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Two-mode Gaussian states (TMGS'’s)

» Density operatop.
» Characteristic function (CF):

1
Xc(z) = exp <—§$TV$>,

with 2 denoting a real row vectdtr; zo z3 x4)
and)’ the4 x 4 covariance matrix (CM).

o A TMGS is fully described by its CM:

PG —— XG(x) — ).
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Equivalence class of locally similar TMGS's:
S=85®dS8, SeSp2,R) xSp(2,R)
— U(S) = U1(&1) ® Ua(S2).
Consider two independent one-mode squeeze factol
up = exp (2ry), us = exp (2rs).
CM of a scaled standard stai@u, us):

\

/ biuq 0 Cr /U U 0 \
0 b1 /u 0 d/\/uruz
V(ug, us) = cA/U 0 b 0 '
1U2 2U2
bg/Ug )

0 d/\/ulug 0
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Standard form | (unscaled)V; := V(1,1).
Robertson-Schrodinger uncertainty relations:

2

) + 5(2 >0, :=1 (69 02) equivalent to :

J=1

b
by > 1/2, by(biby — ) — Zl > (),

b
by > 1/2, by(biby — ¢?) — ZQ > (),

(k2 —1/4)(x* —1/4) > 0.
(k_, k. are the symplectic eigenvalues).
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Non-classicality

» Classicality of a scaled standard state:

1
V(ug, ug) > 5]4 equivalent to

up < 201, ug < 209,

1 1
(brug — 5)(52162 — 5) > Py s,

1 1

(b1/ur = 5)(b2/uz — 5) = d* [ (urus).

oNon-classical state— Matrix condition not fulfilled.
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Inseparability

R. Simon’s separabillity criterion (2000):
o TMGS’s withd > 0 are separable.

e for d < 0, one has to check the sign of the invariant

|

1
S(pa) = (biby — ) (biby — d*) — Z(b% + b2 + 2c|d]) + 6

that can be written as

S(pe) = (R2 = 1/4) (R} — 1/4).
Entangled TMGS's fulfil the condition

S(pg) < 0.
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Introduced a scaled standard state fol

which the separability and classicality conditions
coincide.

Standard form |l of the CM (separability=classicality):
Vir = V(vy, v9)
with vy, vo satisfying the algebraic system

bl(?}% — 1) _ bg(?}% — 1)

2b1 — U1 2b2 — V9 ’

bibo(v: — 1)(v5 — 1) = (cvrve — |d])°.
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The standard-form CW; of an entangled pure TMGS
has the property

det(V[ + %Q) =
as a product of two vanishing factors —

by =by=b d=—-c<0, b°—c"=1/4

This state Is a SVS and has minimal symplectic
eigenvalues:

K — Ry = 1/2

The smallest symplectic eigenvalueldt— pcl?is
|
k. =b—c< —.
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Entanglement of formation (EoF)

Pure-state decompositions of a mixed sjate

p=> pelVe) (Wi, > pp=1
k k

EoF of a mixed bipartite stat&ennetiet al., 1996]

EoF(p) := {izr?lf}ZpkEo(kaﬂ\PkD;
I

where Ey(|V,)(P,|) is any acceptable measure of pur
state entanglement.
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Two-field superpositions

e Glauber (1963)superpositiorng of two fields

05 — / a26Py(8)D(8)p1 D'(8)

whereD(a) := exp (aa' — a*a) is a Weyl displacement
operator,
a IS a photon annihilation operator;

p1 IS a one-mode field state aitl(3) denotes the”
representation of a classical one-mode field state
» Equivalent formulationMarian & Marian, 1996)

N N N
20 = XM O ()

yY) denotes the normally-ordered CF.
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A pure-state decomposition of a mixed TMGS Is

PG = /d2ﬁ1dzﬁzp(ﬁ1,52)171(51)172(52)0017;(52)17]{(51):

wherep, Is a pure TMGS.

The most generaly, which is a scaled SVS, was
employed by ——Gaussian EoF
(GEoF):

GEoF (pg) = E(p"™™).

Main problem: find the optimal decomposition
(=determinep, having the minimal entanglement).

evaluated the exact EoF
for symmetric TMGS’s §; = bo).
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exploit the factorization formula of the CF’s

Xa (A1 A2) = xo( A1, A2) X (A1, Ag) exp (

A7

Aol

2

choosey,(A1, A2) to be a SVS with the CM

/x()
0

X

y O
\ 0 —y

Yy
0
X
0

0
—Y

0

v )

ot —y'=1/4

)
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Relation between CM'’s

Reason fol/,: A SVS is the pure state with minimal
entanglement at a given EPR correlatiohedkeet al .,
2003).

Agpr = 2(x — y)
o Gaussianyg(A1, Ay) «—— Gaussian (A1, A2).

» For any pure-state decomposition of the TM@GS

1
Y = VO+VCZ - 514
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For any entangled TMGSd = —|d| < 0.

/ b1U1 0 C\/m 0 \
v 0 b1/u1 0 —ld|//urug
C\/m 0 bQUQ 0

\ 0 —|d/yuu O byuy )

Given parameters:

Any measure of pure-state entanglement Is

monotonous function af — we have to find the min-
Imal value of+ as a function of the variables
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Analytical method

e concentrate on the added classical state
=irst step: Towards the optimal pure-state
decomposition)’,; should reachhe classicality
threshold

1
det(VCl — 5]4) =0
as a product of two vanishing factors:

(biur — z)(baus — ) = (cy/urus — y)?,

(b1 /w1 — 2)(ba/uz — x) = (|d|//urus — y)*.
(derived byWoli et al. (2003)on different grounds).

QMath10 — p.16/2



Nature of V.,

Second step By minimization of the function:(uy, us),
we proved that in the optimal pure-state decompositiol
V. IS also atthe separability threshol d:

S(ﬂCl) = 0,

l.e., V., has the standard form Il:

blul — X bQUg — I

bl/ul—x bQ/”LLQ—QZ
blbg(u% — 1)(%% — 1) — (Cu1u2 — |d|)2
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System of algebraic equations with four unknowns:

(biwi — z)(byws — ) = (cy/wrws — y)?,

(by/wy — x)(bo/wa — ) = (|d|//wiwz — y)*,

b1w1 — X bgwg — I

bl/wl — I ~ bg/wg —$7

byby(w? — 1) (w2 — 1) = (cwrwy — |d])?,

z? —y* =1/4.
Solution only in some particular cases.
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Syminetric TMGS's

by =by=b — Rk_=+/(b—2c)(b—|d|).

Results

\/b—|d|
w1 = W2 = b—C’

R2 +1/4
i — = :
2K _

T —1Y=K_.

x IS a function ofk_ only that coincides with its expres
sion for the exact EoFGiedkeet al., 2003)
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1
— K_ = §[b1 -+ b2 — \/(bl — b2)2 —|—462].

Important mixed states used as two-mode resource |
guantum teleportation of one-mode states.

proved to have the maximal negativity at fixed local
purities:

w1:w2:1,

(by + bo) (biby — 2 +1/4) — 20\/det(V +i0)

(b1 -+ b2)2 — 402
x not depending oi_ only.

T =
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States with . =1/2
» Mixed TMGS’s with
det(V + %Q) =0 «— Kk_=1/2;

» proved to have minimal negativity at fixed local and
global purities:Adessoet al. (2004,2005)

Resullsdepending on a parameter inequality,
as follows.
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States with . =1/2

. 01 >| by, c > ’d‘,

T —=

bQC S bl’d‘ :

b

by /4

| Da(b1

d)
2) —b1/4
—d?) — by /4]

(b1
(
b1 (bybs
by (b

172
102

— C
— C

b2 — 12

8(det(V) — 1/16)

?) — ba/4

1/2

1/2
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swith k- =1/2

> bg, Cc > ’d|, boc > b1|d’ ;




We have reformulated the problem of GEoF In terms
of CF's and CM’s.

The added classical state Is at the classicality and
separability threshold as well: its CM has the stands
form II.

We have retrieved in a unitary way previous results f
some important classes of entangled TMGS's.

General case hard to be exploited analytically.
Work in progress.
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Conclusions ||

» The GEoF built with the Bures metric is proved to

coincide with the Bures entanglement fogrmmetric
ITMGS’s, aswell as folsTS's

=Malin guestion: |s GEoF=EoF?

Answer: Yes.

This is based on the above-mentioned theorem of
Gledkeet al. (2003): A SVS is the pure state with
minimal entanglement at a given EPR correlation

AEPR — 2(:23 — y)
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