Schrödinger operators with random δ magnetic fields

by Takuya Mine (Kyoto Institute of Technology) and Yuji Nomura (Ehime University)

12 September, 2007 at Moeciu

Schrödinger operators with random magnetic fields on \mathbf{R}^2

We consider the magnetic Schrödinger operators on \mathbf{R}^2

$$\mathcal{L}_{\omega} = \left(\frac{1}{i}\nabla + \mathbf{a}_{\omega}\right)^2,$$

where $\mathbf{a}_{\omega} = (a_{\omega,x}, a_{\omega,y})$ is the magnetic vector potential, $\omega \in \Omega$ is a random parameter. The function

$$\operatorname{rot} \mathbf{a}_{\omega} = \partial_x a_{\omega,y} - \partial_y a_{\omega,x}$$

denotes the magnetic field perpendicular to the plane.

Poisson-Anderson type δ -fields

We assume

$$\operatorname{rot} \mathbf{a}_{\omega}(z) = B + \sum_{\gamma \in \Gamma_{\omega}} 2\pi \alpha_{\gamma}(\omega) \delta(z - \gamma).$$
 (1)

Here,

- B is a positive constant independent of ω ,
- Γ_{ω} is the Poisson configuration (the support of the Poisson point process) with intensity $\rho dx dy$ ($\rho > 0$ is a constant),

 {α_γ}_{γ∈Γ} is a sequence of i.i.d. random variables independent of Γ_ω, satisfying

$$0 \le \alpha_{\gamma} < 1$$

for any $\gamma \in \Gamma_{\omega}$. We denote

$$p = \mathbf{P}\{\alpha_{\gamma} \neq 0\}, \quad \bar{\alpha} = \mathbf{E}[\alpha_{\gamma}].$$

Eliminating a set of measure zero from Ω , we may assume $0 \notin \Gamma_{\omega}$.

Poisson point process

Put $N_{\omega}(E) = \#(E \cap \Gamma_{\omega})$. Then,

- 1) For every disjoint measurable sets E_1, \ldots, E_n , the random variables $N_{\omega}(E_1), \ldots, N_{\omega}(E_n)$ are independent.
- 2) For every measurable set $|E| < \infty$,

$$P\{N_{\omega}(E) = k\} = e^{-\rho|E|} \frac{(\rho|E|)^k}{k!} \quad (k = 0, 1, 2, \ldots).$$

From this, we have $\mathbf{E}[N_{\omega}(E)] = \mathbf{V}[N_{\omega}(E)] = \rho |E|$.

Construction of \mathbf{a}_{ω}

Identify a vector z = (x, y) with a complex number z = x + iy. Put

$$\zeta_{\omega}(z) = \sum_{\gamma \in \Gamma_{\omega}} \alpha_{\gamma} \left(\frac{1}{z - \gamma} + \frac{1}{\gamma} + \frac{z}{\gamma^2} \right).$$

The sum converges locally uniformly in $\mathbf{C} \setminus \Gamma_{\omega}$ with probability one. Put $\phi_{\omega}(z) = \frac{B\overline{z}}{2} + \zeta_{\omega}(z)$ and put $\mathbf{a}_{\omega}(z) = (\operatorname{Im} \phi_{\omega}(z), \operatorname{Re} \phi_{\omega}(z)).$

Then, \mathbf{a}_{ω} satisfies (1).

Self-adjoint extension

We denote the Friedrichs extension of $\mathcal{L}_{\omega}|_{C_0^{\infty}(\mathbb{R}^2 \setminus \Gamma_{\omega})}$ by H_{ω} . A function $u \in L^2(\mathbb{R}^2)$ belongs to $D(H_{\omega})$ if and only if

- $\mathcal{L}_{\omega} u \in L^2(\mathbf{R}^2)$,
- $\limsup_{z \to \gamma} |u(z)| < \infty, \quad \forall \gamma \in \Gamma_{\omega}.$

Problem

When $\operatorname{rot} \mathbf{a} = B$ (constant magnetic field), it is known that the *n*-th Landau level $E_n = (2n - 1)B$ is an eigenvalue of multiplicity ∞ for every $n = 1, 2, \ldots$ Does E_n remain eigenvalue of multiplicity ∞ , even if random δ magnetic fields are added?

Answer Yes, if the magnetic fields are sufficiently strong (the threshold value depends on n). The opposite is (almost) true for the lowest Landau level E_1 .

Known results

Nambu '00, Exner-Št'ovíček-Vytřas'02

Assume $\Gamma = \{0\}$ (one point) and $\alpha_0 = \alpha$, $0 < \alpha < 1$. Then,

$$\sigma(H) = \{E_n \mid n = 1, 2, \ldots\}$$
$$\cup \{E_n + 2\alpha B \mid n = 1, 2, \ldots\},$$
$$\operatorname{mult}(E_n; H) = \infty,$$
$$\operatorname{mult}(E_n + 2\alpha B; H) = n.$$

(Moreover, Exner et al. investigates the spectrum of all the self-adjoint extensions of $\mathcal{L}|_{C_0^{\infty}(\mathbf{R}^2 \setminus \{0\})}$.)

M-N '06

Let $n \in \mathbf{N}$. Assume Γ is a non-random lattice, $(\alpha_{\gamma})_{\gamma \in \Gamma}$ is periodic, and $0 < \alpha_{\gamma} < 1$ for all γ . Put $\Phi = \frac{B}{2\pi} |\mathcal{D}| + \bar{\alpha}$, where \mathcal{D} is the fundamental domain of Γ . Then,

- 1) If $\Phi > n$, then $\operatorname{mult}(E_n; H) = \infty$.
- 2) If $\Phi \leq 1$, then $\operatorname{mult}(E_1; H) = 0$.

(The value $2\pi\Phi$ denotes the average of the magnetic flux per one δ obstacle.)

M-N, at OTQP' 06 in Czech republic

Assume Γ_{ω} is the Poisson configuration with intensity $\rho dx dy$, $\alpha_{\gamma} = \alpha$ (cosntant) for every γ , $0 < \alpha < 1$. Then, for every $n_0 \in \mathbf{N}$, there exists a constant $C = C(\alpha, n_0) \ge 0$ such that

$$B/\rho > C \Rightarrow \operatorname{mult}(E_n; H_\omega) = \infty \quad (n = 1, \dots, n_0)$$

almost surely.

Today's result

Theorem 1. Let $n \in \mathbf{N}$ and put $\Phi = \frac{B}{2\pi\rho} + \bar{\alpha}$. Then,

- 1) If $\Phi > np$, then $\operatorname{mult}(E_n; H_\omega) = \infty$ almost surely.
- 2) If $\Phi < p$, then $\operatorname{mult}(E_1; H_\omega) = 0$ almost surely.

(The value $2\pi\Phi$ also denotes the average of the magnetic flux per one δ obstacle, since $\mathbf{E}[\#(\Gamma_{\omega} \cap \mathcal{D})] = 1$ if $|\mathcal{D}| = 1/\rho$.)

Remark

1) When Γ is a non-random lattice and $\{\alpha_{\gamma}\}$ is i.i.d. (Anderson type), the same conclusion also holds if we put

$$\Phi = \frac{B}{2\pi} |\mathcal{D}| + \bar{\alpha},$$

where \mathcal{D} is the fundamental domain of the lattice Γ . This is an extension of the result M-N '06 in the periodic case.

2) Nothing is known in the threshold case $\Phi = p$, at present.

Related results

Geyler-Grishanov '02, Geyler-Šťovíček '04, Rozenblum-Shirokov '06 Zero-modes for the Pauli operators with (a constant magnetic field +) δ magnetic fields in various cases (periodic, etc.). Rozenblum and Shirokov also investigates the case the magnetic field is a signed measure.

Remark. The zero-mode of a component of the Pauli operator corresponds to the lowest Landau level of the Schrödinger operator.

There are similar results for Schrödinger operators with a constant magnetic field plus point interactions (not δ -magnetic fields); e.g.,

- Geĭler '92,
- Avishai-Redheffer-Band '92, Avishai-Redheffer '93, Avishai-Azbel-Gredeskul '93,
- Dorlas-Macris-Pulé '99.

Strategy

In the rest of time, we present an outline of the proof of Theorem 1. The main strategy is the following:

- 1) Construct eigenfunctions explicitly, using canonical commutation relations.
- 2) Estimate the growth order of the eigenfunctions by (an extension of) the entire function theory.

The argument similar to 2) above is used in Chistyakov-Lyubarskii-Pastur '01 "On completeness of random exponentials in the Bargmann-Fock space".

Canonical commutation relations

Put

$$\mathcal{A} = 2\partial_z + \phi_\omega(z), \quad \mathcal{A}^{\dagger} = -2\partial_{\bar{z}} + \overline{\phi_\omega(z)}.$$

These operators satisfy the canonical commutation relations

$$\mathcal{A}\mathcal{A}^{\dagger} = \mathcal{L} + B, \quad \mathcal{A}^{\dagger}\mathcal{A} = \mathcal{L} - B,$$

on $\mathbf{C} \setminus \Gamma$. By the above relations, we can (formally) show

$$\mathcal{A}u = 0 \qquad \Rightarrow \qquad \mathcal{L}u = Bu,$$
$$\mathcal{L}u = Eu \qquad \Rightarrow \qquad \mathcal{L}\mathcal{A}^{\dagger}u = (E + 2B)\mathcal{A}^{\dagger}u.$$

Multi-valued canonical product

Definition 2. Let Γ be a discrete subset of \mathbf{C} satisfying

$$\#(\Gamma \cap \{|z| < R\}) = O(R^2) \quad R \to \infty.$$
(2)

Let $\alpha = (\alpha_{\gamma})_{\gamma \in \Gamma}$ be a sequence of bounded non-negative numbers. Define

$$\sigma_{\Gamma,\alpha}(z) = \prod_{\gamma \in \Gamma} \left(1 - \frac{z}{\gamma} \right)^{\alpha_{\gamma}} e^{\alpha_{\gamma} \left(\frac{z}{\gamma} + \frac{z^2}{2\gamma^2} \right)}.$$

We call the multi-valued function $\sigma_{\Gamma,\alpha}$ the (multi-valued) canonical product for (Γ, α) (this definition is a natural

generalization of the one in the entire function theory). We denote $\alpha(\omega) = (\alpha_{\gamma}(\omega))_{\gamma \in \Gamma_{\omega}}$ and

$$\sigma_{\omega} = \sigma_{\Gamma_{\omega}, \alpha(\omega)}, \quad \widetilde{\sigma_{\omega}} = \sigma_{\Gamma_{\omega}, \widetilde{\alpha(\omega)}},$$

where $\widetilde{\alpha(\omega)} = (\widetilde{\alpha_{\gamma}}(\omega))_{\gamma \in \Gamma_{\omega}}$,

$$\widetilde{\alpha_{\gamma}}(\omega) = \begin{cases} 1 & \text{(if } 0 < \alpha_{\gamma}(\omega) < 1 \text{),} \\ 0 & \text{(if } \alpha_{\gamma}(\omega) = 0 \text{).} \end{cases}$$

The function σ_{ω} satisfies

$$\sigma'_{\omega}(z) = \sigma_{\omega}(z)\zeta_{\omega}(z).$$

Explicit solutions

Proposition 3. Let n be a positive integer and f an entire function. Put

$$u(z) = \mathcal{A}^{\dagger^{n-1}} \left(e^{-\frac{B}{4}|z|^2} |\sigma_{\omega}(z)|^{-1} \overline{\widetilde{\sigma_{\omega}}(z)^n f(z)} \right)$$

If $u \in L^2$, then $u \in D(H_{\omega})$ and $H_{\omega}u = E_nu$. Moreover, all the solution of $H_{\omega}u = E_1u$ is written in the above form with n = 1.

Entire function theory

Theorem 4 (Levin). Let Γ , α given in Definition 2, and assume all α_{γ} are integers. For $0 \leq \theta_2 - \theta_1 \leq 2\pi$, put

$$n(r,\theta_1,\theta_2) = \sum_{\gamma \in \Gamma, \ 0 < |\gamma| \le r, \ \theta_1 \le \arg \gamma < \theta_2} \alpha_{\gamma}.$$

Assume the limit

$$\Delta(\theta_1, \theta_2) = \lim_{r \to \infty} \frac{n(r, \theta_1, \theta_2)}{r^2}$$

exists for all θ_1, θ_2 except countable values. Assume additionally

the limit

$$\delta = \frac{1}{2} \lim_{r \to \infty} \sum_{\gamma \in \Gamma, 0 < |\gamma| \le r} \frac{\alpha_{\gamma}}{\gamma^2}$$

exists and finite. Then, there exists a C^0 -set $\mathcal C$ such that

$$\lim_{r \to \infty, re^{i\theta} \notin \mathcal{C}} \frac{\log |\sigma_{\Gamma,\alpha}(re^{i\theta})|}{r^2} = H(\theta)$$
(3)

holds for every $\theta \in [0, 2\pi)$, where

$$H(\theta) = -\int_{\theta-2\pi}^{\theta} (\psi - \theta) \sin 2(\psi - \theta) d\Delta(\psi) + \operatorname{Re}(e^{2i\theta}\delta).$$

The convergence of (3) is uniform with respect to $\theta \in [0, 2\pi)$.

C^0 -set

Definition. A C^0 -set is the union of disks $\{|z - z_j| < r_j\}$ satisfying

$$\lim_{r \to \infty} \frac{1}{r} \sum_{|z_j| \le r} r_j = 0.$$

(C^0 -set is a set 'rare' at infinity.)

Outline of proof of Theorem 1

Proposition 5. Theorem 4 is true if $\alpha_{\gamma} \ge 0$ for all $\gamma \in \Gamma$ (not necessarily be integers).

(The proof of Proposition 5 is almost parallel to that of Theorem 4.)

Lemma 6. The assumption of Proposition 5 is satisfied with $\Gamma = \Gamma_{\omega}$, $\alpha = \beta(\omega) = (n\widetilde{\alpha_{\gamma}}(\omega) - \alpha_{\gamma}(\omega))_{\gamma \in \Gamma_{\omega}}$, and

$$\Delta(\theta_1, \theta_2) = \rho(\theta_2 - \theta_1)(np - \bar{\alpha})/2,$$

with probability one. (Notice that $\sigma_{\omega}^{-1}\widetilde{\sigma_{\omega}}^n = \sigma_{\Gamma,\alpha}$, which appeared in the solution u.)

Corollary 7. Let u be the solution given in Proposition 3, where $f = e^{-\delta z^2}g$, δ is the constant given in Proposition 5 for $(\Gamma_{\omega}, \beta(\omega))$, g is a non-zero polynomial.

(1) For almost all ω , for every $\epsilon > 0$ we have

$$|u(z)| \le \exp\left(\left(-\frac{B}{4} + \frac{\pi\rho(np - \bar{\alpha})}{2} + \epsilon\right)|z|^2\right)$$

for sufficiently large z.

(2) Assume n = 1. Then, for almost all ω , we have

$$|u(z)| \ge \exp\left(\left(-\frac{B}{4} + \frac{\pi\rho(np - \bar{\alpha})}{2} - \epsilon\right)|z|^2\right)$$

for sufficiently large z outside some C^0 -set \mathcal{C} .

Another topics

• We have the Lifshitz tail

$$N(\lambda) \le e^{-c\lambda^{-1}}$$
 for $\lambda > 0$

for the Anderson type δ -magnetic fields with B = 0, supp $\mu \ni 0$ and supp $\mu \neq \{0\}$ (μ is the common distribution measure for α_{γ}). It is not yet proved for the Poisson type.

• Anderson localization is not proved in both cases.