
 
 
 
 

Classes of infinite order pseudodifferential 
operators 

 
 
 
     Pseudodifferential operators: 
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where ϕ̂  is the Fourier transform of the function (distribu-
tion) φ and KNσ  is the Kohn Nirenberg symbol of the ope-
rator) or 
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where Wσ  is the Weyl symbol of the operator. 
 
     The conditions imposed on the symbols are of local na-
ture – polynomial growth with respect to the phase varia-
ble ξ of the symbol and of its derivatives uniform with res-
pect to the space variable x in a compact set K, where K is 
an arbitrary compact set included in an open set Ω or of 
global nature - polynomial growth with respect to the 
phase variable ξ of the symbol and of its derivatives uni-
form with respect to the space variable x in Rn. 
     The local conditions and the Kohn-Nirenberg quantiza-
tion are especially used in the study of partial differential 
equations, the global conditions and the Weyl quantization 
– in quantum mechanics. 



 
     Local conditions 
 
     1) Boutet de Monvel’s analytical pseudodifferential o-
perators of infinite order – A.I.F., 223, (1972), 229 -268. 
 
      Weight functions: ),0(),0[: ∞→∞Λ  continuous, increa-
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     Analytical symbols: CR →×Ω n:σ  analytical function 
such that for every compact set Ω⊂K  there exist 0, >cε  
such that σ is holomorphic in 
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. A composition formula can be obtained. )(0 Ω∈ ∞Cu
 
     2) Ultradifferential operators – H. Komatsu, J. Fac. Sci 
Tokyo, 1A, 20 (1973) 25 -105. 
     Let  be a sequence of positive numbers. An infi-
nitely differentiable function φ defined on an open set Ω is 
called an ultradifferentiable function of class  (Beur-
ling), respectively 
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set Ω⊂K  and every h > 0 there exists a positive constant 
C (respectively if for every compact set Ω⊂K  there exist 
positive constants C and h) such that 
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     Let us assume that the sequence  satisfy the fol-
lowing conditions: 
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     - logarithmic convexity 
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     - stability under ultradifferential operators – there exist 
two constants A and H such that 
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     A formal sum 
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is called un ultradifferential operator of class , res-
pectively 
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{ }pM  if there exist two positive constants L and 

C (respectively if for every L > 0 there exists C > 0) such 
that 
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     Then P(D) can be defined as a continuous operator on 
 (respectively on ) (and also on the 

duals of these spaces called ultradistribution spaces) 
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     Remark. The sequences ( ) ( )ppr
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the Gevrey spaces of functions, satisfy the conditions from 
above for r > 0. 



     3) Pseudodifferential operators of infinite order on Ge-
vrey classes – L. Zanghirati, Ann. Univ. Ferrara, Sez. VII – 
Sc. Math, XXXI (1985), 197-219. 
     The symbols are the smooth functions CR →×Ω n:σ  
which satisfy the following condition: for every compact set 

Ω⊂K  there exists a positive constant h and for every 
0>ε  there exists a constant C > 0 such that 
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for every multiindices α and β, x in Ω and ξ in Rn. Here 
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     Then ),( DxKNσ  is a continuous operator defined on 
the Gevrey space of functions compactly supported  
with values into . 
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     One proves a pseudo-locality property, a composition 
formula and a class of operators which admit parametrices 
is given. 
 
     Remark. For a logarithmic convex sequence  
one defines its associated function 
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     If ( ) ( )ppr
pp pM = , then its associated function is equi-

valent with rs /1 . 



 
     Global conditions 
 
     The Gelfand-Shilov-Roumieu spaces ( S – type spa-
ces). These are spaces of rapidly decreasing functions. 
For  and  two logarithmic convex sequences 

 is the space of the functions φ which have 
the property that there exist positive constants C, h and k 
such that 
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and  is the space of the functions φ which 
have the property that for every positive constants h and k 
there exists a positive constants C such that 
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     If  = , what we shall assume in what fol-
lows, we simply write 

ppM )( ppN )(
})({}){},({ ppp MMM SS =  and 

.(If  = , then the 
GSR spaces are invariant through the Fourier transform.) 
The dual spaces are denoted with , respectively 
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     4) Infinite order pseudodifferential operators defined on 
(ultra)modulation spaces – S. Pilipović, N. Teofanov, JFA, 
208 (2004), 194-228. Let )1,0[)/1( ∈= rγ . A continuous 
function  is called a γ–exp-type weight 
if there exist 
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i.e. if w is moderate with respect to the weight )(e
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For γ < 1 the weight )(e
γγ ξ+xs  is submultiplicative. 



For ∞<≤ qp,1 , the ultra-modulation space  is the 

space of the ultradistributions  such that 
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     Here g is an arbitrary window from ,  is the 
operator of translation with x and  is the operator of 

multiplication with 

))(( prpS xT

ξM
•ξπ i2e . The function ugMTx ,ξ  is the 

short time Fourier transform of u of window g. 
     The symbols are the smooth functions CRR →× nn:σ  
which satisfy the following condition: there exist positive 
constants h, k and C such that 
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for every multiindices α and β, and x and ξ in Rn. 
     One proves that if h and k satisfy some conditions, 
then 0,~
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     The proof is based on the fact that a Wilson basis of 
exponential decay is an unconditional basis in . 
(Wilson basis are orthonormal basis in L
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are “simple” linear combinations of time – frequency shifts 
of a fixed function. 
     A class of elliptic operators is defined, their essential 
self-adjointness on L2 is proved and spectral asymptotics 
for such operators are obtained. 
 



     5. Infinite order pseudodifferential operators on general 
S – type spaces. 
     Let  be a logarithmic convex sequence which 
satisfies the condition of stability under ultradifferential 
operators and with the property that there exists a positive 
constant C such that 
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     The symbols are the smooth functions CRR →× nn:σ  
which satisfy the following condition: there exist positive 
constants h, k such that for every 0>ε  there exists a 
constant C > 0 such that 
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for every multiindices α and β, and x and ξ in Rn. 
     Then ),( DxKNσ  is a continuous operator in . ))(( pMS

     Remark. The case  for some p
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