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Linear relations in Hilbert spaces

Let H be a complex Hilbert space.

A linear subspace A in the Cartesian product H× H is called a linear
relation in H.

dom A = { f ∈ H : {f , f ′} ∈ A for some f ′ ∈ H },
ran A = { f ′ ∈ H : {f , f ′} ∈ A for some f ∈ H },

ker A = { f ∈ H : {f , 0} ∈ A },
mul A = { f ′ ∈ H : {0, f ′} ∈ A }.
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Linear relations in Hilbert spaces

A relation A has a formal inverse A−1 = { {f ′, f} : {f , f ′} ∈ A }.

Let A and B be linear relations in H. Then the product BA is the linear
relation defined by

BA = { {f , g} ∈ H× H : {f , ϕ} ∈ A, {ϕ, g} ∈ B for some ϕ ∈ H }.

For any λ ∈ C the relation A− λ is defined by
A− λ = { {f , f ′ − λf} : {f , f ′} ∈ A }.
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Linear relations in Hilbert spaces

Let P be the orthogonal projection from H onto (mul A)⊥.

Then each {f , f ′} ∈ A can be uniquely decomposed as

{f , f ′} = {f , Pf ′}+ {0, (I − P)f ′}.

The linear relation

As = { {f , f ′} : {f , f ′} ∈ A, f ′ = Pf ′ } = { {f , Pf ′} : {f , f ′} ∈ A }

is called the (orthogonal) operator part of A: it is the graph of an
operator from H to PH ⊂ H.
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Linear relations in Hilbert spaces

Define the linear relation A∞ by

A∞ = A ∩ ({0} × H).

Then the linear relation A admits the orthogonal decomposition

A = As ⊕ A∞,

where the orthogonal sum is with respect to the inner product on
H× H.
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Linear relations in Hilbert spaces

The adjoint A∗ of a linear relation A in H is the linear relation in H,
defined by

A∗ = { {f ′, f} ∈ H× H : 〈{f ′, f}, {h, h′}〉 = 0, {h, h′} ∈ A },

where

〈{f ′, f}, {h, h′}〉 = (f , h)− (f ′, h′), {f , f ′}, {h, h′} ∈ H× H.

The adjoint A∗ is automatically closed and linear.

The resolvent set ρ(A) of a closed linear relation A in H is defined by:

ρ(A) = {λ ∈ C : (A− λ)−1 ∈ [H] },

where [H] denotes the set of all bounded linear operators on H and
(A− λ)−1 is identified with its graph.
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Linear relations in Hilbert spaces

(AB)−1 = B−1A−1

(A∗)−1 = (A−1)∗

B∗A∗ ⊂ (AB)∗

Lemma
Assume that A is a linear relation in H and U an invertible bounded
operator.Then the following two identities hold

(UA)∗ = A∗U∗, (AU)∗ = U∗A∗
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Linear relations in Hilbert spaces

A linear relation A in H is said to be symmetric if (f ′, f ) ∈ R for all
{f , f ′} ∈ A, or, equivalently, if A ⊂ A∗.

The relation A is said to be selfadjoint if A = A∗.

If the relation A is selfadjoint, then dom A = (mul A)⊥ and As is a
(densely defined) selfadjoint operator in dom A.
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Linear relations in Hilbert spaces

A linear relation A in a Hilbert space H is said to be nonnegative, for
short A ≥ 0, if

(f ′, f ) ≥ 0, {f , f ′} ∈ A.

Clearly, every nonnegative relation is symmetric.
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µ-scale invariant relations

Let U be a unitary operator in a separable complex Hilbert space H

and let µ ∈ C\{0}.

Definition
A linear relation S is said to be µ- scale invariant with respect to U if
the following identity is satisfied:

USU∗ = µS.

U∗(dom S) ⊂ dom S

U∗(mul S) ⊂ mul S
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µ-scale invariant relations

Lemma
Assume that S is a linear relation in H which is µ- scale invariant with
respect to U. Then

1 the inverse relation S−1 is µ−1- scale invariant with respect to U;
2 the relation S is also µ- scale invariant with respect to the unitary

transformation Un, n ∈ N. That is UnSU∗n = µnS, for all n ∈ N;
3 the adjoint relation S∗ is µ̄- scale invariant with respect to U.
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µ-scale invariant relations

(i)

µ−1S−1 = (µS)−1 = (USU∗)−1 = (U∗)−1S−1U−1 = US−1U∗

(ii)
This follows by induction on n ∈ N.

(iii)

US∗U∗ = (U∗)∗ S∗U∗ = (SU∗)∗ U∗

= (USU∗)∗ = (µS)∗ = µ̄S∗.
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Closed nonnegative forms

Let t = t[·, ·] be a nonnegative form in the Hilbert space H with
domain dom t.

The inclusion t1 ⊂ t2 for nonnegative forms t1 and t2 is defined by

dom t1 ⊂ dom t2, t1[h] = t2[h], h ∈ dom t1.

The nonnegative form t is closed if

hn → h, t[hn − hm] → 0, hn ∈ dom t, h ∈ H, m, n →∞,

imply that h ∈ dom t and t[hn − h] → 0.
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Closed nonnegative forms

The inequality t1 ≥ t2 for nonnegative forms t1 and t2 is defined by

dom t1 ⊂ dom t2, t1[h] ≥ t2[h], h ∈ dom t1.

t1 ⊂ t2 implies t1 ≥ t2

There is a one-to-one correspondence between all closed nonnegative
forms t in H and all nonnegative selfadjoint relations A in H via

dom A ⊂ dom t,

and
t[f , g] = (Asf , g), f ∈ dom A, g ∈ dom t.
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Closed nonnegative forms

let the nonnegative form t and the nonnegative selfadjoint relation A
be connected as above. If t ≥ 0 or, equivalently, A ≥ 0, then

dom t = dom A1/2
s ,

and
t[f , g] = (A1/2

s f , A1/2
s g), f , g ∈ dom t.



Nonnegative selfadjoint extensions of nonnegative relations

Let S be a not necessarily closed nonnegative relation in a Hilbert
space H.

One nonnegative selfadjoint extension can be constructed as follows:

Let {f , f ′}, {h, h′} ∈ S and define s[f , h] = (f ′, h), so that s is a
nonnegative form on dom s = dom S. The closure t of the form s is
nonnegative (and is equal to the form obtained by starting with the
closure of S) and gives rise to a nonnegative selfadjoint relation which
is called the Friedrichs extension SF of S.
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Nonnegative selfadjoint extensions of nonnegative relations

The so-called Kreı̆n-von Neumann extension SN of S is defined by

SN = ((S−1)F)−1.



The invariance of nonnegative selfadjoint relations

Theorem
Assume that S is a nonnegative linear relation in H which is µ- scale
invariant with respect to U. Then

1 the Friedrichs extension SF of S is µ- scale invariant with respect
to U;

2 the Krein-von Neumann extension SF of S is µ- scale invariant
with respect to U.
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The invariance of nonnegative selfadjoint relations

Proof
Let {f , f ′} ∈ SF. Then there exists a sequence ({fn, f ′n}) ⊂ S such that
fn → f , and

(f ′n − f ′m, fn − fm) → 0, as m, n →∞.

It follows from {fn, µf ′n} ∈ µS = USU∗ that

{U∗fn, µU∗f ′n} ∈ S. (1)

Furthermore,
U∗fn → U∗f , (2)

and
(µU∗f ′n − µU∗f ′m, fn − fm) → 0, as m, n →∞. (3)
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The invariance of nonnegative selfadjoint relations

Since {f , µf ′} ∈ µSF ⊂ µS∗ = US∗U∗ it follows that

{U∗fn, µU∗f ′n} ∈ S∗. (4)

A combination of (2), (3) and (4) leads to {U∗f , µU∗f ′} ∈ SF, so that
{f , µf ′} ∈ USFU∗. This implies that µSF ⊂ USFU∗. Since both µSF

and USFU∗ are selfadjoint linear relations it follows that
µSF = USFU∗.
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The invariance of nonnegative selfadjoint relations

Extremal extensions

A nonnegative selfadjoint extension Ã of S is called extremal when

inf{ (f ′ − h′, f − h) : {h, h′} ∈ S } = 0 for all {f , f ′} ∈ Ã.

The Kreı̆n-von Neumann extension SN and the Friedrichs extension
SF are extremal extensions.
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The invariance of nonnegative selfadjoint relations

Hassi, Sandovici, de Snoo, Winkler – 2006
Let S be a nonnegative relation in a Hilbert space H. Then the
following statements are equivalent:

1 Ã is an extremal extension of S;
2 Ã = R∗LR∗∗L for some subspace L such that

dom S ⊂ L ⊂ dom S1/2
N ;

3 Ã is a nonnegative selfadjoint extension of S whose
corresponding form t̃ satisfies t̃ ⊂ tN .
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The invariance of nonnegative selfadjoint relations

The invariance of the extremal extensions
Assume that S is a nonnegative linear relation in H which is µ- scale
invariant with respect to U.

Then any extremal extension of S is µ- scale invariant with respect to
U.
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Example A

A purely multi-valued relation
Assume that U is a unitary operator in the Hilbert space H such that
U∗(K) = K, where K is a not necessarily closed subspace of H.

Consider the purely multi-valued relation S in H defined by

S = {0} × K.

Then S is closed if and only if K is closed, and it is µ invariant with
respect to U for any µ > 0.

The adjoint S∗ is given by

S∗ = K⊥ × H,

so that mul S∗ = H.
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Example A

The Kreı̆n-von Neumann extension SN and the Friedrichs extension
SF are given by

SN = K⊥ × K, SF = {0} × H,

There exists a one to-one-correspondence between the class of all
extremal extensions Ã of S and the set of all closed subspaces L of
K⊥. The correspondence is given by

Ã = L× L⊥,
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Example B

Assume that µ > 0, µ 6= 1, and that U is the scaling transformation on
the Hilbert space H = L2(0,∞) defined by

(Uf )(x) = µ−
1
4 f

(
µ−

1
2 x

)
, f ∈ L2(0,∞).

Consider T the maximal operator on the Sobolev space H2,2(0,∞)
defined by

T = − d2

dx2 , dom T = H2,2(0,∞).

The linear operator S defined by

S = T∗ �dom S, dom S = {f ∈ dom T : f (0) = f ′(0) = 0}

is a closed nonnegative operator with deficiency indices (1, 1).
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Example B

All the operators S, S∗, SF and SN are µ- scale invariant with respect
to the transformation U.

Any other nonnegative selfadjoint extension of S different from the
extremal ones can be obtained by the restriction of T to the domain

dom As = {f ∈ dom T : f ′(0) = sf (0)}

for some s > 0.

As, s > 0 is not µ invariant with respect to U.
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