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PART I

Scattering theory for Jacobi operators



Jacobi operators

For u ∈ `2(Z,C) the Jacobi operator H is defined by

Hu(n) = a(n)u(n+ 1) + b(n)u(n) + a(n− 1)u(n− 1),

where a, b are bounded and real valued sequences.

H is bounded, self-adjoint, and is associated to the real tridiagonal

infinite symmetric matrix

. . . . . .

. . . b(n− 1) a(n− 1)
a(n− 1) b(n) a(n)

a(n) b(n+ 1) .. .
. . . . . .

 .



Jacobi operators

appear in a variety of applications:

- discrete analogue of Sturm-Liouville operators

- orthogonal polynomials on the real line

- play a fundamental role in investigation of completely integrable non-

linear lattices - Lax pair



Classical scattering theory

Given a Jacobi operator H which is a short range perturbation∑
n∈Z

|n|
(∣∣∣a(n)− 1

2

∣∣∣+ ∣∣∣b(n)− 0
∣∣∣) <∞

of the free Jacobi operator H0 associated with a0(n) = 1
2, b0(n) = 0,

can one find ”scattering data” which determine H uniquely?

We want to replace the free Jacobi operator by a quasi-periodic one
(which include periodic ones as a special case).

Can we even replace the free one by two quasi-periodic ones with
different asymptotics on each side, that is, with

±∞∑
n=0

|n|
(∣∣∣a(n)− a±q (n)

∣∣∣+ ∣∣∣b(n)− b±q (n)
∣∣∣) <∞?

Can we find scattering data which uniquely determine H in these
cases?



What is known?

Scattering theory for Jacobi operators:

constant background: Case 1973, Guseinov 1976, Teschl ’00

step-like constant bg: Egorova ’02

first results for periodic bg: Volberg-Yuditskii ’02, Boutet de Monvel-

Egorova ’04

first results for step-like periodic bg: Bazargan-Egorova ’03

Scattering theory for Sturm-Liouville operators:

constant bg: Gel’fand, Levitan, Marchenko 1950

periodic bg: Firsova 1987, Gesztesy-Nowell-Pötz 1997



Quasi-periodic Jacobi operators (I)

Let Hq be a quasi-periodic Jacobi operator associated with the Riemann

Surface

y2 = R2g+2(z) =
2g+1∏
j=0

(z − Ej), E0 < E1 < · · · < E2g+1,

that is,

aq(n)
2 = ã2

θ(z(n+ 1))θ(z(n− 1))

θ(z(n))2
,

bq(n) = b̃+
g∑

j=1

cj(g)
∂

∂wj
ln
(

θ(w+ z(n))

θ(w+ z(n− 1))

)∣∣∣∣
w=0

.

Here θ is the Riemann theta function and

z(p, n) = Âp0(p)− α̂p0(Dµ̂(n))− Ξ̂p0 ∈ Cg, z(n) = z(∞+, n),

where Âp0, α̂p0, and Ξp0 are Abel map for points, divisors, and the

vector of Riemann constants, respectively.

A special case of quasi-periodic Jacobi operators are periodic ones,

aq(n+N) = aq(n), bq(n+N) = bq(n), N ∈ N.



Quasi-periodic Jacobi operators (II)

The Baker-Akhiezer function is given by

ψq(p, n) =

√
θ(z(−1))θ(z(0))

θ(z(n− 1))θ(z(n))

θ(z(p, n))

θ(z(p,0))
exp

(
n
∫ p
E0

ω∞+,∞−

)
,

where ω∞+,∞− is the Abelian differential of the third kind with simple

poles at ∞± and residues ±1. The two branches

ψq,±(z, n) =
n−1∏
j=0

φq,±(z, j)

of the BA function are solutions of Hqψ = zψ, where

φq,±(z, n) =
1

2aq(n)

(
z − bq(n) +

g∑
j=1

R̂j(n)

z − µj(n)
±

R
1/2
2g+2(z)∏g

j=1(z − µj(n))

)
.

Here Rj(n) =
R

1/2
2g+1(µj(n))∏

k 6=j(µj(n)−µk(n))
and µj are the Dirichlet eigenvalues of

Hq located in the spectral gaps.



Spectrum of quasi-periodic Jacobi operators

The spectrum of Hq is purely absolutely continuous and consists of the

branch cuts of the root R
1/2
2g+2(z):

σ(Hq) =
g⋃

j=0

[E2j, E2j+1]

σ

E0 E1

•
µ1 E2 E3



The quasi-momentum map

The Abelian differential in the Baker-Akhiezer function is given by

ω∞+,∞− =

∏g
j=1(z − λj)

R
1/2
2g+2(z)

dz,

(λj are real numbers sitting in the spectral gaps). It is the average

of the Green function (spectral theory) and
∫ z
E0
ω̂∞+,∞− is the Green

function (potential theory) of the upper sheet Π+ with pole at ∞+.

Hence the quasi momentum map

w(z) = exp
( ∫ z

E0

ω̂∞+,∞−

)
maps the upper sheet Π+ to the unit circle. Since Π+ is not simply

connected, it is only conformal after removing the slits corresponding

to the spectral gaps.



Orthonormal basis on the unit circle

By the spectral theorem,

Theorem 1 The Baker-Akhiezer functions ψq,±(λ, n) form a complete

orthogonal system on the spectrum with respect to the weight

dω(λ) =
1

2πi

∏g
j=1(λ− µj)

R
1/2
2g+2(z)

dλ,

namely ∮
σ
ψq,±(λ,m)ψq,±(λ, n)dω = δ(n,m),

where ∮
σ
f(λ)dλ :=

∫
σu
f(λu)dλ−

∫
σl
f(λl)dλ.

The numbers µj located in the spectral gaps are the Dirichlet eigenval-

ues of Hq.



Perturbations of quasi-periodic Jacobi operators

Let H be a perturbation of Hq such that∑
n∈Z

|n|
(
|a(n)− aq(n)|+ |b(n)− bq(n)|

)
<∞.

Theorem 2 (i) There exist Jost solutions ψ±(z, .) of

Hψ±(z, n) = zψ±(z, n)

which asymptotically look like the quasi-periodic solutions

lim
n→±∞

∣∣∣w(z)∓n(ψ±(z, n)− ψq,±(z, n))
∣∣∣ = 0.

Spectrum of H:

(ii) σ := σess(H) = σ(Hq) =
⋃g
j=0[E2j, E2j+1].

(iii) σp(H) = {ρj}
q
j=1 ⊂ R\σ(Hq).



The transformation operator

We define the transformation operator by computing the Fourier ex-

pansion of ψ±(λ, n) with respect to the ONS ψq,±(λ, n)

K±(n,m) =
∮
σ
ψ±(λ, n)ψq,∓(λ,m)dω.

By construction we have HK± = K±Hq. By the Cauchy theorem,

K±(n,m) = 0 for ±m < ±n,

therefore

ψ±(z, n) =
±∞∑
m=n

K±(n,m)ψq,±(z,m).

[Boutet de Monvel-Egorova ’04]: Transformation operator for periodic bg.



Properties of the transformation operator

HK± = K±Hq implies

Theorem 3

a(n)

aq(n)
=

K+(n+ 1, n+ 1)

K+(n, n)
=

K−(n, n)

K−(n+ 1, n+ 1)
,

b(n)− bq(n) = aq(n)
K+(n, n+ 1)

K+(n, n)
− aq(n− 1)

K+(n− 1, n)

K+(n− 1, n− 1)

= aq(n− 1)
K−(n, n− 1)

K−(n, n)
− aq(n)

K−(n+ 1, n)

K−(n+ 1, n+ 1)
,

∞∏
m=−∞

aq(m)

a(m)
= K+(n, n)K−(n, n).

K± satisfy the crucial technical estimate

|K±(n,m)| ≤ C
±∞∑

j=[m+n
2 ]±1

(
|a(j)− aq(j)|+ |b(j)− bq(j)|

)
, ±m > ±n.



Scattering data

Define the transmission T and reflection R± coefficients via the scat-

tering relations

T (λ)ψ∓(λ, n) = ψ±(λ, n) +R±(λ)ψ±(λ, n), λ ∈ σ(Hq),

and for each eigenvalue ρj the norming constants γ±,j via

γ−1
±,j =

∑
n∈Z

ψ̂±(ρj, n)
2, ψ̂±(z, n) =

( ∏
µ`∈M±

(z − µ`)
)
ψ±(z, n).

Then the left/right scattering data are the sets

S±(H) = {R±(λ), λ ∈ σ; (ρj, γ±,j),1 ≤ j ≤ q}.



Relation between the left/right scattering data

There is a meromorphic continuation of T to Π+ with simple poles at

the eigenvalues ρj. The residua are given by

(resρjT )2 = γ+,jγ−,j
2g+1∏
k=0

(ρj − Ek).

By direct computation,

|T (z)|2 + |R±(z)|2 = 1,

T (z)R+(z) + T (z)R−(z) = 0.

Thus if the transmission coefficient T is known, we can compute S−(H)

from S+(H) and vice versa.



Reconstructing T from its boundary values

Since we know the absolute value of T on the boundary, |T (z)|2 =

1− |R±(z)|2, and since T is meromorphic in Π+, we can reconstruct T

from S+ (this is nontrivial, since Π+ is not simply connected):

T (z) = exp
(
−
∑
j

g(z, ρj)
)
exp

(
1

4π

∫
∂Π+

ln(1− |R±(z)|2)µ(z, x)dx
)

Here g(z, z0) is the Green function of the domain Π+ and is given by

g(z, z0) =
∫ z
E0
ωz0,z̃0, where z̃0 is the complex conjugate of z0 on the

lower sheet Π−. Moreover, µ(z, x0) is the harmonic measure

∂

∂y0
g(z, x0 + iy0)

∣∣∣∣
y0=0

.

Note that T is not single-valued in general, since both the Blaschke

produkt and the outer function are not single-valued (it depends on the

path of integration).



Gel’fand-Levitan-Marchenko equation

Taking the Fourier transform of T (λ)ψ∓(λ, n) = ψ±(λ, n)+R±(λ)ψ±(λ, n),

λ ∈ σ(Hq), gives the Gel’fand-Levitan-Marchenko equation

K±(n,m) +
±∞∑
l=n

K±(n, l)F±(l,m) =
δ(n,m)

K±(n, n)
, ±m ≥ ±n,

where

F±(l,m) = F̃±(l,m) +
q∑

j=1

γ±,jψ̂q,±(ρj, l)ψ̂q,±(ρj,m),

F̃±(l,m) =
∮
σ
R±(λ)ψq,±(λ, l)ψq,±(λ,m)dω.

Theorem 4 The GLM equation has a unique solution, so the scattering

data S+(H) determine H uniquely and H can be reconstructed from

S+(H) solving the GLM equation.



Inverse scattering theory

We can reconstruct the operator H from given scattering data

S± = {R±(λ), λ ∈ σ; (ρj, γ±,j),1 ≤ j ≤ q}

and a given quasi-periodic Jacobi operator Hq.

The remaining question is when given scattering data S+(H) give rise

to a Jacobi operator H?

Conditions: I R±(λ) are continuous except possibly at Ej,

R±(λu) = R±(λl), |R±(λ)| < 1 for λ 6= Ej.

II The eigenvalues ρj must be such that the transmission coefficient

T (z) extends to a single valued function on Π+.

Note that II is void in the constant background case!



Conditions for the scattering data

III F̃±(l,m) must have the proper decay rate:

|F̃±(n,m)| ≤
±∞∑

j=n+m

q(j), q(j) ≥ 0, |j|q(j) ∈ `1(Z),

±∞∑
n=n0

|n|
∣∣∣F̃±(n, n)− F̃±(n± 1, n± 1)

∣∣∣ <∞,

±∞∑
n=n0

|n|
∣∣∣aq(n)F̃±(n, n+ 1)− aq(n− 1)F̃±(n− 1, n)

∣∣∣ <∞.

IV Transmission and reflection coefficients satisfy

lim
z→E

R
1/2
2g+2(z)

R±(z)+1
T (z) = 0, E 6= µ`,

lim
z→E

R
1/2
2g+2(z)

R±(z)−1
T (z) = 0, E = µ`,

and the consistency conditions

R−(λ)

R+(λ)
= −

T (λ)

T (λ)
, γ+,j γ−,j =

(
resρjT (λ)

)2
∏2g+1
l=0 (ρj − El)

.



Main Theorem

Theorem 5 Conditions I–IV are necessary and sufficient for S± to

be the left/right scattering data of a unique Jacobi operator H. The

associated coefficients a, b satisfy the short range assumption.



Perturbations with step-like quasi-periodic background

Consider two quasi-periodic Jacobi operators H±
q with Dirichlet divisors

(µ±j , σ
±
j ) and spectra σ±. Let H be a perturbation of H±

q such that

±∞∑
n=0

|n|
(
|a(n)− a±q (n)|+ |b(n)− b±q (n)|

)
<∞.

There exist Jost solutions ψ±(z, .) satisfying Hψ = zψ and

ψ±(z, n) =
±∞∑
m=n

K±(n,m)ψ±q (z,m),

where ψ±q (z, n) are the Weyl solutions of H±
q ψ = zψ decaying for z ∈

C \ σ± as n→ ±∞ and K±(n,m) satisfy a similar estimate as before.



Spectrum of H

Typical mutual locations of σ− and σ+:

σ−

σ+

E0 E1

•
µ−1 E−2 E−3

E+
2•

µ+
1

•
µ−2 E−4 E−5

E+
3

σ = σess(H) = σ+ ∪ σ−, σp(H) = {ρj}
q
j=1 ⊂ R\σ

No restriction on the mutual location of σ+ and σ−,

no restriction on the location of the Dirichlet eigenvalues!

[Bazargan-Egorova ’03]: Two operators of period 2 and a special choice for the

respective spectra



Scattering data for step-like case

Now we have two transmission T± and reflection R± coefficients defined

via the scattering relations

T∓(λ)ψ±(λ, n) = ψ∓(λ, n) +R∓(λ)ψ∓(λ, x), λ ∈ σu,l
∓ ,

and again for each eigenvalue ρj the norming constant γ±,j,

γ−1
±,j =

∑
n∈Z

ψ̂±(ρj, n)
2, ψ̂±(z, n) =

( ∏
µ`∈M±

(z − µ±` )
)
ψ±(z, n).

Then the scattering data is the set

S =
{
R+(λ), T+(λ), λ ∈ σu,l

+ ; R−(λ), T−(λ), λ ∈ σu,l
− ;

ρ1, . . . , ρq ∈ R \ σ, γ±,1, . . . , γ±,q ∈ R+

}
.

Minimal scattering data?



Kernel of the GLM equation

The Gel’fand-Levitan-Marchenko equation has the form

K±(n,m) +
±∞∑
l=n

K±(n, l)F±(l,m) =
δ(n,m)

K±(n, n)
, ±m ≥ ±n,

where

F±(m,n) =
∮
σ±
R±(λ)ψ±q (λ,m)ψ±q (λ, n)dω±

+
∫
σ
(1),u
∓

|T∓(λ)|2ψ±q (λ,m)ψ±q (λ, n)dω∓

+
q∑

k=1

γ±,kψ̂
±
q (ρk, n)ψ̂

±
q (ρk,m).



Main result in the step-like case

Theorem 6 The GLM equation has a unique solution K±(n,m) and

a±, b± satisfy the short range assumption

n
{
|a±(n)− a±q (n)|+ |b± − b±q (n)|

}
∈ `1(Z±).

If in addition,

(i) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0 for λ ∈ σ(2),

(ii) for E ∈ ∂σ+ ∩ ∂σ− and Ŵ (E) 6= 0,

R±(E) =

{
−1 for E 6= µ±` ,
1 for E = µ±` ,

then a− = a+ = a, b− = b+ = b and the data S is the scattering data

for the Jacobi operator H associated with a, b.

[Boutet de Monvel-Egorova-Teschl ’07]: 1-dim Schrödinger operator with

step-like periodic bg



PART II

Initial value problem of the Toda Hierarchy



The Toda equation

Assume

a(n, t), b(n, t) ∈ `∞(Z,R), t 7→ (a(t), b(t)) differentiable in `∞(Z)⊕`∞(Z).

The Toda lattice [1967] is a simple model for a nonlinear one-dimensional

crystal. The Toda equation (in Flaschka’s variables [1974])

ȧ(n, t) = a(n, t)
(
b(n+ 1, t)− b(n, t)

)
,

ḃ(n, t) = 2
(
a(n, t)2 − a(n− 1, t)2

)
is equivalent to the Lax equation

d

dt
H(t) = P2(t)H(t)−H(t)P2(t),

where H(t) is our Jacobi operator and P2(t) = a(t)S+ − a−(t)S−.

Here (S±f)(n) = f±(n) = f(n± 1).



The Toda Hierarchy

Replacing P2 with more general operators P2r+2 of order 2r+ 2 yields

the Toda hierarchy

d

dt
H(t) = P2r+2(t)H(t)−H(t)P2r+2(t) ⇔ TLr(a(t), b(t)) = 0.

The r-th Toda equation is given by

ȧ(n, t) = a(t)
(
gr+1(n+ 1, t)− gr+1(n, t)

)
,

ḃ(n, t) =
(
hr+1(n, t)− hr+1(n− 1, t)

)
,

where

gj(n, t) =
j∑

l=0

cj−l〈δn, H(t)lδn〉,

hj(n, t) = 2a(n, t)
j∑

l=0

cj−l〈δn+1, H(t)lδn〉+ cj+1

for some arbitrarily chosen constants {cj}rj=0 with c0 = 1.



The Toda Hierarchy

The operator P2r+2 is given by

P2r+2(t) = −H(t)r+1 +
r∑

j=0

(2a(t)gj(t)S
+ − hj(t))H(t)r−j + gr+1(t).

One obtains for the first few equations of the Toda hierarchy

TL0(a, b) =

(
ȧ− a(b+ − b)

ḃ− 2(a2 − (a−)2)

)
,

TL1(a, b) =

(
ȧ− a((a+)2 − (a−)2 + (b+)2 − b2)
ḃ− 2a2(b+ + b) + 2(a−)2(b+ b−)

)
− c1

(
a(b+ − b)

2(a2 − (a−)2)

)
.

The Lax equation Ḣ = [P2r+2, H] implies existence of a unitary propa-

gator Ur(t, s) such that the family of operators H(t), t ∈ R, are unitarily

equivalent, H(t) = Ur(t, s)H(s)Ur(s, t), that is,

σ(H) ≡ σ(H(t)) = σ(H(0)), t ∈ R.



Finite-gap solutions of the Toda Hierarchy

Existence and uniqueness of global solutions of the initial value problem

TLr(a, b) = 0, (a(0), b(0)) = (a0, b0), a0, b0 ∈ `∞(Z,R),

is well known.

Starting with quasi-periodic initial conditions (aq,0, bq,0) one can ex-

plicitely solve TLr(aq(t), bq(t)) = 0: [Bulla-Gesztesy-Holden-Teschl 1998]

aq(n, t)
2 = ã2

θ(z(n+ 1, t))θ(z(n− 1, t))

θ(z(n, t))2
,

bq(n, t) = b̃+
g∑

j=1

cj(g)
∂

∂wj
ln
(

θ(w+ z(n, t))

θ(w+ z(n− 1, t))

)∣∣∣∣
w=0

.

The constants ã, b̃, cj(g) depend only on the Riemann surface.



Inverse scattering transform

The IST is one of the main tools for solving completely integrable wave

equations.

Korteweg-de Vries equation:

constant bg: Gardner-Green-Kruskal-Miura 1967

non-constant bg: Kuznetsov-A.V. Mikhăılov 1975

(They used the Weierstraß elliptic function as stationary bg solution.)

periodic bg: Firsova 1988

Toda equation:

constant bg: Flaschka 1974

Toda hierarchy with constant bg: Teschl 1999

step-like constant bg: Boutet de Monvel-Egorova ’00



Short range assumption

Theorem 7 Suppose a, b and ã, b̃ are two arbitrary bounded solutions

of the Toda system. If∑
n∈Z

w(n)
(
|a(n, t)− ã(n, t)|+ |b(n, t)− b̃(n, t)|

)
<∞

holds for one t0 ∈ R, then it holds for all t ∈ R. Here w(n) > 0 is an

arbitrary function.

In particular, a short range perturbation of a quasi-periodic finite-gap

solution will stay short range for all times!



Time dependent scattering theory

Suppose a, b is a solution of the Toda system satisfying∑
n∈Z

|n|
(
|a(n, t)− aq(n, t)|+ |b(n, t)− bq(n, t)|

)
<∞.

We can define Jost solutions, transmission coefficients, etc. as before,

now they depend on an additional parameter t ∈ R. The scattering data

are given by

S±(H(t)) = {R±(λ, t), λ ∈ σ; (ρj, γ±,j(t)),1 ≤ j ≤ q}.

How do S±(H(t)) evolve with t?



Time evolution of the scattering data

Theorem 8

T (λ, t) = T (λ,0),

R±(λ, t) = R±(λ,0) exp(±(αs,+(z, t)− αs,−(z, t))),

γ±,j(t) = γ±,j(0) exp(2αs,±(ρj, t)), 1 ≤ j ≤ q,

where

exp
(
αs,±(z, t)

)
=

√√√√Gg(z,0, t)

Gg(z,0,0)
exp

(
±R

1/2
2g+2(z)

∫ t
0

Ĝs(z,0, x)

Gg(z,0, x)
dx

)
,

Gg(z, n, t) =
g∏

j=1

(z − µj(n, t)).



Inverse scattering transform

PSfrag replacements

time evolution

time evolution

scattering theory

short-range assumption
(aq(0), bq(0))

(aq(t), bq(t))

(a(0), b(0))

(a(t), b(t))

S±(H(0))

S±(H(t))

Gel’fand-Levitan-
Marchenko equations

(1)

(2) (3)





Time dependent normalisation

Before we have multiplied ψq,±(λ, n, t) by a factor to cancel the poles

at the Dirichlet eigenvalues. However, since the Dirichlet eigenval-

ues change sheets during time evolution, this normalization renders

ψ̂q,±(λ, n, t) discontinuous with respect to t and complicates the time

evolution of the corresponding norming constants:

γ̂±,j(t) = γ̂±,j(0) exp

(
± 2R

1/2
2g+2(ρj)

∫ t
0
Ĝs(ρj,0,x)
Gg(ρj,0,x)

dx

±
∑g
l=1

∫ t
0

2Ĝs(µl(x),0,x)R
1/2
2g+2(µl(x))

(ρj−µl(x))
∏
k 6=l(µl(x)−µk(x))

dx

)
.

To avoid the poles of the Baker-Akhiezer function, we assume that

none of the eigenvalues ρj coincides with a Dirichlet eigenvalue µk(0,0)

(w.l.o.g. shift initial time t0 = 0 if necessary).
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