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Two very related problems
how to count in quantum...

I 1. Establishing a microcanonical ensemble with different
noncommuting constraints — what is a macro-state and how to
study (joint) macroscopic fluctuations:
CONFIGURATIONAL ENTROPY ?
- equivalence with canonical framework...
- H-theorem...

I 2. LARGE DEVIATIONS and fluctuation theory
- equilibrium set-up...
- nonequilibrium fluctuations...
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Two very related problems
WHY DO YOU ASK?

I 1. Elements of statistical mechanics:
I relation between fluctuation functionals and thermodynamic

potentials
I counting interpretation of entropy appears relevant for quantum

information theory and for microscopic understanding of the
second law.

I 2. Fluctuations in small systems:
I quantum transport and counting statistics
I effects of nonlocality/entanglement
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Quantum macrostates
Commutative case

On a sequence of finite-dimensional Hilbert spaces (HN)N↑+∞
consider a uniformly bounded family of observables

X N = (X N
1 , . . . , X N

K ) , N ↑ +∞

(think of a collection of different empirical averages)

To each X N
k assign its projection-valued measure QN

k

If they mutually commute then each collection x = (x1, . . . , xK ) is
associated with the projection

QN,δ(x) =
K∏

k=1

QN,δ
k (x) =

K∏
k=1

∫ xk +δ

xk−δ

QN
k (dzk )

−→ quantum microcanonical ensemble

(Boltzmann-von Neumann; microcanonical) entropy function:

SN,δ(x) = log Tr(QN,δ(x))
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Quantum macrostates
Von Neumann ’55:
“It is a fundamental fact with macroscopic measurements that everything which is measurable at
all, is also simultaneously measurable, i.e. that all questions which can be answered separately
can also be answered simultaneously.”

YET, while indeed averages
A = (a1 + . . . + aN)/N, B = (b1 + . . . + bN)/N, for which all
commutators [ai , bj ] = 0 for i 6= j , have their commutator
[A, B] = O(1/N) going to zero (in the appropriate norm,
corresponding to [ai , bi ] = O(1)) as N ↑ +∞, it is not true in general
that

lim
N↑+∞

1
N

log Tr[eNA eNB]
?
= lim

N↑+∞

1
N

log Tr[eNA+NB]

These generating functions are obviously important in quantum
fluctuation theory...
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Quantum macrostates
General case

Idea: Find a largest projection that “well approximates” each
projection QN,δ

k , k = 1, . . . , K

Def. 1. A sequence of projections (PN)N↑+∞ is concentrating at x
whenever for all k = 1, . . . , K and δ > 0,

lim
N↑+∞

Tr(PNQN,δ
k (x))

Tr(PN)
= 1

Then write PN → x .

Def. 2. To any macrostate x assign the entropy function

s(x) = lim sup
PN→x

1
N

log Tr(PN)

Def. 3. A sequence PN → x is called typical sequence concentrating
at x iff

lim sup
N↑+∞

1
N

log Tr(PN) = s(x)
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Quantum macrostates
General case

Tr(PN) along a maximal concentrating sequence PN plays the role of
“probability”,
the entropy s(x) is its well-defined rate function.

Three immediate QUESTIONS:
1. Is there an IDENTITY WITH THE CANONICAL von Neumann
ENTROPY, defined for any state ωN( · ) = Tr(σN · ) as

H(ωN) = −Tr(σN log σN)

2. Is there an H-THEOREM? Is it a Lyapounov function?
3. Are there nontrivial EXAMPLES?
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Quantum macrostates
Generating functions and canonical ensemble

Consider the following generating functions:

p(λ) = lim
N↑+∞

1
N

log Tr(exp N
∑

k

λk X N
k )

qk (κ) = lim
N↑+∞

1
N

log Tr(exp N
∑

k

λk X N
k exp κNX N

k ) , k = 1, . . . , K

Remarks:
I p(λ) is the “canonical pressure”

ωN
λ ( · ) = Tr(σN

λ · ) =
1
ZN

λ

Tr(exp N
∑

k

λk X N
k · )

parameterized by λ = (λ1, . . . , λK )
I qk (κ) is the large deviation generating function for the single

observable X N
k

I In general:
qk (κ) ≥ p(λ + (0, . . . , (κ)k , . . .))
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Quantum macrostates
General case

Theorem (De Roeck, Maes, Netočný, ’06). Assume that

1. p(λ) exists and has the derivative

dp(κλ)

dκ

∣∣∣
κ=1

=
K∑

k=1

λk xk

2. qk (κ) exists and has the derivative

dqk (κ)

dκ

∣∣∣
κ=0

= xk

for all k = 1, . . . , K

Then,

s(x) = p(λ)−
K∑

k=1

λk xk
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Quantum macrostates
Conclusions

There are various ways how to read the above result:

(1) Note that

p(λ)−
K∑

k=1

λk xk = lim
N↑+∞

H(ωN
λ )

N

is the von Neumann entropy of the (sequence of) canonical
states ωN

λ

−→ the theorem is an equivalence of ensembles result

−→ the von Neumann entropy gets a “counting” interpretation



Quantum Large Deviations http://itf.fys.kuleuven.be/ ∼christ/

Quantum macrostates
Conclusions

There are various ways how to read the above result:

(2) Under slightly stronger conditions, also

s(x) = inf
λ

{
p(λ)−

∑
k

λk xk
}

and the result is a noncommutative version of the Gärtner-Ellis
theorem (but only under the trace state.)
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LARGE DEVIATIONS
Product states

Take a matrix algebra M and consider
I the algebra of N copies: UN = ⊗N

i=1Mi

I the product state ωN = ⊗N
i=1ωi where ωi are copies of a faithful

state on M

Take a self-adjoint matrix X = X ∗ ∈ M and its empirical averages

X̄N =
1
N

N∑
i=1

Xi

Question:
What is the law of large fluctuations of X̄N over the states ωN for large
N?

Various answers, depending on the precise formulation!
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Large Deviations for Product states
Answer 1:
Spectral theorem: there is a probability measure µN on
sp(X̄N) ⊂ [−‖X‖, ‖X‖] such that

ωN(F (X̄N)) =

∫
µN(dx̄) F (x̄) , F ∈ C([−‖X‖, ‖X‖])

I µN is physically the distribution of outcomes when measuring X̄N

(von Neumann measurement)
I Explicitly: for any D ⊂ R a Borel set

µN(D) = ωN(Q̄N(D))

=
∑

x1,...,xN∈sp(X)

ω(Q(x1)) . . . ω(Q(xN))χ
( 1

N

N∑
i=1

xi ∈ D
)

where Q is the projection-valued measure for X
and Q̄N the projection-valued measure for X̄N
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Large Deviations for Product states
Since µN satisfy large deviations, we have that

lim sup
N↑+∞

1
N

log ωN(Q̄N(D)) ≤ − inf
x̄∈D

I(x̄) for D closed

lim inf
N↑+∞

1
N

log ωN(Q̄N(D)) ≥ − sup
x̄∈D

I(x̄) for D open

or, equivalently, for any −‖X‖ < x̄ < ‖X‖,

lim
δ↓0

lim
N↑+∞

1
N

log ωN(Q̄N(x̄ − δ, x̄ + δ)) = −I(x̄)

with the rate function

I(x̄) = sup
t
{t x̄ − q(t)}

q(t) = lim
N↑+∞

1
N

log µN(etNx̄) = log ω(etX )
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Large Deviations for Product states

Remarks:
I Note that the spectral theorem was essential here
I A naive attempt to repeat Cramer’s lifting on the level of quantum

states ωN fails:

One might be tempted to look for a modification of the state
ω( · ) = Tr(eA · ) to

ωt( · ) =
Tr(eA+tX · )
Tr(eA+tX )

which makes a fixed x̄ “typical”, i.e., ωt(X ) = x̄
However, the heuristics

ωN(Q̄(x̄ − δ, x̄ + δ)) '
(
Tr(eA+tX )

)N
e−t x̄N ωt

N(Q̄(x̄ − δ, x̄ + δ))︸ ︷︷ ︸
'1

only works when A and X commute!
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Large Deviations for Product states

Hence, the candidate generating function

q̂(t) = log Tr(eA+tX )

does generally not determine the statistics of large fluctuations!
By the Golden-Thompson inequality, q̂(t) ≤ q(t).
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Large deviations for Product states

Answer 2:
Study the asymptotics of Laplace-Varadhan type:

lim
N↑+∞

1
N

log Tr
(
exp

1
K

N∑
i=1

Ai exp
N
K

G(X̄N)
)K

for various K > 0 and G ∈ C(R)

I K = 1 corresponds to the Varadhan formula over the measures
µN :

lim
N↑+∞

1
N

log ωN
(
eN G(X̄N )

)
= lim

N↑+∞

1
N

log
∫

µN(dx̄) eN G(x̄)

= sup
x̄
{G(x̄)− I(x̄)}
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Large Deviations for Product states
I K = +∞ corresponds to the problem

lim
N↑+∞

1
N

log Tr
(
exp

N∑
i=1

Ai + N G(X̄N)
)

(by Trotter product formula)

Theorem (Petz, Raggio, Verbeure ‘89).

lim
N↑+∞

1
N

log Tr
(
exp

N∑
i=1

Ai + N G(X̄N)
)

= sup
x̄
{G(x̄)− Î(x̄)}

where
Î(x̄) = sup

t̄
{t x̄ − q̂(t)}

The case K = +∞ is very different from K = 1 since the former
cannot be rephrased as a classical Varadhan formula upon a
classical probability model!
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OUR NEW RESULTS
generalizations beyond product states

Large deviation and central limit results can be generalized in the
following ways:

I Instead of product states one can consider KMS (= equilibrium)
states of quantum spin lattice systems in the regimes of

I high temperature
I low temperature with a unique ground state and “unbiased”

observables

I The method uses that the projected state on the observable’s
subspace is a classical GIBBS measure. That is related to finite
entanglement length.
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Classical lattice spin models
Set up

I Space. Zd a regular lattice, d = 1, 2, . . .

I Configurations. Ω = ×i∈LΩi where Ωi is a finite set of “spins”
at site i

I Potential. Φ = (Φ(A))A⊂⊂Zd where Φ(A, ·) : ΩA 7→ R are
interactions

I Summability condition:

sup
i

X

A3i

‖Φ(A)‖ < +∞

I Local Hamiltonians

HΛ(η) =
X

A⊂Λ

Φ(A, ηA)

I Local Gibbs states

µβ
Λ (η) =

1

Zβ
Λ

e−βHΛ(η) Zβ
Λ =
X

η∈ΩΛ

e−βHΛ(η)
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Classical lattice spin models
DLR theory

I Thermodynamic limit. Define µβ as the weak limit (provided it
exists) µβ = limΛ µβ

Λ
I often sufficient but not always!

I general definition of Gibbs states:
I Relative Hamiltonians:

HΛ(xΛ | xΛc ) =
X

A∩Λ 6=0

Φ(A, xA)

I DLR equations: for all finite Λ and µβ−almost surely

µβ(xΛ | xΛc ) =
1

Zβ
Λ (xΛc )

e−βHΛ(xΛ | xΛc )

Zβ
Λ (xΛc ) =

X

xΛ∈ΩΛ

e−βHΛ(xΛ | xΛc )

I turn the logic around:
a measure µ on ΩZd is Gibbs whenever it satisfies the DLR
equations with some summable potential Φ
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Gibbs =⇒ LD =⇒ CLT

Theorem (Lanford, Olla,... ; simplified to level−1). If µ is a
translation-invariant Gibbs measure and F : ΩA 7→ R, A ⊂⊂ Zd a local
observable, then the empirical average

FΛ( · ) =
1
|Λ|

∑
i: i+A⊂Λ

F (τi · )

satisfies the large deviation principle with rate function

IF (x̄) = sup
t
{t x̄ − qF (t)}

qF (t) = lim
Λ↑Zd

1
|Λ|

log
∫

dµ(xΛ) et|Λ|FΛ(xΛ)

Note 1:
This goes beyond the Gärtner-Ellis theorem because qF does not
have to be differentiable (in phase transitions)!
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Gibbs =⇒ LD =⇒ CLT

Note 1:
This goes beyond the Gärtner-Ellis theorem because qF does not
have to be differentiable (in phase transitions)!

Note 2:
The generating function is (set β = 1)

qF (t) = lim
Λ↑Zd

1
|Λ|

log
1
ZΛ

∑
xΛ∈ΩΛ

exp−HΛ(xΛ) + t
∑

i: i+A⊂Λ

F (xΛ)

= PΦ(t)− PΦ

PΦ(t) is the “pressure” of a modified potential!
=⇒ the link between LD and thermodynamic potentials
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Gibbs =⇒ LD =⇒ CLT

Theorem (Bryc, ‘93). If the generating function qF (t) is analytic on a
neighborhood of t = 0 then

WΛ(xΛ) =
1√
|Λ|

∑
i: i+A⊂Λ

[
F (τixΛ)−

∫
dµ(xΛ) F (xΛ)

]
has the limit

lim
Λ↑Zd

∫
dµ(xΛ) eitWΛ(xΛ) = e−

t2σ2
2 , σ2 ≥ 0
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Quantum lattice spin models

I Observables. M a finite-dimensional matrix algebra −→ local
algebras UΛ = ⊗i∈ΛMi , Λ ⊂⊂ Zd

I Potential. Φ = (ΦA)A⊂⊂Zd a family of self-adjoint elements
Φ(A) = Φ(A)∗ ∈ UA

I Local Hamiltonians
HΛ =
X

A⊂Λ

Φ(A)

Local Gibbs states

ωβ
Λ ( · ) =

1

Zβ
Λ

TrΛ(e−βHΛ · ) , Zβ
Λ = TrΛ(e−βHΛ)

I Thermodynamic limit. The weak limit ωβ = limΛ ωβ
Λ

(−→ general formalism of quantum Gibbs and KMS states)
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Quantum high temperature =⇒ classical Gibbs
Given X = X ∗ ∈ M with Q its projection-valued measure

I the family (Xi)i∈Zd of copies over Zd has the common
projection-valued measure

QΛ(xΛ) = ⊗i∈ZdQi(xi) , xΛ ∈ ΩΛ ≡ (sp(X ))Λ

I there is the probability measure µβ,X given on cylindric sets by

µβ,X (xΛ) = ωβ(QΛ(xΛ))

Theorem (De Roeck, Maes, Netočný). Let for some ε > 0

‖Φ‖ε ≡ sup
i

∑
A3i

eε|A| ‖Φ(A)‖ < +∞

There there exists β0 > 0 such that for all |β| ≤ β0 and for all
X = X ∗ ∈ M, the measure µβ,X is Gibbs.

Moreover, there is an effective potential Ψβ,X for µβ,X such that any
Ψβ,X (A, · ) is analytic in |β| < β0.
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Quantum high temperature =⇒ classical Gibbs
In particular, one obtains the large deviation property for the empirical
average

X̄Λ =
1
|Λ|

∑
i∈Λ

Xi

with the real analytic generating function

q(t) = lim
Λ↑Zd

1
|Λ|

log ωβ
(
exp t

∑
i∈Λ

Xi
)

Remember:
I That q(t) is not a pressure of a modified quantum systems −→ it

is generally difficult to prove both its existence and its
smoothness!

I It is however a pressure of the modified effective classical system
with the Hamiltonian

Hβ,X ,t
Λ (xΛ) =

∑
A⊂Λ

Ψβ,X (A, xA) + t
∑
i∈Λ

xi
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Some related results

I Goderis, Verbeure, Vets ‘89: Fluctuation algebra (= CLT
formalism for several observables)

I Lebowitz, Lenci, Spohn ‘99: LD for particle density in
noninteracting quantum gases

I Gallavotti, Lebowitz, Mastropietro ‘02: extension for weakly
interacting quantum gases

I Netočný, Redig ‘04: existence and real analyticity of q(t) at high
temperatures

I Lenci, Rey Bellet ‘04: existence of q(t) at high temperatures
I Abou Salem ‘07: extension to nonequilibrium steady states
I Hiai, Mosonyi, Ohno, Petz ’07: free energy density for mean field

perturbations of one-dimensional spin chains
I I. Bjelakovic, J.-D. Deuschel, T. Krueger, R. Seiler, Ra.

Siegmund-Schultze, A. Szkola ’07: Sanov large deviations
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Some related results

Moreover:
For general empirical averages with some F ∈ UA, A ⊂⊂ Zd ,

FΛ =
1
|Λ|

∑
i: i+A⊂Λ

τi(F )

no associate (classical) Gibbs measure exists unless
[τi(F ), τj(F )] = 0, yet

I one can prove qF (t) to exist and to be analytic in a neighborhood
of t = 0
(NR‘04, A-S‘07 – analyticity, LR‘04 – existence)

I but no proof of existence of qF (t) for all t ∈ R is known!
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Quantum Laplace-Varadhan formula

Theorem (De Roeck, Maes, Netočný). Let for some ε > 0

‖Φ‖ε ≡ sup
i

∑
A3i

eε|A| ‖Φ(A)‖ < +∞

There there exists β0 > 0 such that for all |β| ≤ β0, for all
X = X ∗ ∈ M, and for all G ∈ C([−‖X‖, ‖X‖]) concave,

lim
Λ↑Zd

1
|Λ|

log
1
Zβ

Tr
(
e−βHΛ+|Λ|G(X̄Λ)

)
= sup

−‖X‖<u<|‖X‖
{G(u)− Î(u)}

where

Î(u) = sup
t
{tu − q̂(t)}

q̂(t) = lim
Λ↑Zd

1
|Λ|

log
1
Zβ

Tr
(
exp−βHΛ + t

∑
i∈Λ

Xi
)
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Strategy of the equivalence-proof and related results

The proof consists of the next two steps:

Step 1.
p(κλ) differentiable at κ = 1
=⇒ the projection-valued measure Q̄N for

∑
k λk X N

k satisfies∫ λk xk +δ

λk xk−δ

ωN
λ (Q̄N(dz)) ≥ 1− e−C̄(δ)N , C̄(δ) > 0

=⇒ there is sequence δN ↓ 0 such that

PN :=

∫ λk xk +δN

λk xk−δN

Q̄N(dz)

satisfies
I limN↑+∞ ωN

λ (PN) = 1
I limN↑+∞

1
N log TrN(PN) = limN↑+∞

1
N H(ωN

λ )
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Strategy of the proof and related results

This is a special case of quantum Shannon-McMillan theorem

For a more general result of this type, see:
I Bjelaković, Krüger, Siegmund-Schultze, Szkoła ‘04

See also
I Bjelaković, Deuschel, Krüger, Seiler, Siegmund-Schultze, Szkoła

‘05: quantum Sanov theorem
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Strategy of the proof and related results

The proof consists of the next two steps:

Step 2.
qk (κ) differentiable at κ = 0
=⇒ the projection-valued measure QN

k for X N
k satisfies

ωN
λ (QN,δ

k (xk )) ≥ 1− e−Ck (δ)N , Ck (δ) > 0

=⇒

TrN(PNQN,δ
k (xk ))

TrN(PN)
≥ 1− e−C′

k (δ)N , Ck (δ) > C′
k (δ) > 0

=⇒ PN is exponentially concentrating at x
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What is a current fluctuation?

Imagine reservoirs in thermal equilibrium at inverse temperatures βk

with composite system described by

Hλ = H +
∑
k∈K

Hk + λ
∑
k∈K

HSk ,

Initial state represented by density matrix ρ0 of the form

ρ0 = ρ⊗
[
⊗

k∈K
ρk,βk

]
where the states ρk,βk are equilibrium states at βk on the k ’th
reservoir, and ρ is an arbitrary density matrix on the system.
QUESTION:
how much energy has flown out of/into the different reservoirs after
some time t .
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What is a current fluctuation?
Answer 1 Introduce “current operator”

Ik (t) := −ıUλ
−t [Hλ, Hk ]Uλ

t

where Uλ
t := exp−ıtHλ generated by the total Hamiltonian Hλ and Hk

is the free Hamiltonian of the k ’th reservoir only.
Obviously,

Uλ
−tHk Uλ

t − Hk =

∫ t

0
ds Ik (s)

Therefore heat fluctuations

ρ0

[
exp−ı

∑
k

κk
(
Uλ
−tHk Uλ

t − Hk
)]

but not at all clear whether the operator associated to the “change of
energy in the k−th reservoir” should really be given by that: Uλ

−tHk Uλ
t

does not in general commute with Hk , hence their difference does not
have a clear physical meaning.
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What is a current fluctuation?

Answer 2 Assume for simplicity that (Hk )k∈K have discrete spectrum,
indicating that we have not taken the thermodynamic limit and let
x ∈ X label a complete set of eigenvectors |x〉 of (Hk )k∈K with
nondegenerate eigenvalues (Hk )k∈K (x). The corresponding spectral
projections are denoted Px := |x〉〈x |.

χ(κ, t , λ, ρ0) :=
∑

x,y∈X

Tr
[
Py Uλ

t Pxρ0PxUλ
−tPy

]
exp−ı

∑
k∈K

κk (Hk (y)− Hk (x))

Measure (thereby projecting the reservoirs on the eigenstates x),
then switch on the time evolution Uλ

t , finally measure again
(projecting on the eigenstates y ).
Use that the initial state ρ0 is diagonal in the basis |x〉 to rewrite

χ(κ, t , λ, ρ0) = ρ0

[
exp−ı

∑
k∈K

κk Hk Uλ
t

(
exp ı

∑
k∈K

κk Hk

)
Uλ
−t

]
.
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What is a current fluctuation?
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Conclusions

I For a high-temperature quantum lattice system we have
constructed an effective Gibbs measure for a classical
subsystem, which yields large deviations and CLT for a single
observable

I As an alternative approach to quantum large deviations, we have
extended the quantum Laplace-Varadhan formula of Petz,
Raggio, and Verbeure to the same high-temperature regime

I Similar results can be obtained for other perturbative regimes,
e.g., at low temperatures with a unique ground state

I We have discussed one approach to the problem of joint large
deviations for noncommuting observables based on the
construction of a generalized microcanonical ensemble; an
extension from trace state to a general state remains to be
understood


