Scattering theory for Jacobi operators with quasi-periodic background

Iryna Egorova (Kharkiv) Johanna Michor (London) Gerald Teschl (Vienna)

> Q M a t h 10 Moeciu 2007

PART I : Scattering theory for Jacobi operators

- **1. Classical theory on constant background**
- 2. Quasi-periodic background

Scattering theory (existence of Jost solutions, transformation operators, scattering data, Gel'fand-Levitan-Marchenko equation) Inverse scattering theory (reconstruction, existence & uniqueness) 3. 'Step-like' quasi-periodic background

PART II : Initial value problem of the Toda Hierarchy

- 4. The Toda Hierarchy (finite-gap solutions)
- 5. Inverse scattering transform (time evolution of scattering data)

PART I

Scattering theory for Jacobi operators

Jacobi operators

For $u \in \ell^2(\mathbb{Z}, \mathbb{C})$ the Jacobi operator H is defined by

$$Hu(n) = a(n)u(n+1) + b(n)u(n) + a(n-1)u(n-1),$$

where a, b are bounded and real valued sequences.

H is bounded, self-adjoint, and is associated to the real tridiagonal infinite symmetric matrix

Jacobi operators

appear in a variety of applications:

- discrete analogue of Sturm-Liouville operators
- orthogonal polynomials on the real line
- play a fundamental role in investigation of completely integrable nonlinear lattices - Lax pair

Classical scattering theory

Given a Jacobi operator H which is a short range perturbation

$$\sum_{n\in\mathbb{Z}}|n|\left(\left|a(n)-\frac{1}{2}\right|+\left|b(n)-0\right|\right)<\infty$$

of the free Jacobi operator H_0 associated with $a_0(n) = \frac{1}{2}$, $b_0(n) = 0$, can one find "scattering data" which determine H uniquely?

We want to replace the free Jacobi operator by a quasi-periodic one (which include periodic ones as a special case).

Can we even replace the free one by two quasi-periodic ones with different asymptotics on each side, that is, with

$$\sum_{n=0}^{\pm\infty} |n| \left(\left| a(n) - a_q^{\pm}(n) \right| + \left| b(n) - b_q^{\pm}(n) \right| \right) < \infty?$$

Can we find scattering data which uniquely determine *H* in these cases?

What is known?

Scattering theory for Jacobi operators: constant background: Case 1973, Guseinov 1976, Teschl '00 step-like constant bg: Egorova '02 first results for periodic bg: Volberg-Yuditskii '02, Boutet de Monvel-Egorova '04 first results for step-like periodic bg: Bazargan-Egorova '03

Scattering theory for Sturm-Liouville operators: constant bg: Gel'fand, Levitan, Marchenko 1950 periodic bg: Firsova 1987, Gesztesy-Nowell-Pötz 1997 Let H_q be a quasi-periodic Jacobi operator associated with the Riemann Surface

$$y^2 = R_{2g+2}(z) = \prod_{j=0}^{2g+1} (z - E_j), \qquad E_0 < E_1 < \dots < E_{2g+1},$$

that is,

$$a_q(n)^2 = \tilde{a}^2 \frac{\theta(\underline{z}(n+1))\theta(\underline{z}(n-1))}{\theta(\underline{z}(n))^2},$$

$$b_q(n) = \tilde{b} + \sum_{j=1}^g c_j(g) \frac{\partial}{\partial w_j} \ln\left(\frac{\theta(\underline{w}+\underline{z}(n))}{\theta(\underline{w}+\underline{z}(n-1))}\right)\Big|_{\underline{w}=0}.$$

Here $\boldsymbol{\theta}$ is the Riemann theta function and

$$\underline{z}(p,n) = \underline{\widehat{A}}_{p_0}(p) - \underline{\widehat{\alpha}}_{p_0}(\mathcal{D}_{\underline{\widehat{\mu}}(n)}) - \underline{\widehat{\Xi}}_{p_0} \in \mathbb{C}^g, \quad \underline{z}(n) = \underline{z}(\infty_+, n),$$

where $\underline{\widehat{A}}_{p_0}$, $\underline{\widehat{\alpha}}_{p_0}$, and $\underline{\Xi}_{p_0}$ are Abel map for points, divisors, and the vector of Riemann constants, respectively.

A special case of quasi-periodic Jacobi operators are periodic ones,

$$a_q(n+N) = a_q(n), \ b_q(n+N) = b_q(n), \ N \in \mathbb{N}.$$

Quasi-periodic Jacobi operators (II)

The Baker-Akhiezer function is given by

$$\psi_q(p,n) = \sqrt{\frac{\theta(\underline{z}(-1))\theta(\underline{z}(0))}{\theta(\underline{z}(n-1))\theta(\underline{z}(n))}} \frac{\theta(\underline{z}(p,n))}{\theta(\underline{z}(p,0))} \exp\left(n \int_{E_0}^p \omega_{\infty_+,\infty_-}\right),$$

where $\omega_{\infty_+,\infty_-}$ is the Abelian differential of the third kind with simple poles at ∞_{\pm} and residues ± 1 . The two branches

$$\psi_{q,\pm}(z,n) = \prod_{j=0}^{n-1} \phi_{q,\pm}(z,j)$$

of the BA function are solutions of $H_q\psi = z\psi$, where

$$\phi_{q,\pm}(z,n) = \frac{1}{2a_q(n)} \left(z - b_q(n) + \sum_{j=1}^g \frac{\hat{R}_j(n)}{z - \mu_j(n)} \pm \frac{R_{2g+2}^{1/2}(z)}{\prod_{j=1}^g (z - \mu_j(n))} \right).$$

Here $R_j(n) = \frac{R_{2g+1}^{1/2}(\mu_j(n))}{\prod_{k \neq j}(\mu_j(n) - \mu_k(n))}$ and μ_j are the Dirichlet eigenvalues of H_q located in the spectral gaps.

Spectrum of quasi-periodic Jacobi operators

The spectrum of H_q is purely absolutely continuous and consists of the branch cuts of the root $R_{2q+2}^{1/2}(z)$:

$$\sigma(H_q) = \bigcup_{j=0}^{g} [E_{2j}, E_{2j+1}]$$



The quasi-momentum map

The Abelian differential in the Baker-Akhiezer function is given by

$$\omega_{\infty_{+},\infty_{-}} = \frac{\prod_{j=1}^{g} (z - \lambda_{j})}{R_{2g+2}^{1/2}(z)} dz,$$

 $(\lambda_j \text{ are real numbers sitting in the spectral gaps})$. It is the average of the Green function (spectral theory) and $\int_{E_0}^{z} \hat{\omega}_{\infty_+,\infty_-}$ is the Green function (potential theory) of the upper sheet Π_+ with pole at ∞_+ .

Hence the quasi momentum map

$$w(z) = \exp\left(\int_{E_0}^{z} \hat{\omega}_{\infty_+,\infty_-}\right)$$

maps the upper sheet Π_+ to the unit circle. Since Π_+ is *not* simply connected, it is only conformal after removing the slits corresponding to the spectral gaps.

Orthonormal basis on the unit circle

By the spectral theorem,

Theorem 1 The Baker-Akhiezer functions $\psi_{q,\pm}(\lambda, n)$ form a complete orthogonal system on the spectrum with respect to the weight

$$d\omega(\lambda) = \frac{1}{2\pi i} \frac{\prod_{j=1}^{g} (\lambda - \mu_j)}{R_{2g+2}^{1/2}(z)} d\lambda,$$

namely

$$\oint_{\sigma} \overline{\psi_{q,\pm}(\lambda,m)} \psi_{q,\pm}(\lambda,n) d\omega = \delta(n,m),$$

where

$$\oint_{\sigma} f(\lambda) d\lambda := \int_{\sigma^{\mathsf{u}}} f(\lambda^{\mathsf{u}}) d\lambda - \int_{\sigma^{\mathsf{l}}} f(\lambda^{\mathsf{l}}) d\lambda.$$

The numbers μ_j located in the spectral gaps are the Dirichlet eigenvalues of H_q .

Perturbations of quasi-periodic Jacobi operators

Let H be a perturbation of H_q such that

$$\sum_{n\in\mathbb{Z}}|n|\Big(|a(n)-a_q(n)|+|b(n)-b_q(n)|\Big)<\infty.$$

Theorem 2 (i) There exist Jost solutions $\psi_{\pm}(z,.)$ of

$$H\psi_{\pm}(z,n) = z\psi_{\pm}(z,n)$$

which asymptotically look like the quasi-periodic solutions

$$\lim_{n \to \pm \infty} \left| w(z)^{\mp n} (\psi_{\pm}(z,n) - \psi_{q,\pm}(z,n)) \right| = 0.$$

Spectrum of *H*:

(ii)
$$\sigma := \sigma_{ess}(H) = \sigma(H_q) = \bigcup_{j=0}^{g} [E_{2j}, E_{2j+1}].$$

(iii)
$$\sigma_p(H) = \{\rho_j\}_{j=1}^{q} \subset \mathbb{R} \setminus \sigma(H_q).$$

The transformation operator

We define the transformation operator by computing the Fourier expansion of $\psi_{\pm}(\lambda, n)$ with respect to the ONS $\psi_{q,\pm}(\lambda, n)$

$$K_{\pm}(n,m) = \oint_{\sigma} \psi_{\pm}(\lambda,n) \psi_{q,\mp}(\lambda,m) d\omega.$$

By construction we have $HK_{\pm} = K_{\pm}H_q$. By the Cauchy theorem,

$$K_{\pm}(n,m) = 0$$
 for $\pm m < \pm n$,

therefore

$$\psi_{\pm}(z,n) = \sum_{m=n}^{\pm\infty} K_{\pm}(n,m)\psi_{q,\pm}(z,m).$$

[Boutet de Monvel-Egorova '04]: Transformation operator for periodic bg.

Properties of the transformation operator

 $HK_{\pm} = K_{\pm}H_q$ implies

Theorem 3

$$\frac{a(n)}{a_q(n)} = \frac{K_+(n+1,n+1)}{K_+(n,n)} = \frac{K_-(n,n)}{K_-(n+1,n+1)},$$

$$b(n) - b_q(n) = a_q(n)\frac{K_+(n,n+1)}{K_+(n,n)} - a_q(n-1)\frac{K_+(n-1,n)}{K_+(n-1,n-1)},$$

$$= a_q(n-1)\frac{K_-(n,n-1)}{K_-(n,n)} - a_q(n)\frac{K_-(n+1,n)}{K_-(n+1,n+1)},$$

$$\prod_{m=-\infty}^{\infty} \frac{a_q(m)}{a(m)} = K_+(n,n)K_-(n,n).$$

 K_{\pm} satisfy the crucial technical estimate

$$|K_{\pm}(n,m)| \le C \sum_{\substack{j=[\frac{m+n}{2}]\pm 1}}^{\pm\infty} \left(|a(j) - a_q(j)| + |b(j) - b_q(j)| \right), \quad \pm m > \pm n.$$

Scattering data

Define the transmission T and reflection R_{\pm} coefficients via the scattering relations

$$T(\lambda)\psi_{\mp}(\lambda,n) = \overline{\psi_{\pm}(\lambda,n)} + R_{\pm}(\lambda)\psi_{\pm}(\lambda,n), \qquad \lambda \in \sigma(H_q),$$

and for each eigenvalue ρ_j the norming constants $\gamma_{\pm,j}$ via

$$\gamma_{\pm,j}^{-1} = \sum_{n \in \mathbb{Z}} \widehat{\psi}_{\pm}(\rho_j, n)^2, \qquad \widehat{\psi}_{\pm}(z, n) = \Big(\prod_{\mu_\ell \in M_{\pm}} (z - \mu_\ell)\Big)\psi_{\pm}(z, n).$$

Then the left/right scattering data are the sets

$$S_{\pm}(H) = \{ R_{\pm}(\lambda), \lambda \in \sigma; \ (\rho_j, \gamma_{\pm,j}), 1 \le j \le q \}.$$

Relation between the left/right scattering data

There is a meromorphic continuation of T to Π_+ with simple poles at the eigenvalues ρ_j . The residua are given by

$$(\operatorname{res}_{\rho_j} T)^2 = \gamma_{+,j} \gamma_{-,j} \prod_{k=0}^{2g+1} (\rho_j - E_k).$$

By direct computation,

$$|T(z)|^{2} + |R_{\pm}(z)|^{2} = 1,$$

$$T(z)\overline{R_{+}(z)} + \overline{T(z)}R_{-}(z) = 0.$$

Thus if the transmission coefficient T is known, we can compute $S_{-}(H)$ from $S_{+}(H)$ and vice versa.

Since we know the absolute value of T on the boundary, $|T(z)|^2 = 1 - |R_{\pm}(z)|^2$, and since T is meromorphic in Π_+ , we can reconstruct T from S_+ (this is nontrivial, since Π_+ is *not* simply connected):

$$T(z) = \exp\left(-\sum_{j} g(z,\rho_j)\right) \exp\left(\frac{1}{4\pi} \int_{\partial \Pi_+} \ln(1-|R_{\pm}(z)|^2) \mu(z,x) dx\right)$$

Here $g(z, z_0)$ is the Green function of the domain Π_+ and is given by $g(z, z_0) = \int_{E_0}^{z} \omega_{z_0, \tilde{z}_0}$, where \tilde{z}_0 is the complex conjugate of z_0 on the lower sheet Π_- . Moreover, $\mu(z, x_0)$ is the harmonic measure

$$\frac{\partial}{\partial y_0} g(z, x_0 + \mathrm{i} y_0) \Big|_{y_0 = 0}$$

Note that T is not single-valued in general, since both the Blaschke produkt and the outer function are not single-valued (it depends on the path of integration).

Gel'fand-Levitan-Marchenko equation

Taking the Fourier transform of $T(\lambda)\psi_{\mp}(\lambda,n) = \overline{\psi_{\pm}(\lambda,n)} + R_{\pm}(\lambda)\psi_{\pm}(\lambda,n)$, $\lambda \in \sigma(H_q)$, gives the Gel'fand-Levitan-Marchenko equation

$$\frac{K_{\pm}(n,m)}{K_{\pm}(n,m)} + \sum_{l=n}^{\pm\infty} K_{\pm}(n,l) F^{\pm}(l,m) = \frac{\delta(n,m)}{K_{\pm}(n,n)}, \qquad \pm m \ge \pm n,$$

where

$$F^{\pm}(l,m) = \tilde{F}^{\pm}(l,m) + \sum_{j=1}^{q} \gamma_{\pm,j} \hat{\psi}_{q,\pm}(\rho_j,l) \hat{\psi}_{q,\pm}(\rho_j,m),$$

$$\tilde{F}^{\pm}(l,m) = \oint_{\sigma} R_{\pm}(\lambda) \psi_{q,\pm}(\lambda,l) \psi_{q,\pm}(\lambda,m) d\omega.$$

Theorem 4 The GLM equation has a unique solution, so the scattering data $S_+(H)$ determine H uniquely and H can be reconstructed from $S_+(H)$ solving the GLM equation.

We can reconstruct the operator H from given scattering data

$$S_{\pm} = \{ R_{\pm}(\lambda), \lambda \in \sigma; (\rho_j, \gamma_{\pm,j}), 1 \le j \le q \}$$

and a given quasi-periodic Jacobi operator H_q .

The remaining question is when given scattering data $S_+(H)$ give rise to a Jacobi operator H?

Conditions: I $R_{\pm}(\lambda)$ are continuous except possibly at E_i ,

$$R_{\pm}(\lambda^{\mathsf{u}}) = R_{\pm}(\lambda^{\mathsf{l}}), \qquad |R_{\pm}(\lambda)| < 1 \quad \text{for} \quad \lambda \neq E_j.$$

II The eigenvalues ρ_j must be such that the transmission coefficient T(z) extends to a single valued function on Π_+ .

Note that **II** is void in the constant background case!

III $\tilde{F}^{\pm}(l,m)$ must have the proper decay rate:

$$egin{aligned} &| ilde{F}^{\pm}(n,m)| \leq \sum_{j=n+m}^{\pm\infty} q(j), \qquad q(j) \geq 0, \qquad |j|q(j) \in \ell^1(\mathbb{Z}), \ &\sum_{n=n_0}^{\pm\infty} |n| \Big| ilde{F}^{\pm}(n,n) - ilde{F}^{\pm}(n\pm 1,n\pm 1) \Big| < \infty, \ &\sum_{n=n_0}^{\pm\infty} |n| \Big| a_q(n) ilde{F}^{\pm}(n,n+1) - a_q(n-1) ilde{F}^{\pm}(n-1,n) \Big| < \infty. \end{aligned}$$

IV Transmission and reflection coefficients satisfy

$$\lim_{z \to E} R_{2g+2}^{1/2}(z) \frac{R_{\pm}(z)+1}{T(z)} = 0, \qquad E \neq \mu_{\ell},$$
$$\lim_{z \to E} R_{2g+2}^{1/2}(z) \frac{R_{\pm}(z)-1}{T(z)} = 0, \qquad E = \mu_{\ell},$$

and the consistency conditions

$$\frac{R_{-}(\lambda)}{R_{+}(\lambda)} = -\frac{T(\lambda)}{\overline{T(\lambda)}}, \qquad \gamma_{+,j} \gamma_{-,j} = \frac{\left(\operatorname{res}_{\rho_{j}} T(\lambda)\right)^{2}}{\prod_{l=0}^{2g+1} (\rho_{j} - E_{l})}.$$

Main Theorem

Theorem 5 Conditions I–IV are necessary and sufficient for S_{\pm} to be the left/right scattering data of a unique Jacobi operator H. The associated coefficients a, b satisfy the short range assumption.

Perturbations with step-like quasi-periodic background

Consider two quasi-periodic Jacobi operators H_q^{\pm} with Dirichlet divisors $(\mu_i^{\pm}, \sigma_i^{\pm})$ and spectra σ_{\pm} . Let H be a perturbation of H_q^{\pm} such that

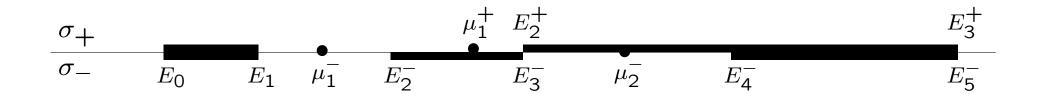
$$\sum_{n=0}^{\pm\infty} |n| \Big(|a(n) - a_q^{\pm}(n)| + |b(n) - b_q^{\pm}(n)| \Big) < \infty.$$

There exist Jost solutions $\psi_{\pm}(z,.)$ satisfying $H\psi = z\psi$ and

$$\psi_{\pm}(z,n) = \sum_{m=n}^{\pm\infty} K_{\pm}(n,m) \psi_q^{\pm}(z,m),$$

where $\psi_q^{\pm}(z,n)$ are the Weyl solutions of $H_q^{\pm}\psi = z\psi$ decaying for $z \in \mathbb{C} \setminus \sigma_{\pm}$ as $n \to \pm \infty$ and $K_{\pm}(n,m)$ satisfy a similar estimate as before.

Typical mutual locations of σ_{-} and σ_{+} :



$$\sigma = \sigma_{ess}(H) = \sigma_{+} \cup \sigma_{-}, \quad \sigma_{p}(H) = \{\rho_{j}\}_{j=1}^{q} \subset \mathbb{R} \setminus \sigma$$

No restriction on the mutual location of σ_+ and σ_- , no restriction on the location of the Dirichlet eigenvalues!

[Bazargan-Egorova '03]: Two operators of period 2 and a special choice for the respective spectra

Now we have two transmission T_{\pm} and reflection R_{\pm} coefficients defined via the scattering relations

$$T_{\mp}(\lambda)\psi_{\pm}(\lambda,n) = \overline{\psi_{\mp}(\lambda,n)} + R_{\mp}(\lambda)\psi_{\mp}(\lambda,x), \quad \lambda \in \sigma_{\mp}^{\mathsf{u},\mathsf{l}},$$

and again for each eigenvalue ρ_j the norming constant $\gamma_{\pm,j}$,

$$\gamma_{\pm,j}^{-1} = \sum_{n \in \mathbb{Z}} \widehat{\psi}_{\pm}(\rho_j, n)^2, \qquad \widehat{\psi}_{\pm}(z, n) = \left(\prod_{\mu_\ell \in M_{\pm}} (z - \mu_\ell^{\pm})\right) \psi_{\pm}(z, n).$$

Then the scattering data is the set

$$S = \left\{ R_{+}(\lambda), T_{+}(\lambda), \lambda \in \sigma_{+}^{\mathsf{u},\mathsf{l}}; R_{-}(\lambda), T_{-}(\lambda), \lambda \in \sigma_{-}^{\mathsf{u},\mathsf{l}}; \\ \rho_{1}, \dots, \rho_{q} \in \mathbb{R} \setminus \sigma, \gamma_{\pm,1}, \dots, \gamma_{\pm,q} \in \mathbb{R}_{+} \right\}.$$

Minimal scattering data?

Kernel of the GLM equation

The Gel'fand-Levitan-Marchenko equation has the form

$$K_{\pm}(n,m) + \sum_{l=n}^{\pm\infty} K_{\pm}(n,l) F^{\pm}(l,m) = \frac{\delta(n,m)}{K_{\pm}(n,n)}, \qquad \pm m \ge \pm n,$$

where

$$F_{\pm}(m,n) = \oint_{\sigma_{\pm}} R_{\pm}(\lambda) \psi_q^{\pm}(\lambda,m) \psi_q^{\pm}(\lambda,n) d\omega_{\pm} + \int_{\sigma_{\mp}^{(1),u}} |T_{\mp}(\lambda)|^2 \psi_q^{\pm}(\lambda,m) \psi_q^{\pm}(\lambda,n) d\omega_{\mp} + \sum_{k=1}^q \gamma_{\pm,k} \widehat{\psi}_q^{\pm}(\rho_k,n) \widehat{\psi}_q^{\pm}(\rho_k,m).$$

Theorem 6 The GLM equation has a unique solution $K_{\pm}(n,m)$ and a_{\pm}, b_{\pm} satisfy the short range assumption $n\left\{|a_{\pm}(n) - a_q^{\pm}(n)| + |b_{\pm} - b_q^{\pm}(n)|\right\} \in \ell^1(\mathbb{Z}_{\pm}).$ If in addition, (i) $\overline{R_{\pm}(\lambda)}T_{\pm}(\lambda) + R_{\mp}(\lambda)\overline{T_{\pm}(\lambda)} = 0$ for $\lambda \in \sigma^{(2)}$, (ii) for $E \in \partial \sigma_{+} \cap \partial \sigma_{-}$ and $\widehat{W}(E) \neq 0$, $\left(-1 - for - E \neq u^{\pm}\right)$

$$R_{\pm}(E) = \begin{cases} -1 & \text{for} \quad E \neq \mu_{\ell}^{\pm}, \\ 1 & \text{for} \quad E = \mu_{\ell}^{\pm}, \end{cases}$$

then $a_{-} = a_{+} = a$, $b_{-} = b_{+} = b$ and the data S is the scattering data for the Jacobi operator H associated with a, b.

[Boutet de Monvel-Egorova-Teschl '07]: 1-dim Schrödinger operator with step-like periodic bg

PART II

Initial value problem of the Toda Hierarchy

The Toda equation

Assume

 $a(n,t), b(n,t) \in \ell^{\infty}(\mathbb{Z},\mathbb{R}), \quad t \mapsto (a(t),b(t)) \text{ differentiable in } \ell^{\infty}(\mathbb{Z}) \oplus \ell^{\infty}(\mathbb{Z}).$

The Toda lattice [1967] is a simple model for a nonlinear one-dimensional crystal. The Toda equation (in Flaschka's variables [1974])

$$\dot{a}(n,t) = a(n,t) \Big(b(n+1,t) - b(n,t) \Big), \\ \dot{b}(n,t) = 2 \Big(a(n,t)^2 - a(n-1,t)^2 \Big)$$

is equivalent to the Lax equation

$$\frac{d}{dt}H(t) = P_2(t)H(t) - H(t)P_2(t),$$

where H(t) is our Jacobi operator and $P_2(t) = a(t)S^+ - a^-(t)S^-$. Here $(S^{\pm}f)(n) = f^{\pm}(n) = f(n \pm 1)$.

The Toda Hierarchy

Replacing P_2 with more general operators P_{2r+2} of order 2r + 2 yields the Toda hierarchy

$$\frac{d}{dt}H(t) = P_{2r+2}(t)H(t) - H(t)P_{2r+2}(t) \quad \Leftrightarrow \quad \mathsf{TL}_r(a(t), b(t)) = 0.$$

The r-th Toda equation is given by

$$\dot{a}(n,t) = a(t) \Big(g_{r+1}(n+1,t) - g_{r+1}(n,t) \Big), \\ \dot{b}(n,t) = \Big(h_{r+1}(n,t) - h_{r+1}(n-1,t) \Big),$$

where

$$g_j(n,t) = \sum_{l=0}^{j} c_{j-l} \langle \delta_n, H(t)^l \delta_n \rangle,$$

$$h_j(n,t) = 2a(n,t) \sum_{l=0}^{j} c_{j-l} \langle \delta_{n+1}, H(t)^l \delta_n \rangle + c_{j+1}$$

for some arbitrarily chosen constants $\{c_j\}_{j=0}^r$ with $c_0 = 1$.

The Toda Hierarchy

The operator P_{2r+2} is given by

$$P_{2r+2}(t) = -H(t)^{r+1} + \sum_{j=0}^{r} (2a(t)g_j(t)S^+ - h_j(t))H(t)^{r-j} + g_{r+1}(t).$$

One obtains for the first few equations of the Toda hierarchy

$$\mathsf{TL}_{0}(a,b) = \begin{pmatrix} \dot{a} - a(b^{+} - b) \\ \dot{b} - 2(a^{2} - (a^{-})^{2}) \end{pmatrix},$$

$$\mathsf{TL}_{1}(a,b) = \begin{pmatrix} \dot{a} - a((a^{+})^{2} - (a^{-})^{2} + (b^{+})^{2} - b^{2}) \\ \dot{b} - 2a^{2}(b^{+} + b) + 2(a^{-})^{2}(b + b^{-}) \end{pmatrix} - c_{1} \begin{pmatrix} a(b^{+} - b) \\ 2(a^{2} - (a^{-})^{2}) \end{pmatrix}$$

The Lax equation $H = [P_{2r+2}, H]$ implies existence of a unitary propagator $U_r(t, s)$ such that the family of operators H(t), $t \in \mathbb{R}$, are unitarily equivalent, $H(t) = U_r(t, s)H(s)U_r(s, t)$, that is,

$$\sigma(H) \equiv \sigma(H(t)) = \sigma(H(0)), \quad t \in \mathbb{R}.$$

Finite-gap solutions of the Toda Hierarchy

Existence and uniqueness of global solutions of the initial value problem

$$\mathsf{TL}_{r}(a,b) = 0,$$
 $(a(0),b(0)) = (a_{0},b_{0}),$ $a_{0},b_{0} \in \ell^{\infty}(\mathbb{Z},\mathbb{R}),$
is well known.

Starting with quasi-periodic initial conditions $(a_{q,0}, b_{q,0})$ one can explicitely solve $TL_r(a_q(t), b_q(t)) = 0$: [Bulla-Gesztesy-Holden-Teschl 1998]

$$a_q(n,t)^2 = \tilde{a}^2 \frac{\theta(\underline{z}(n+1,t))\theta(\underline{z}(n-1,t))}{\theta(\underline{z}(n,t))^2},$$

$$b_q(n,t) = \tilde{b} + \sum_{j=1}^g c_j(g) \frac{\partial}{\partial w_j} \ln\left(\frac{\theta(\underline{w}+\underline{z}(n,t))}{\theta(\underline{w}+\underline{z}(n-1,t))}\right)\Big|_{\underline{w}=0}$$

The constants \tilde{a} , \tilde{b} , $c_j(g)$ depend only on the Riemann surface.

The IST is one of the main tools for solving completely integrable wave equations.

Korteweg-de Vries equation: constant bg: Gardner-Green-Kruskal-Miura 1967 non-constant bg: Kuznetsov-A.V. Mikhaīlov 1975 (They used the Weierstraß elliptic function as stationary bg solution.) periodic bg: Firsova 1988

Toda equation: constant bg: Flaschka 1974 Toda hierarchy with constant bg: Teschl 1999 step-like constant bg: Boutet de Monvel-Egorova '00

Short range assumption

Theorem 7 Suppose a, b and \tilde{a} , \tilde{b} are two arbitrary bounded solutions of the Toda system. If

$$\sum_{n\in\mathbb{Z}}w(n)\Big(|a(n,t)-\tilde{a}(n,t)|+|b(n,t)-\tilde{b}(n,t)|\Big)<\infty$$

holds for one $t_0 \in \mathbb{R}$, then it holds for all $t \in \mathbb{R}$. Here w(n) > 0 is an arbitrary function.

In particular, a short range perturbation of a quasi-periodic finite-gap solution will stay short range for all times!

Time dependent scattering theory

Suppose a, b is a solution of the Toda system satisfying $\sum_{n \in \mathbb{Z}} |n| \Big(|a(n,t) - a_q(n,t)| + |b(n,t) - b_q(n,t)| \Big) < \infty.$

We can define Jost solutions, transmission coefficients, etc. as before, now they depend on an additional parameter $t \in \mathbb{R}$. The scattering data are given by

$$S_{\pm}(H(t)) = \{ R_{\pm}(\lambda, t), \lambda \in \sigma; (\rho_j, \gamma_{\pm,j}(t)), 1 \le j \le q \}.$$

How do $S_{\pm}(H(t))$ evolve with t?

Time evolution of the scattering data

Theorem 8

$$T(\lambda, t) = T(\lambda, 0),$$

$$R_{\pm}(\lambda, t) = R_{\pm}(\lambda, 0) \exp(\pm(\alpha_{s,\pm}(z, t) - \alpha_{s,-}(z, t))),$$

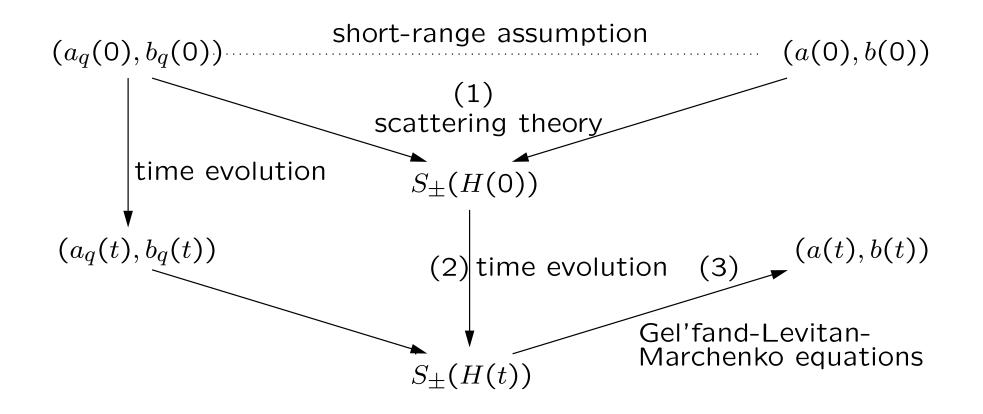
$$\gamma_{\pm,j}(t) = \gamma_{\pm,j}(0) \exp(2\alpha_{s,\pm}(\rho_j, t)), \qquad 1 \le j \le q,$$

where

$$\exp\left(\alpha_{s,\pm}(z,t)\right) = \sqrt{\frac{G_g(z,0,t)}{G_g(z,0,0)}}\exp\left(\pm R_{2g+2}^{1/2}(z)\int_0^t \frac{\widehat{G}_s(z,0,x)}{G_g(z,0,x)}dx\right),$$

$$G_g(z,n,t) = \prod_{j=1}^g (z-\mu_j(n,t)).$$

Inverse scattering transform



Time dependent normalisation

Before we have multiplied $\psi_{q,\pm}(\lambda, n, t)$ by a factor to cancel the poles at the Dirichlet eigenvalues. However, since the Dirichlet eigenvalues change sheets during time evolution, this normalization renders $\hat{\psi}_{q,\pm}(\lambda, n, t)$ discontinuous with respect to t and complicates the time evolution of the corresponding norming constants:

$$\begin{aligned} \hat{\gamma}_{\pm,j}(t) &= \hat{\gamma}_{\pm,j}(0) \exp\left(\pm 2R_{2g+2}^{1/2}(\rho_j) \int_0^t \frac{\hat{G}_s(\rho_j, 0, x)}{G_g(\rho_j, 0, x)} dx \\ &\pm \sum_{l=1}^g \int_0^t \frac{2\hat{G}_s(\mu_l(x), 0, x) R_{2g+2}^{1/2}(\mu_l(x))}{(\rho_j - \mu_l(x)) \prod_{k \neq l} (\mu_l(x) - \mu_k(x))} dx \right). \end{aligned}$$

To avoid the poles of the Baker-Akhiezer function, we assume that none of the eigenvalues ρ_j coincides with a Dirichlet eigenvalue $\mu_k(0,0)$ (w.l.o.g. shift initial time $t_0 = 0$ if necessary).

- 1. J. Bazargan and I. Egorova, *Jacobi operator with step-like asymptotically periodic coefficients*, Mat. Fiz. Anal. Geom. **10**, No.3, 425–442 (2003).
- A. Boutet de Monvel and I. Egorova, *Transformation operator for Jacobi matrices with asymptotically periodic coefficients*, J. Difference Eqs. Appl. **10**, 711-727 (2004).
- 3. K.M. Case, The discrete inverse scattering problem in one dimension, J. Math. Phys. **15**, 143–146 (1974).
- 4. K.M. Case, On discrete inverse scattering problems. II, J. Math. Phys. 14, 916–920 (1973).
- 5. K.M. Case and S.C. Chiu *The discrete version of the Marchenko equations in the inverse scattering problem*, J. Math. Phys. **14**, 1643–1647 (1973).
- 6. G.S. Guseinov, The inverse problem of scattering theory for a second-order difference equation on the whole axis, Soviet Math. Dokl., **17**, 1684–1688 (1976).
- 7. G.S. Guseinov, *The determination of an infinite Jacobi matrix from the scattering data*, Soviet Math. Dokl. **17**, 596–600 (1976).
- 8. G.S. Guseinov, *Scattering problem for the infinite Jacobi matrix*, Izv. Akad. Nauk Arm. SSR, Mat. **12**, 365–379 (1977).
- 9. I. Egorova, *The scattering problem for step-like Jacobi operator*, Mat. Fiz. Anal. Geom. **9**, No.2, 188–205 (2002).
- 10. G. Teschl, *Jacobi Operators and Completely Integrable Nonlinear Lattices*, Math. Surv. and Mon. **72**, Amer. Math. Soc., Rhode Island, 2000.
- 11. A. Volberg and P. Yuditskii, *On the inverse scattering problem for Jacobi Matrices with the Spectrum on an Interval, a finite system of intervals or a Cantor set of positive length*, Commun. Math. Phys. **226**, 567–605 (2002).

The talk was based on

- I. Egorova, J.M., and G. Teschl:
 - 1. Scattering theory for Jacobi operators with quasi-periodic background, Comm. Math. Phys. **264-3**, 811-842 (2006).
 - 2. Inverse scattering transform for the Toda hierarchy with quasi-periodic background, Proc. Amer. Math. Soc. **135**, 1817-1827 (2007).
 - 3. Soliton solutions of the Toda hierarchy on quasi-periodic background revisited, Math. Nach. (to appear).
 - 4. Scattering theory for Jacobi operators with general step-like quasi-periodic background, in preparation.

For more information see http://www.mat.univie.ac.at/~jmichor