Classes of infinite order pseudodifferential operators

Pseudodifferential operators:

 $-\sigma_{KN}(x,D)\varphi(x) = (2\pi)^{-n} \int e^{i\langle x,\xi \rangle} \sigma_{KN}(x,\xi)\hat{\varphi}(\xi)d\xi$ where $\hat{\varphi}$ is the Fourier transform of the function (distribution) φ and σ_{KN} is the Kohn Nirenberg symbol of the operator) or

$$-\sigma_W(x,D)\varphi(x) = (2\pi)^{-n} \int \int e^{i\langle x-y,\xi\rangle} \sigma_W(\frac{x+y}{2},\xi)\varphi(y) dy d\xi,$$

where σ_W is the Weyl symbol of the operator.

The conditions imposed on the symbols are of local nature – polynomial growth with respect to the phase variable ξ of the symbol and of its derivatives uniform with respect to the space variable *x* in a compact set *K*, where *K* is an arbitrary compact set included in an open set Ω or of global nature - polynomial growth with respect to the phase variable ξ of the symbol and of its derivatives uniform with respect to the space variable *x* in \mathbf{R}^n .

The local conditions and the Kohn-Nirenberg quantization are especially used in the study of partial differential equations, the global conditions and the Weyl quantization – in quantum mechanics.

Local conditions

1) Boutet de Monvel's analytical pseudodifferential operators of infinite order – A.I.F., 223, (1972), 229 -268.

Weight functions: Λ : $[0,\infty) \rightarrow (0,\infty)$ continuous, increasing function such that

$$\lim_{r \to \infty} e^{-\varepsilon r} \Lambda(r) = 0, \ \lim_{r \to \infty} e^{\varepsilon r} \Lambda(r) = +\infty, \ (\forall) \varepsilon > 0.$$

Analytical symbols: $\sigma : \Omega \times \mathbb{R}^n \to C$ analytical function such that for every compact set $K \subset \Omega$ there exist $\varepsilon, c > 0$ such that σ is holomorphic in

 $K(\varepsilon) = \left\{ (x,\xi) \in \mathbb{C}^n \times \mathbb{C}^n; \ d(x,K) < \varepsilon, \ (\mathrm{Im}\xi)^2 < \varepsilon \left[(\mathrm{Re}\xi)^2 + 1 \right] \right\}$ and

 $|\sigma(x,\xi)| \leq c\Lambda(|\xi|), (\forall) (x,\xi) \in K(\varepsilon).$

Then $\sigma_{KN}(x, D)u$ can be defined as a hyperfunction for $u \in C_0^{\infty}(\Omega)$. A composition formula can be obtained.

2) Ultradifferential operators – H. Komatsu, *J. Fac. Sci Tokyo*, 1A, 20 (1973) 25 -105.

Let $(M_p)_p$ be a sequence of positive numbers. An infinitely differentiable function φ defined on an open set Ω is called an ultradifferentiable function of class (M_p) (Beurling), respectively $\{M_p\}$ (Roumieu), if for every compact set $K \subset \Omega$ and every h > 0 there exists a positive constant C (respectively if for every compact set $K \subset \Omega$ there exist positive constants C and h) such that

$$\left|D^{\alpha}\varphi(x)\right| \leq Ch^{|\alpha|}M_{|\alpha|}, \ (\forall) x \in K, \ (\forall)\alpha \in N^{n}.$$

Let us assume that the sequence $(M_p)_p$ satisfy the following conditions:

- logarithmic convexity

$$M_p^2 \le M_{p-1}M_{p+1}, (\forall) p > 0;$$

- stability under ultradifferential operators – there exist two constants *A* and *H* such that

$$M_{p} \leq AH^{p}M_{q}M_{p-q}, (\forall)p \geq 0, 0 \leq q \leq p;$$

- non-quasi-analiticity

$$\sum_{p\geq 1}\frac{M_{p-1}}{M_p} < \infty \, .$$

A formal sum

$$P(D) = \sum_{|\alpha| \ge 0} a_{\alpha} D^{\alpha}, \ a_{\alpha} \in C, \ (\forall) |\alpha| \ge 0$$

is called un ultradifferential operator of class (M_p) , respectively $\{M_p\}$ if there exist two positive constants *L* and *C* (respectively if for every *L* > 0 there exists *C* > 0) such that

$$|a_{\alpha}| \leq \frac{CL^{|\alpha|}}{M_{|\alpha|}}, \ (\forall) |\alpha| \geq 0.$$

Then P(D) can be defined as a continuous operator on $D^{(M_p)}(\Omega)$ (respectively on $D^{\{M_p\}}(\Omega)$) (and also on the duals of these spaces called ultradistribution spaces)

Remark. The sequences $(M_p)_p = (p^{pr})_p$, which define the Gevrey spaces of functions, satisfy the conditions from above for r > 0.

3) Pseudodifferential operators of infinite order on Gevrey classes – L. Zanghirati, *Ann. Univ. Ferrara*, Sez. VII – Sc. Math, XXXI (1985), 197-219.

The *symbols* are the smooth functions $\sigma: \Omega \times \mathbb{R}^n \to \mathbb{C}$ which satisfy the following condition: for every compact set $K \subset \Omega$ there exists a positive constant *h* and for every $\varepsilon > 0$ there exists a constant $\mathbb{C} > 0$ such that

 $\left| D_{\xi}^{\alpha} D_{x}^{\beta} \sigma(x,\xi) \right| \leq C h^{|\alpha+\beta|} \alpha! \beta!^{r(\rho-\delta)} \left(1+\left|\xi\right|\right)^{-\rho|\alpha|+\delta|\beta|} e^{\varepsilon|\xi|^{1/r}},$

for every multiindices α and β , x in Ω and ξ in \mathbb{R}^n . Here $r > 1, 0 \le \delta < \rho \le 1, r\rho \ge 1$.

Then $\sigma_{KN}(x,D)$ is a continuous operator defined on the Gevrey space of functions compactly supported $G_0^r(\Omega)$ with values into $G^r(\Omega)$.

One proves a pseudo-locality property, a composition formula and a class of operators which admit parametrices is given.

Remark. For a logarithmic convex sequence $(M_p)_p$ one defines its associated function $M:(0,\infty) \to \mathbb{R}$ through the formula

$$M(s) = \sup_{p \ge 0} (p \ln s - \ln M_p), \ (\forall) s > 0.$$

If $(M_p)_p = (p^{pr})_p$, then its associated function is equivalent with $s^{1/r}$.

Global conditions

The Gelfand-Shilov-Roumieu spaces (S - type spaces). These are spaces of rapidly decreasing functions. For $(M_p)_p$ and $(N_p)_p$ two logarithmic convex sequences $S(\{M_p\}, \{N_p\})$ is the space of the functions φ which have the property that there exist positive constants *C*, *h* and *k* such that

$$\left|x^{\beta}D^{\alpha}\varphi(x)\right| \leq Ch^{|\alpha|}k^{|\beta|}M_{|\alpha|}N_{|\beta|}, \ (\forall) x \in \mathbf{R}^{n}, \ (\forall)\alpha, \beta \in \mathbf{N}^{n}$$

and $S((M_p), (N_p))$ is the space of the functions φ which have the property that for every positive constants *h* and *k* there exists a positive constants *C* such that

$$x^{\beta} D^{\alpha} \varphi(x) \bigg| \leq C h^{|\alpha|} k^{|\beta|} M_{|\alpha|} N_{|\beta|}, \ (\forall) x \in \mathbf{R}^n, \ (\forall) \alpha, \beta \in \mathbf{N}^n.$$

If $(M_p)_p = (N_p)_p$, what we shall assume in what follows, we simply write $S(\{M_p\}, \{M_p\}) = S(\{M_p\})$ and $S((M_p), (M_p)) = S((M_p))$. (If $(M_p)_p = (N_p)_p$, then the GSR spaces are invariant through the Fourier transform.) The dual spaces are denoted with $S'(\{M_p\})$, respectively $S'((M_p))$.

4) Infinite order pseudodifferential operators defined on (ultra)modulation spaces – S. Pilipović, N. Teofanov, *JFA*, 208 (2004), 194-228. Let $\gamma(=1/r) \in [0,1)$. A continuous function $w: \mathbb{R}^n \times \mathbb{R}^n \to (0,\infty)$ is called a γ -exp-type weight if there exist $s \ge 0$ and C > 0 such that

$$w(x+y,\xi+\eta) \leq C e^{s(|x|^{\gamma}+|\xi|^{\gamma})} w(y,\eta), \ (\forall)x,y,\xi,\eta \in \mathbf{R}^n,$$

i.e. if *w* is moderate with respect to the weight $e^{s(|x|^{\gamma} + |\xi|^{\gamma})}$. For $\gamma < 1$ the weight $e^{s(|x|^{\gamma} + |\xi|^{\gamma})}$ is submultiplicative. For $1 \le p, q < \infty$, the ultra-modulation space $M_{p,q}^{w,t}$ is the space of the ultradistributions $u \in S'((p^{pr}))$ such that

$$\int \left(\int \left| \left\langle \overline{T_x M_{\xi} g}, u \right\rangle \right|^p w(x,\xi)^p \mathrm{e}^{t(|x|^{\gamma} + |\xi|^{\gamma})} \mathrm{d}x \right)^{q/p} \mathrm{d}\xi \right]^{1/q} < \infty \,.$$

Here *g* is an arbitrary window from $S((p^{pr}))$, T_x is the operator of translation with *x* and M_{ξ} is the operator of multiplication with $e^{2\pi i\xi}$. The function $\langle \overline{T_x M_{\xi}g}, u \rangle$ is the short time Fourier transform of *u* of window *g*.

The symbols are the smooth functions $\sigma: \mathbb{R}^n \times \mathbb{R}^n \to C$ which satisfy the following condition: there exist positive constants *h*, *k* and *C* such that

$$\left| D_{\xi}^{\alpha} D_{x}^{\beta} \sigma(x,\xi) \right| \leq C h^{|\alpha|} k^{|\beta|} (\alpha!\beta!)^{r} \mathrm{e}^{\lambda|x|^{\gamma} + \tau|\xi|^{\gamma}},$$

for every multiindices α and β , and x and ξ in \mathbf{R}^{n} .

One proves that if *h* and *k* satisfy some conditions, then $\sigma_W(x,D): M_{p,q}^{w,0} \to M_{p,q}^{\widetilde{w},0}$ is a continuous operator for $\widetilde{w}(x,\xi) = w(x,\xi) e^{-2^{\gamma} \lambda |x|^{\gamma} - \tau |\xi|^{\gamma}}$.

The proof is based on the fact that a Wilson basis of exponential decay is an unconditional basis in $M_{p,q}^{w,t}$. (Wilson basis are orthonormal basis in L^2 which elements are "simple" linear combinations of time – frequency shifts of a fixed function.

A class of elliptic operators is defined, their essential self-adjointness on L^2 is proved and spectral asymptotics for such operators are obtained.

5. Infinite order pseudodifferential operators on general S – type spaces.

Let $(M_p)_p$ be a logarithmic convex sequence which satisfies the condition of stability under ultradifferential operators and with the property that there exists a positive constant *C* such that

 $\sqrt{p}M_{p-1} \leq CM_p, (\forall)p > 0.$

The *symbols* are the smooth functions $\sigma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ which satisfy the following condition: there exist positive constants *h*, *k* such that for every $\varepsilon > 0$ there exists a constant $\mathbb{C} > 0$ such that

$$\left| D_{\xi}^{\alpha} D_{x}^{\beta} \sigma(x,\xi) \right| \leq C h^{|\alpha|} k^{|\beta|} M_{|\alpha|} M_{|\beta|} (1+|\xi|)^{m} \mathrm{e}^{M(\varepsilon|\xi|)},$$

for every multiindices α and β , and x and ξ in \mathbf{R}^{n} .

Then $\sigma_{KN}(x, D)$ is a continuous operator in $S((M_p))$.

Remark. The case $(M_p)_p = (p^{pr})_p$ for some $r \ge 1/2$ is covered.