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Coulomb forces

Goal: describe macroscopic systems using Quantum Mechanics.

Ordinary matter is composed of electrons
and nuclei interacting via Coulomb forces.

The Coulomb potential between two charges
z and 7’ located at x,x’ € R3 is

zz'

dreg|x — x|

Picture of CdSe Crystal (CEA-SP2M-NPSC)

Two different issues related to stability:
@ the singularity at 0 of 1/|x|;
@ the “slow” decay at infinity of 1/|x|.
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Stability of the first kind

Singularity at zero of 1/|x|: need to explain why a particle does not rush
to a particle of the opposite sign.

Example: Hydrogen atom. e Classical energy of the electron at x € R3
with momentum p € R3:

Atomic units: m=e = 1/(4meg) = 1.

Instability: inf E(x,p) = —o0.
Y (x,p)ER3XR3 ( P)

. . . 1 C
e Quantum mechanics: Kato's inequality = Ve > 0, |—‘ <e(—A)+—
X €

A 1
— stability of the first kind: ——

>
2 W ¢
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Macroscopic behavior

e Slow decay of 1/|x| at infinity: explain how a very large number of
particles can stay bounded together to form macroscopic systems,
although each particle interacts with many other charged particles.

Let E(N) be the ground state energy of a system (to be defined) of N
quantum particles, interacting via Coulomb forces.
Stability of the first kind: E(N) > —o0.

Goal: prove the following physical macroscopic behavior:
E(N) ~n_oo CN.

Rmk. If E(N) ~ CNP with p # 1, then |[E(2N) — 2E(N)| can be very big

as N > 1: a very large amount of energy will be necessary (or released) to

put two identical systems together.

Occupied volume is usually proportional to N = this is the same as
E(9Q) ~Q| -0 ClQ|

where E(€2) = ground state energy of the system in the domain Q.
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Screening

e Consider classical identical particles on the lattice Z3, interacting via the
potential 1/|x|P, p < 3.

1
E(L) = — =~ CLYP=CNBifp=1.
) ; 2 s X YIP
X,y €Z3N(—L/2;L/2]
For Coulomb, a thermodynamic limit will exist only when particles have
different charges | — screening

e Nuclei (charge 1) on Z3. An electron (charge —1) at a fixed distance §
of each nucleus. They interact through the Coulomb potential.

OO Let E(L) be the ground state energy (optimize the
@GO position of the electrons) in a box of size L. It can

OROROXO) be proved that E(L) ~ CL3.
CAOJCIC,

— In quantum mechanics, screening is a subtle effect because particles are
delocalized.
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Historical overview

e Ruelle (HPA '63) and Fisher (ARMA '64) first raised the question of
stability of matter (=of the second kind) for quantum systems:

E(Q) > —C|Q| or E(N) > —CN. Proof for short-range potentials.
Dyson-Lenard (JMP '66): proof for Coulomb.

Lieb-Thirring (PRL '75): new proof based on a functional inequality.

e Dyson (JMP '67): bosonic matter is unstable. Proof by Conlon, Lieb,
Yau, Solovej (CMP '88, '04 & '06).

e Lieb-Lebowitz (Adv. Math. '72): proof that E(Q2,) ~ €|Q,]| for
‘regular’ sequences |Q2,| — 0o. System composed of quantum electrons
and quantum nuclei. Important use of the invariance by rotation.

e Lieb-Simon (Adv. Math. '77), Catto-Le Bris-Lions (AHP '98) Study
of the thermo. limit of the crystal for approximate models (TF, HF).

e Fefferman (CMP '85) : proof that E(Q2,) ~ &|Q2,| for the many-body
Schrodinger model of the crystal.

e Graf-Schenker (CMP '95): an electrostatic inequality inspired by
Conlon-Lieb-Yau (CMP '89) = starting point of our new approach.
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The quantum crystal

For simplicity, we put identical nuclei of charge 41 on each site of Z3

Let © be a bounded open set of R3 and define:
N

A,
HY = g —TX’ + Va(xi, ..oy Xn),
N - L1 1 1 1
= § § = += Y —=n
=1 ReZ3N ” 21<i7é'<N i =51 2 ezsng IR~ R
- SIFIS R#R'€Z3N2

—A=Dirichlet Laplacian on Q. HA’ acts on N-body fermionic
wavefunctions W(x, .., xy) € AY L2(Q).
Stability of the first kind:

N
EY = inf {<w, HYW), we AHB(Q), Wl = 1} > o0,
1

Define: | E(Q2) := /\I/n>f0EQ —Allnf mfo/\ 12(0 )(
QMath 10 - September 2007 7/25

Thermo. Limit of Coulomb Systems

Mathieu LEWIN (CNRS / Cergy)



Grand canonical formalism

Fock space:
N
Fa:=Co® @/\Lz(ﬂ), Hq = @ HS!\ZI and N = @ N.
N>1 1 N>0 N>0
N E(Q) =info(Ho) = inf t Hql).
(€2) = inf o (Ho) FEB(]‘—IQn), r*=r, 7o (Hal)

0<r<1, try, (N=1.

Free Energy at temperature T = 1/ and chemical potential u € R:

1
F(Q2 = inf t Hq — N+t MNogl) ).
@5 =t (e — AN + ST )
0<r<1, trz, (N)=1.
1
- _ - —B(Ha—pN)
3 log trx, [e } .

We shall mainly consider the energy for simplicity.
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Stability of matter

Theorem (Stability of Matter)

There exists a constant C such that the following holds:

E(Q) >-CIQl,  F(Q,B,u)>-C (1 + 35/2 —Hti/z) Q)

for any bounded open set Q C R3 and any 3 > 0, p € R.

A proof (energy): 1) Inequality of Baxter (1980) / Lieb-Yau (1988):

N
V(Xl, ...,XN) > — Z %

i=1

where (x) = infpezs |[x — R| is the distance to the closest nucleus. Hence:
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Stability of matter

2) Stability of the first kind (Sobolev inequality):

A ¢ 2123
—— > )
50) C, even on L°(R”)

3) Lieb-Thirring inequality for a fermionic wavefunction W € AY 12(Q):

—2/3 5/3
(%) vz f=e(f) 7 ()
Q
_ clal2Nsn,
Here py € L}() is the density of charge which satisfies [, py = N:
pw(x) = N/ dx'|W(x, x")[?dx’.
Q3(N-1)

4) Conclusion:
HY > c|Q|=23N5/3 — e > Q.
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Regular domains

Definition (Regular domains)

Let be a > 0 and € > 0.
1) We say that a bounded open set Q C R3 has an a-regular boundary in
the sense of Fisher if
vt <1, [{x € R? | d(x,09) < |QY/3t}| < |Q|a|t],
where 9Q = Q \ Q is the boundary of Q.

2) We say that a bounded open set Q C R3 satisfies the -cone property if
for any x €  there is a unit vector a, € R3 such that

{YeR [ (x—y) ax>(1-€)lx—yl, x—y[<e}CQ
We denote by R, the set of all Q C R3 which have an a-regular
boundary and such that both Q and R3\ Q satisfy the e-cone property.

Rmk. any open convex set is in R, . for some a > 0 large enough and
€ > 0 small enough.
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Regular domains

‘Q|1/3t

Regular boundary Cone property
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The thermodynamic limit

Theorem (Existence of the Thermodynamic Limit for the Crystal)

There exist € € R and a function f : (0,00) x R — R such that the
following holds: for any sequence {Qp},>1 C Ra . of connected domains
with |Q,| — 00, a > a9 >0 and 0 < ¢ < &,
E Qn . F Qna ’ 3
lim (€2,) =&, lim F(&n, B, 1) = (5, ). (1)

n—oo  |Qp] n—oo 12|

v

By definition p(3, 1) = —Bf(B, 1) is the pressure.

Remarks. a) The same theorem was proved by Fefferman (CMP '85)
assuming Q, = £,(Q + x,) with {x,} € R® and ¢, — 0o, Q being a fixed
convex set with a non-empty interior.

b) One can perturb a bit the crystal and obtain the same limit.

c) A similar result can be proved in the Hartree-Fock approximation.

Mathieu LEWIN (CNRS / Cergy) Thermo. Limit of Coulomb Systems QMath 10 - September 2007 13 /25



Other models

Our proof is general and can be applied to other models.

e Quantum nuclei and electrons in a periodic magnetic field.
T(A) = (—iV + A(x))? Where B =V x Ais periodic and A € L2 (R3).

HSI-ZV’K :ZZ ‘1‘2 A)Rk—I—VX R)
V<X7R>=Zm+5§|x,—x,| 2Z A

k7ék’
Lieb-Lebowitz '72 when A = 0 (rotation-inv. used to obtain screening).

e Classical nuclei with optimized position. VR C €2, #R < oo, define
N

Ay,
Hg’R = Z —T + V(X, R)

i=1
. . . N,R
E(Q) := ,\|In>f0 ngg mfcr/\/v 12(R?) (HQ ) .

i R<oo
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The Lieb-Lebowitz proof

Idea: pack a big ball with small balls (swiss cheese).

e Put the neutral ground state
in each little ball.

e Average over rotations of
states in each little ball to find
one such that the interaction
between all the subsystems can-
cel.

= E(B) < ¥, E(8).
e This is used to prove the ex-

istence of the limit for balls in
the neutral case.

— fixed decomposition of the big domain into small pieces.
Average over states in the little balls (only rotation-invariant model !).
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The Graf-Schenker inequality

A tiling of simplices instead of packing by balls. Based on ideas of Conlon,

Lieb and Yau (CMP '89).
— fixed state in the big domain.

Average over the different decompositions in small domains.

)

= an inequality of the form E(Q2) > > . E(A;) + errors.

— First prove the existence of the thermodynamic limit for simplices.
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The Graf-Schenker inequality

Let G = R3 x SO3(R) be the group of translations and rotations acting on
R3, and denote by d\(g) its Haar measure.

Theorem (Graf-Schenker - CMP '95)

Let A\ be a simplex in R3. There exists a constant C such that for any
NeEN, z1,...,zy €R, x; € R3 and any ¢ > 0,

Z Ziz; / d)\ ZiZj]lgéA(Xi)]lng(Xj)
[LA|

1<i<j<N [xi XJ‘ ; 1<,<J</v xi = x|

N
v
i=1

Remark. Similar result proved for the Yukawa potential and cubes by
Conlon, Lieb and Yau (CMP '89). But only translations were considered
(G =R3).
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The Graf-Schenker inequality

Z,ZJ ZIZ_] géA Xl)]ngA(Xj)
d)\
2 = 4] / © 2 Xi = Xj|

1§i<j§N 1<i<j<N
N
¢ 2
« a >z
g L i=1
[ ]
[}
(]
JYAN °
° ° ° %
[ ]
(]

Rmk. (i) The inequality can be used to prove stability of matter (Graf,
HPA '96).

(ii) Generalizations ? As such, only seems to hold for Coulomb, with
simplices and in 3D.
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Hints on the Graf-Schenker inequality

Proof. 1) If f >0, then 1,1 zezef (xic — x¢) + £(0) p_y 22 > 0.

2) The idea is to show that f > 0 with

-t L Lgen()lgea(y) _ 1= h(lx—yl)
fx=y) == |€A|/de(g) e = S
and
h(|x—y‘):/Gd)\(g)llgéA(T?iT—m(Y) :/503 du\mm(m‘g_ﬁ‘u(x_y)»

Notice h(0) = 1. Graf and Schenker proved that h € C2([0,00)) (in
particular £(0) is well-defined) and that f > 0 by an explicit computation.
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General framework

Let M = {Q C R3 open and bounded} and consider £ : M — R. Assume
JA € Ra.e, o with limy_ a(¢) =0 and &, such that

(A1) (Normalization). E()) = 0.
(A2) (Stability). ¥Q € M, E(Q) > —x[Q).
(A3) (Translation Invariance). YQ € Ra., Vz € Z3, E(Q + z) = E(Q).

(A4) (Continuity). ¥YQ € Rae, VQ' € Ry o with Q' C Q and
d(99,09) > 4,
E(Q) < E(Q) + s|Q\ Q]+ |Q]a(]2)).

(A5) (Subaverage Property). For all Q € M, we have

1
EQ@) > /G E(Qng - (£4)) dA(g) — |2 a(0) (2)

where |Q|, == inf{|Q], QCQ, QeR,.} = regularized volume of Q.
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Proof of (A1)—(Ab) for the crystal

e (A1) and (A3) are obvious. (A2) is stability of matter.
e (A5) is the Graf-Schenker inequality + localization of the kinetic energy.

o (A4) Q' C Q regular sets = E(Q) < E(Q) + &|Q2\ Q| + o(|Q]).
Dipole argument:

+ 4+

_l’_

n
i
n
®
2

Need to show that the interaction between the dipoles and the ground
state in Q' is o(|Q]).
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Thermodynamic limit for the reference set A

Assumption (A3) can be replaced by a much weaker one.

Theorem (In preparation)

Assume E : M — R satisfies the above properties (A1)—(A5) for some
convex set A € R, with 0 € A. There exists @ € R such that

ei(g) = [(A|71E(glA) converges uniformly towards & for

g€ G=R3x50(3) and as { — co.

Additionally, the limit € does not depend on the set A.

Idea of the proof. a) By (A1), (A2) and (A4), e is unif. bounded on G.

b) (A5), (A2) and (A3) can be used to prove that
V'€ G, eg') = Jpesosxqoap e(8)dN(g) — Ct/L - a(L3).

c) infg e and fg6503><[0 13 € have the same limit &.
d) e, — &in L}(SO3 x [0,1]3).
e) (A4) implies that the limit is uniform.
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Proof for general domains

For all regular domain sequences we can only get
E(Q
jiminf £ ()

n—oo  [SQy|

> €.

To get an upper bound, we need to add some assumptions. We assume
that A yields a tiling of R® and that the interaction is “two-body” (or
more generally finite-body).

Upper bound: we use the state in
a large reference set LA to build a
trial state for A, which is itself an
approximation of €2,, constructed
as a union of small £A's.

N
AN

An important ingredient is the strong subadditivity of the entropy. It was
proved for quantum systems by Lieb & Ruskai '73.
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The two-body assumption

[ subgroup of G. Uuerpd =R3, uANvA =) for p# v.

(A6) (Two-body decomposition). For all L and ¢ we can find g € G and
maps Eg . = R, I; : [ xT — R, sg:{P:Pgr}—ﬂRsuch that

o E(LA)> S Egli) 45 3 () — 55(7) — |LAJa(0)

nerlr M;EF
pnH#V
@ Forall PCT and Ap = LAOU uep lepnds
<) E u)+ > lg(1,v) = 54(P) + |Apla(0),
HEP I—LV#GP
Eaz

o (Strong subadditivity). For any disjoint subsets P1, P2, P3 C T
Sg(P1 U P UP3) + 55(P2) < sg(P1UP2) + sg(P2U P3)

@ (Subaverage property). / dg Z lg(p,v) > —|LAJ().
G/l

p,vel
nF
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Open problems

e (i) Convergence of the energy is not enough, one would like to prove
convergence of states.

e (ii) If a local potential V is added to the crystal (modelling a defect
and/or deplacement of some nuclei), then the thermodynamic limit is the
same. Open problem: prove that

EV(Q,) = E%Q,) + f(V) +0o(1) as |Q, — .

For some approximate models of the crystal, (i) was solved by Lieb-Simon
(Thomas-Fermi '77), Catto-Le Bris-Lions (TFW + reduced HF '98).

Proof of (ii) with identification of (V') done by

@ Cances-Deleurence-L. (preprint) for the reduced-HF model of the
crystal ;

@ Hainzl-L.-Solovej (CPAM '07) for the Hartree-Fock approximation of
no-photon QED.
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