Entanglement of formation for some special two-mode Gaussian states

Paulina Marian & Tudor A. Marian

Centre for Advanced Quantum Physics University of Bucharest, Romania

Undisplaced two-mode Gaussian states (TMGS's)

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- **Entanglement of Formation (EoF)**

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)
- Factorization of the characteristic functions (CF's)

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)
- Factorization of the characteristic functions (CF's)
- Properties of the added classical state

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)
- Factorization of the characteristic functions (CF's)
- Properties of the added classical state
- Manipulating the GEoF equations

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)
- Factorization of the characteristic functions (CF's)
- Properties of the added classical state
- Manipulating the GEoF equations
- Explicit evaluations

- Undisplaced two-mode Gaussian states (TMGS's)
- Uncertainty relations
- Non-classicality & inseparability
- Entanglement of Formation (EoF)
- Continuous-variable pure-state decompositions
- Gaussian Entanglement of Formation (GEoF)
- Factorization of the characteristic functions (CF's)
- Properties of the added classical state
- Manipulating the GEoF equations
- Explicit evaluations
- Conclusions: is GEoF=EoF?

Two-mode Gaussian states (TMGS's)

- Density operator ρ_G .
- Characteristic function (CF):

$$\chi_G(x) = \exp\left(-\frac{1}{2}x^T \mathcal{V}x\right),$$

with x^T denoting a real row vector $(x_1 \ x_2 \ x_3 \ x_4)$ and \mathcal{V} the 4×4 covariance matrix (CM).

• A TMGS is fully described by its CM:

$$\rho_G \longleftrightarrow \chi_G(x) \longleftrightarrow \mathcal{V}.$$

Scaled standard forms

Equivalence class of locally similar TMGS's:

$$\mathcal{S} = \mathcal{S}_1 \oplus \mathcal{S}_2, \ \mathcal{S} \in \operatorname{Sp}(2, \mathbb{R}) \times \operatorname{Sp}(2, \mathbb{R})$$

$$\to U(\mathcal{S}) = U_1(\mathcal{S}_1) \otimes U_2(\mathcal{S}_2).$$

Consider two independent one-mode squeeze factors

$$u_1 = \exp(2r_1), \quad u_2 = \exp(2r_2).$$

• CM of a scaled standard state $\rho(u_1, u_2)$:

$$\mathcal{V}(u_1, u_2) = \begin{pmatrix} b_1 u_1 & 0 & c\sqrt{u_1 u_2} & 0\\ 0 & b_1/u_1 & 0 & d/\sqrt{u_1 u_2}\\ c\sqrt{u_1 u_2} & 0 & b_2 u_2 & 0\\ 0 & d/\sqrt{u_1 u_2} & 0 & b_2/u_2 \end{pmatrix}$$

Uncertainty relations

- Standard form I (unscaled): $\mathcal{V}_I := \mathcal{V}(1,1)$.
- Robertson-Schrödinger uncertainty relations:

$$\mathcal{V} + \frac{i}{2}\Omega \ge 0$$
, $\Omega := i\left(\bigoplus_{j=1}^2 \sigma_2\right)$ equivalent to:

$$b_1 \ge 1/2$$
, $b_2(b_1b_2 - c^2) - \frac{b_1}{4} \ge 0$,

$$b_2 \ge 1/2$$
, $b_1(b_1b_2 - c^2) - \frac{b_2}{4} \ge 0$,

$$(\kappa_{-}^{2} - 1/4)(\kappa_{+}^{2} - 1/4) \ge 0.$$

 (κ_-, κ_+) are the symplectic eigenvalues).

Non-classicality

Classicality of a scaled standard state:

$$\mathcal{V}(u_1, u_2) \ge \frac{1}{2}I_4$$
 equivalent to

$$u_1 \le 2b_1, \quad u_2 \le 2b_2,$$

$$(b_1u_1 - \frac{1}{2})(b_2u_2 - \frac{1}{2}) \ge c^2u_1u_2,$$

$$(b_1/u_1 - \frac{1}{2})(b_2/u_2 - \frac{1}{2}) \ge d^2/(u_1u_2).$$

Non-classical state \longleftrightarrow Matrix condition not fulfilled.

Inseparability

R. Simon's separability criterion (2000):

- TMGS's with $d \ge 0$ are separable.
- for d < 0, one has to check the sign of the invariant

$$S(\rho_G) = (b_1b_2 - c^2)(b_1b_2 - d^2) - \frac{1}{4}(b_1^2 + b_2^2 + 2c|d|) + \frac{1}{16}$$

that can be written as

$$S(\rho_G) = (\tilde{\kappa}_-^2 - 1/4)(\tilde{\kappa}_+^2 - 1/4).$$

Entangled TMGS's fulfil the condition

$$S(\rho_G) < 0.$$

EPR approach

Duan *et al.*(2000) introduced a scaled standard state for which the separability and classicality conditions coincide.

Standard form II of the CM (separability=classicality):

$$\mathcal{V}_{II} := \mathcal{V}(v_1, v_2)$$

with v_1, v_2 satisfying the algebraic system

$$\frac{b_1(v_1^2 - 1)}{2b_1 - v_1} = \frac{b_2(v_2^2 - 1)}{2b_2 - v_2},$$

$$b_1b_2(v_1^2-1)(v_2^2-1)=(cv_1v_2-|d|)^2.$$

Squeezed vacuum states (SVS's)

The standard-form CM V_I of an entangled pure TMGS has the property

$$\det(\mathcal{V}_I + \frac{i}{2}\Omega) = 0$$

as a product of two vanishing factors —

$$b_1 = b_2 = b$$
, $d = -c < 0$, $b^2 - c^2 = 1/4$.

This state is a SVS and has minimal symplectic eigenvalues:

$$\kappa_{-} = \kappa_{+} = 1/2.$$

The smallest symplectic eigenvalue of $\tilde{\mathcal{V}} \longleftrightarrow \rho_G^{PT2}$ is

$$\tilde{\kappa}_{-} = b - c < \frac{1}{2}.$$

Entanglement of formation (EoF)

Pure-state decompositions of a mixed state ρ :

$$\rho = \sum_{k} p_k |\Psi_k\rangle \langle \Psi_k|, \quad \sum_{k} p_k = 1.$$

EoF of a mixed bipartite state (Bennett et al., 1996):

$$EoF(\rho) := \inf_{\{p_k\}} \sum_k p_k E_0(|\Psi_k\rangle\langle\Psi_k|),$$

where $E_0(|\Psi_k\rangle\langle\Psi_k|)$ is any acceptable measure of purestate entanglement.

Two-field superpositions

• Glauber (1963): superposition ρ_S of two fields

$$\rho_S = \int d^2 \beta P_2(\beta) D(\beta) \rho_1 D^{\dagger}(\beta)$$

where $D(\alpha) := \exp(\alpha a^{\dagger} - \alpha^* a)$ is a Weyl displacement operator,

a is a photon annihilation operator;

 ρ_1 is a one-mode field state and $P_2(\beta)$ denotes the P representation of a classical one-mode field state ρ_2 .

• Equivalent formulation (Marian & Marian, 1996):

$$\chi_S^{(N)}(\lambda) = \chi_1^{(N)}(\lambda)\chi_2^{(N)}(\lambda);$$

 $\chi^{(N)}$ denotes the normally-ordered CF.

Gaussian EoF

A pure-state decomposition of a mixed TMGS is

$$\rho_G = \int d^2 \beta_1 d^2 \beta_2 P(\beta_1, \beta_2) D_1(\beta_1) D_2(\beta_2) \rho_0 D_2^{\dagger}(\beta_2) D_1^{\dagger}(\beta_1)$$

where ρ_0 is a pure TMGS.

The most general ρ_0 , which is a scaled SVS, was employed by Wolf *et al.* (2003)—Gaussian EoF (GEoF):

$$GEoF(\rho_G) = E(\rho_0^{optimal}).$$

- Main problem: find the optimal decomposition (=determine ρ_0 having the minimal entanglement).
- Giedke et al. (2003) evaluated the exact EoF for symmetric TMGS's $(b_1 = b_2)$.

Our work

exploit the factorization formula of the CF's

$$\chi_G(\lambda_1, \lambda_2) = \chi_0(\lambda_1, \lambda_2) \chi_{cl}(\lambda_1, \lambda_2) \exp\left(-\frac{|\lambda_1|^2}{2} - \frac{|\lambda_2|^2}{2}\right).$$

• choose $\chi_0(\lambda_1, \lambda_2)$ to be a SVS with the CM

$$\mathcal{V}_0 = \begin{pmatrix} x & 0 & y & 0 \\ 0 & x & 0 & -y \\ y & 0 & x & 0 \\ 0 & -y & 0 & x \end{pmatrix}, \quad x^2 - y^2 = 1/4.$$

Relation between CM's

Reason for V_0 : A SVS is the pure state with minimal entanglement at a given EPR correlation (Giedke *et al.*, 2003).

$$\Delta_{EPR} = 2(x - y)$$

- Gaussian $\chi_0(\lambda_1, \lambda_2) \longleftrightarrow$ Gaussian $\chi_{cl}(\lambda_1, \lambda_2)$.
- For any pure-state decomposition of the TMGS ρ

$$\mathcal{V} = \mathcal{V}_0 + \mathcal{V}_{cl} - \frac{1}{2}I_4.$$

Variables

For any entangled TMGS d = -|d| < 0.

$$\mathcal{V} = \begin{pmatrix} b_1 u_1 & 0 & c\sqrt{u_1 u_2} & 0\\ 0 & b_1/u_1 & 0 & -|d|/\sqrt{u_1 u_2}\\ c\sqrt{u_1 u_2} & 0 & b_2 u_2 & 0\\ 0 & -|d|/\sqrt{u_1 u_2} & 0 & b_2/u_2 \end{pmatrix}.$$

- Given parameters: b_1 , b_2 , c, |d|, $(|d| \le c)$.
- Any measure of pure-state entanglement is a monotonous function of $x \longrightarrow$ we have to find the minimal value of x as a function of the variables u_1, u_2 .

Analytical method

• concentrate on the added classical state V_{cl} . First step: Towards the optimal pure-state decomposition, V_{cl} should reach the classicality threshold

$$\det(\mathcal{V}_{cl} - \frac{1}{2}I_4) = 0$$

as a product of two vanishing factors:

$$(b_1u_1 - x)(b_2u_2 - x) = (c\sqrt{u_1u_2} - y)^2,$$

$$(b_1/u_1-x)(b_2/u_2-x)=(|d|/\sqrt{u_1u_2}-y)^2.$$

(derived by Wolf et al. (2003) on different grounds).

Nature of \mathcal{V}_{cl}

Second step: By minimization of the function $x(u_1, u_2)$, we proved that in the optimal pure-state decomposition, \mathcal{V}_{cl} is also at *the separability threshold*:

$$S(\rho_{cl}) = 0,$$

i.e., \mathcal{V}_{cl} has the standard form II:

$$\frac{b_1 u_1 - x}{b_1 / u_1 - x} = \frac{b_2 u_2 - x}{b_2 / u_2 - x},$$

$$b_1 b_2 (u_1^2 - 1)(u_2^2 - 1) = (cu_1 u_2 - |d|)^2.$$

EoF equations

System of algebraic equations with four unknowns:

$$(b_1w_1 - x)(b_2w_2 - x) = (c\sqrt{w_1w_2} - y)^2,$$

$$(b_1/w_1 - x)(b_2/w_2 - x) = (|d|/\sqrt{w_1w_2} - y)^2,$$

$$\frac{b_1 w_1 - x}{b_1 / w_1 - x} = \frac{b_2 w_2 - x}{b_2 / w_2 - x},$$

$$b_1b_2(w_1^2-1)(w_2^2-1) = (cw_1w_2-|d|)^2,$$

$$x^2 - y^2 = 1/4$$
.

Solution only in some particular cases.

Symmetric TMGS's

$$b_1 = b_2 = b \longrightarrow \tilde{\kappa}_- = \sqrt{(b-c)(b-|d|)}.$$

Results

$$w_1 = w_2 = \sqrt{\frac{b - |d|}{b - c}},$$

$$x = \frac{\tilde{\kappa}_-^2 + 1/4}{2\tilde{\kappa}_-};$$

$$x - y = \tilde{\kappa}_-.$$

x is a function of $\tilde{\kappa}_{-}$ only that coincides with its expression for the exact EoF (Giedke *et al.*, 2003).

STS's

$$c = |d| \longrightarrow \tilde{\kappa}_{-} = \frac{1}{2}[b_1 + b_2 - \sqrt{(b_1 - b_2)^2 + 4c^2}].$$

- important mixed states used as two-mode resource in quantum teleportation of one-mode states.
- proved to have the maximal negativity at fixed local purities: Adesso *et al.* (2004,2005).

Results

$$w_1 = w_2 = 1,$$

$$x = \frac{(b_1 + b_2)(b_1b_2 - c^2 + 1/4) - 2c\sqrt{\det(\mathcal{V} + \frac{i}{2}\Omega)}}{(b_1 + b_2)^2 - 4c^2}$$

x not depending on $\tilde{\kappa}_{-}$ only.

States with $\kappa_{-}=1/2$

Mixed TMGS's with

$$\det(\mathcal{V} + \frac{i}{2}\Omega) = 0 \iff \kappa_{-} = 1/2;$$

• proved to have minimal negativity at fixed local and global purities: Adesso *et al.* (2004,2005).

Results depending on a parameter inequality, as follows.

States with $\kappa_- = 1/2$

I.
$$b_1 > b_2$$
, $c > |d|$, $b_2c \le b_1|d|$:

$$w_{1} = \left[\frac{b_{2}(b_{1}b_{2} - d^{2}) - b_{1}/4}{b_{2}(b_{1}b_{2} - c^{2}) - b_{1}/4} \right]^{1/2},$$

$$w_{2} = \left[\frac{b_{1}(b_{1}b_{2} - d^{2}) - b_{2}/4}{b_{1}(b_{1}b_{2} - c^{2}) - b_{2}/4} \right]^{1/2},$$

$$x = \frac{b_{1}^{2} - b_{2}^{2}}{8(\det(\mathcal{V}) - 1/16)}.$$

States with $\kappa_- = 1/2$

II.
$$b_1 > b_2$$
, $c > |d|$, $b_2c > b_1|d|$:

$$w_1 = 2\sqrt{\frac{b_1}{b_2}(b_1b_2 - d^2)},$$

$$w_2 = 2\sqrt{\frac{b_2}{b_1}(b_1b_2 - d^2)},$$

$$x = \frac{1}{2}\sqrt{\frac{b_1b_2}{b_1b_2 - d^2}}.$$

Conclusions I

- We have reformulated the problem of GEoF in terms of CF's and CM's.
- The added classical state is at the classicality and separability threshold as well: its CM has the standard form II.
- We have retrieved in a unitary way previous results for some important classes of entangled TMGS's.
- General case hard to be exploited analytically. Work in progress.

Conclusions II

The GEoF built with the Bures metric is proved to coincide with the Bures entanglement for symmetric TMGS's, as well as for STS's.

Main question: Is GEoF=EoF?

Answer: Yes.

This is based on the above-mentioned theorem of Giedke *et al.* (2003): A SVS is the pure state with minimal entanglement at a given EPR correlation

$$\Delta_{EPR} = 2(x - y).$$