Schrodinger operators with
random 0 magnetic fields

by
Takuya Mine (Kyoto Institute of Technology)
and
Yuji Nomura (Ehime University)

12 September, 2007 at Moeciu



Schrodinger operators with random magnetic
fields on R°

We consider the magnetic Schrodinger operators on R?
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where a,, = (@ 1z, Gy ) is the magnetic vector potential, w € ()
Is a random parameter. The function

denotes the magnetic field perpendicular to the plane.



Poisson-Anderson type J-fields

We assume

rota,(z) = B + Z 2wy (w)d(z — 7). (1)

Here,

e B is a positive constant independent of w,

e I', is the Poisson configuration (the support of the Poisson
point process) with intensity pdxdy (p > 0 is a constant),



o {a}er is a sequence of i.i.d. random variables independent
of I',,, satisfying
0<a, <1

for any v € I',,. We denote
p=Pla, #0}, a=Eq,]|

Eliminating a set of measure zero from (), we may assume
0&1I,.



Poisson point process
Put N,(FE) =#(ENT,). Then,

1) For every disjoint measurable sets FEy,..., F,, the random
variables N,(E1),...,N,(F,) are independent.

2) For every measurable set |F| < oo,

P{N,(E) =k} = e—f"E(mﬁDk (k=0,1,2,...).

From this, we have E[N_(F)] = V|N,(E)] = p|E)|.



Construction of a_

ldentify a vector z = (z,y) with a complex number z =
x +1y. Put

C(z)= 3 a, (L+1+i>.

_ ~ 2
e, =7 7 9

The sum converges locally uniformly in C\ I',, with probability
s
one. Put ¢,(2) = 72 + (,(2) and put

a,(2) = (Im ¢, (2), Re g (2)).

Then, a,, satisfies (1).



Self-adjoint extension

We denote the Friedrichs extension of EW\CSO(RQ\FW) by H,,,.
A function u € L*(R?) belongs to D(H,,) if and only if

e L,uc L?*(R?),

e limsup, .. |u(z)| <oo, Vyell,.



Problem

When rota = B (constant magnetic field), it is known
that the n-th Landau level F,, = (2n — 1)B is an eigenvalue
of multiplicity oo for every n = 1,2,.... Does FE,, remain

eigenvalue of multiplicity oo, even if random 0 magnetic fields
are added?

Answer Yes, if the magnetic fields are sufficiently strong
(the threshold value depends on n). The opposite is (almost)
true for the lowest Landau level F5.



Known results
Nambu '00, Exner—gt'ovfcvzek-Vthas’02
Assume I' = {0} (one point) and g = o, 0 < a < 1. Then,
o H)={E, |n=12,...}
U {E,+2aB|n=1,2,...},
mult(F,,; H) = oo,
mult(E,, + 2aB; H) = n.

(Moreover, Exner et al. investigates the spectrum of all the
self-adjoint extensions of £|geo(r2\{0})-)



M-N "06

Let n € N. Assume I' is a non-random lattice, (a.,)~er is

B

periodic, and 0 < ay < 1 for all . Put ® = Q—\D\ + v, where
T

D is the fundamental domain of I'. Then,

1) If ® > n, then mult(E,; H) = oc.

2) If ® <1, then mult(FE; H) = 0.

(The value 27 ® denotes the average of the magnetic flux per
one J obstacle.)



M-N, at OTQP’ 06 in Czech republic

Assume I',, is the Poisson configuration with intensity pdxdy,
o, = « (cosntant) for every v, 0 < a < 1. Then, for every
ng € N, there exists a constant C' = C'(a, ng) > 0 such that

B/p>C = mult(E,;H,) =00 (n=1,...,n9)

almost surely.



Today’s result

B
Theorem 1. Let n € N and put & = v + @&. Then,
TP

1) If ® > np, then mult(F,,; H,) = oo almost surely.

2) If ® < p, then mult(E7; H,) = 0 almost surely.

(The value 27® also denotes the average of the magnetic
flux per one § obstacle, since E|[#(I', ND)| =1if | D| =1/p.)



Remark

1) When I' is a non-random lattice and {a~} is i.i.d. (Anderson
type), the same conclusion also holds if we put

B
®=—|D|+ a,
2T

where D is the fundamental domain of the lattice I'. This is
an extension of the result M-N '06 in the periodic case.

2) Nothing is known in the threshold case ® = p, at present.



Related results

Geyler-Grishanov '02, Geyler-Stovitek '04, Rozenblum-
Shirokov '06 Zero-modes for the Pauli operators with (a
constant magnetic field +) & magnetic fields in various cases
(periodic, etc.). Rozenblum and Shirokov also investigates the
case the magnetic field is a sighed measure.

Remark. The zero-mode of a component of the Pauli
operator corresponds to the lowest Landau level of the
Schrodinger operator.



There are similar results for Schrodinger operators with a
constant magnetic field plus point interactions (not J-magnetic
fields); e.g.,

o Geiler '92,

e Avishai-Redheffer-Band '92, Avishai-Redheffer '93, Avishai-
Azbel-Gredeskul 93,

e Dorlas-Macris-Pulé "99.



Strategy

In the rest of time, we present an outline of the proof of
Theorem 1. The main strategy is the following:

1) Construct eigenfunctions explicitly, using canonical
commutation relations.

2) Estimate the growth order of the eigenfunctions by (an
extension of) the entire function theory.

The argument similar to 2) above is used in Chistyakov-
Lyubarskii-Pastur ‘01 “On completeness of random exponentials
iIn the Bargmann-Fock space™.



Canonical commutation relations

Put

A =20, + ¢,(2), A" =—-20;+ ¢,(2).
These operators satisfy the canonical commutation relations
AA" =L+ B, A'A=L- B,
on C\ I'. By the above relations, we can (formally) show

Au =0 =  Lu = Bu,
Lu=FEu = LAWw=(E+2B)AM.



Multi-valued canonical product

Definition 2. Let I' be a discrete subset of C satisfying
#T N {|z| < R}) =0(R*) R — oo. (2)

Let @ = (a,)yer be a sequence of bounded non-negative
numbers. Define

o 2
Y o £_|_Z_)
or.o(z) = H (1_5) o 7(7 292 )
yel

We call the multi-valued function or, the (multi-valued)
canonical product for (I',«) (this definition is a natural



generalization of the one in the entire function theory).

denote a(w) = (a(w))~er,, and

—~—

Ow = 0r,,a(w)s Ow = O-I‘w,af(\c:)’

—~——

where a(w) = (o (w))~er,,,

1 (if 0 < ay(w) < 1),

5‘7(“’):{0 (if a (w) = 0).

The function o, satisfies

We



Explicit solutions

Proposition 3. Let n be a positive integer and f an entire
function. Put

u(z) = A" (e EE oy ()| LT (R))

If w € L? then u € D(H,) and H,u = E,u. Moreover, all
the solution of H ,u = Eju is written in the above form with
n = 1.



Entire function theory

Theorem 4 (Levin). Let I', « given in Definition 2, and
assume all ., are integers. For 0 < 0y — 61 < 2, put

n(r,01,60s) = Z Ly

vel, 0<]y|<r, 61<arg v<02

Assume the limit

A(61,05) = lim n(r, 61, 02)

— 00 r2

exists for all 1, 65 except countable values. Assume additionally



the limit .
_ : Cry
=glm 2

vero<pyl<r |
exists and finite. Then, there exists a CY-set C such that

llm log ‘O-F,(;(T629> ’
r—o0,ret?gC T

— H(6) 3)

holds for every 6 € |0, 27), where

7
H) = — /9 (1) — 0) sin 2(e6 — 0)dA () + Re(e26).

—27

The convergence of (3) is uniform with respect to 6 € [0, 2).



C'-set
Definition. A C-set is the union of disks {|z — z;| < r,}

satisfying .
lim = =0
lim = > 7y =0
25| <r

(CY-set is a set ‘rare’ at infinity. )



Outline of proof of Theorem 1

Proposition 5. Theorem 4 is true if a.y > 0 for all v € I’
(not necessarily be integers).

(The proof of Proposition 5 is almost parallel to that of
Theorem 4.)

Lemma 6. The assumption of Proposition 5 is satisfied
with I' =T, a = f(w) = (nay(w) — ay(w))~er,,, and

A(01,02) = p(b2 — 01)(np — &)/2,

with probability one. (Notice that o 'c,” = or.,, which
appeared in the solution u. )



Corollary 7. Let u be the solution given in Proposition 3,
2 . . . .
where f = e 9% ¢, § is the constant given in Proposition 5 for

(I'w, B(w)), g is a non-zero polynomial.

(1) For almost all w, for every ¢ > 0 we have

u) <exp ( (-5 + B o) )

for sufficiently large z.

(2) Assume n. = 1. Then, for almost all w, we have

w2 exp ( (-5 + T2 o) )

for sufficiently large z outside some CV-set C.




Another topics

e \We have the Lifshitz tail

N <e ™ for A >0

for the Anderson type 0-magnetic fields with B = 0, supp 1 3
0 and supp u # {0} (u is the common distribution measure
for a.,). It is not yet proved for the Poisson type.

e Anderson localization is not proved in both cases.



