Neumann extension S_N and the Friedrichs extension S_F are extremal extensions.

Hassi, Sandovici, de Snoo, Winkler - 2006

- \widetilde{A} is an extremal extension of *S*;
- S A is a nonnegative selfadjoint extension of S whose corresponding form t satisfies t ⊂ t_N.

Hassi, Sandovici, de Snoo, Winkler - 2006

- \widetilde{A} is an extremal extension of *S*;
- ③ Ã is a nonnegative selfadjoint extension of S whose corresponding form t̃ satisfies t̃ ⊂ t_N.

Hassi, Sandovici, de Snoo, Winkler - 2006

- \widetilde{A} is an extremal extension of *S*;
- $\widetilde{A} = R_{\mathcal{L}}^* R_{\mathcal{L}}^{**}$ for some subspace \mathcal{L} such that dom $S \subset \mathcal{L} \subset \text{dom } S_N^{1/2}$;
- S A is a nonnegative selfadjoint extension of S whose corresponding form t̃ satisfies t̃ ⊂ t_N.

Hassi, Sandovici, de Snoo, Winkler - 2006

- \widetilde{A} is an extremal extension of *S*;
- $\widetilde{A} = R_{\mathcal{L}}^* R_{\mathcal{L}}^{**}$ for some subspace \mathfrak{L} such that dom $S \subset \mathfrak{L} \subset \text{dom } S_N^{1/2}$;

The invariance of the extremal extensions

Assume that S is a nonnegative linear relation in \mathfrak{H} which is μ - scale invariant with respect to U.

Then any extremal extension of *S* is μ - scale invariant with respect to *U*.

The invariance of the extremal extensions

Assume that S is a nonnegative linear relation in \mathfrak{H} which is μ - scale invariant with respect to U.

Then any extremal extension of *S* is μ - scale invariant with respect to *U*.

A purely multi-valued relation

Assume that U is a unitary operator in the Hilbert space \mathfrak{H} such that $U^*(\mathfrak{K}) = \mathfrak{K}$, where \mathfrak{K} is a not necessarily closed subspace of \mathfrak{H} .

Consider the purely multi-valued relation S in \mathfrak{H} defined by

 $S = \{0\} \times \mathfrak{K}.$

Then S is closed if and only if \Re is closed, and it is μ invariant with respect to U for any $\mu > 0$.

The adjoint S^* is given by

$$S^* = \mathfrak{K}^{\perp} \times \mathfrak{H},$$

so that mul $S^* = \mathfrak{H}$

A purely multi-valued relation

Assume that U is a unitary operator in the Hilbert space \mathfrak{H} such that $U^*(\mathfrak{K}) = \mathfrak{K}$, where \mathfrak{K} is a not necessarily closed subspace of \mathfrak{H} .

Consider the purely multi-valued relation S in \mathfrak{H} defined by

 $S = \{0\} \times \mathfrak{K}.$

Then S is closed if and only if \Re is closed, and it is μ invariant with respect to U for any $\mu > 0$.

```
The adjoint S^* is given by S^* = \mathfrak{K}^{\perp} \times \mathfrak{H}, so that mul S^* = \mathfrak{H}.
```

A purely multi-valued relation

Assume that U is a unitary operator in the Hilbert space \mathfrak{H} such that $U^*(\mathfrak{K}) = \mathfrak{K}$, where \mathfrak{K} is a not necessarily closed subspace of \mathfrak{H} .

Consider the purely multi-valued relation S in \mathfrak{H} defined by

 $S = \{0\} \times \mathfrak{K}.$

Then S is closed if and only if \Re is closed, and it is μ invariant with respect to U for any $\mu > 0$.

The adjoint S^* is given by

$$S^* = \mathfrak{K}^{\perp} \times \mathfrak{H},$$

so that mul $S^* = \mathfrak{H}$.

The Kreĭn-von Neumann extension S_N and the Friedrichs extension S_F are given by

$$S_N = \mathfrak{K}^\perp imes \overline{\mathfrak{K}}, \quad S_F = \{0\} imes \mathfrak{H},$$

There exists a one to-one-correspondence between the class of all extremal extensions \widetilde{A} of *S* and the set of all closed subspaces \mathfrak{L} of \mathfrak{K}^{\perp} . The correspondence is given by

$$\widetilde{A} = \mathfrak{L} \times \mathfrak{L}^{\perp},$$

The Kreĭn-von Neumann extension S_N and the Friedrichs extension S_F are given by

$$S_N = \mathfrak{K}^\perp imes \overline{\mathfrak{K}}, \quad S_F = \{0\} imes \mathfrak{H},$$

There exists a one to-one-correspondence between the class of all extremal extensions \widetilde{A} of *S* and the set of all closed subspaces \mathfrak{L} of \mathfrak{K}^{\perp} . The correspondence is given by

$$\widetilde{A} = \mathfrak{L} \times \mathfrak{L}^{\perp},$$
Assume that $\mu > 0$, $\mu \neq 1$, and that U is the scaling transformation on the Hilbert space $\mathfrak{H} = L^2(0, \infty)$ defined by

$$(Uf)(x) = \mu^{-\frac{1}{4}} f\left(\mu^{-\frac{1}{2}}x\right), \quad f \in L^2(0,\infty).$$

Consider *T* the maximal operator on the Sobolev space $H^{2,2}(0,\infty)$ defined by

$$T = -\frac{d^2}{dx^2}$$
, dom $T = H^{2,2}(0,\infty)$.

The linear operator S defined by

$$S = T^* \upharpoonright_{\text{dom } S}, \text{dom } S = \{ f \in \text{dom } T : f(0) = f'(0) = 0 \}$$

is a closed nonnegative operator with deficiency indices (1, 1).

Assume that $\mu > 0$, $\mu \neq 1$, and that U is the scaling transformation on the Hilbert space $\mathfrak{H} = L^2(0, \infty)$ defined by

$$(Uf)(x) = \mu^{-\frac{1}{4}} f\left(\mu^{-\frac{1}{2}}x\right), \quad f \in L^2(0,\infty).$$

Consider *T* the maximal operator on the Sobolev space $H^{2,2}(0,\infty)$ defined by

$$T = -\frac{d^2}{dx^2}$$
, dom $T = H^{2,2}(0,\infty)$.

The linear operator *S* defined by

$$S = T^* \mid_{\text{dom } S}, \text{dom } S = \{ f \in \text{dom } T : f(0) = f'(0) = 0 \}$$

is a closed nonnegative operator with deficiency indices (1, 1).

Assume that $\mu > 0$, $\mu \neq 1$, and that U is the scaling transformation on the Hilbert space $\mathfrak{H} = L^2(0, \infty)$ defined by

$$(Uf)(x) = \mu^{-\frac{1}{4}} f\left(\mu^{-\frac{1}{2}}x\right), \quad f \in L^2(0,\infty).$$

Consider *T* the maximal operator on the Sobolev space $H^{2,2}(0,\infty)$ defined by

$$T = -\frac{d^2}{dx^2}$$
, dom $T = H^{2,2}(0,\infty)$.

The linear operator S defined by

$$S = T^* \upharpoonright_{\text{dom } S}, \text{dom } S = \{ f \in \text{dom } T : f(0) = f'(0) = 0 \}$$

is a closed nonnegative operator with deficiency indices (1, 1).

$$S^* = T$$

$$S_F = T^* \upharpoonright_{\operatorname{dom} S_F}, \operatorname{dom} S_F = \{f \in \operatorname{dom} T : f(0) = 0\}$$

$$S_N = T^* \upharpoonright_{\operatorname{dom} S_N}, \operatorname{dom} S_F = \{ f \in \operatorname{dom} T : f'(0) = 0 \}$$

$$S^* = T$$

$$S_F = T^* \upharpoonright_{\operatorname{dom} S_F}, \operatorname{dom} S_F = \{f \in \operatorname{dom} T : f(0) = 0\}$$

$$S_N = T^* \upharpoonright_{\operatorname{dom} S_N}, \operatorname{dom} S_F = \{ f \in \operatorname{dom} T : f'(0) = 0 \}$$

$$S^* = T$$

$$S_F = T^* \upharpoonright_{\operatorname{dom} S_F}, \operatorname{dom} S_F = \{f \in \operatorname{dom} T : f(0) = 0\}$$

$$S_N = T^* \upharpoonright_{\operatorname{dom} S_N}, \operatorname{dom} S_F = \{ f \in \operatorname{dom} T : f'(0) = 0 \}$$

All the operators S, S^* , S_F and S_N are μ - scale invariant with respect to the transformation U.

Any other nonnegative selfadjoint extension of S different from the extremal ones can be obtained by the restriction of T to the domain

$$\operatorname{dom} A_s = \{ f \in \operatorname{dom} T : f'(0) = sf(0) \}$$

for some s > 0.

 A_s , s > 0 is not μ invariant with respect to U.

All the operators S, S^* , S_F and S_N are μ - scale invariant with respect to the transformation U.

Any other nonnegative selfadjoint extension of S different from the extremal ones can be obtained by the restriction of T to the domain

$$\operatorname{dom} A_s = \{ f \in \operatorname{dom} T : f'(0) = sf(0) \}$$

for some s > 0.

 A_s , s > 0 is not μ invariant with respect to U.

All the operators S, S^* , S_F and S_N are μ - scale invariant with respect to the transformation U.

Any other nonnegative selfadjoint extension of S different from the extremal ones can be obtained by the restriction of T to the domain

$$\operatorname{dom} A_s = \{ f \in \operatorname{dom} T : f'(0) = sf(0) \}$$

for some s > 0.

 A_s , s > 0 is not μ invariant with respect to U.