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Coulomb forces

Goal: describe macroscopic systems using Quantum Mechanics.

Picture of CdSe Crystal (CEA-SP2M-NPSC)

Ordinary matter is composed of electrons
and nuclei interacting via Coulomb forces.

The Coulomb potential between two charges
z and z ′ located at x , x ′ ∈ R

3 is

zz ′

4πǫ0|x − x ′| .

Two different issues related to stability:

the singularity at 0 of 1/|x |;
the “slow” decay at infinity of 1/|x |.
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Stability of the first kind

Singularity at zero of 1/|x |: need to explain why a particle does not rush
to a particle of the opposite sign.

Example: Hydrogen atom. • Classical energy of the electron at x ∈ R
3

with momentum p ∈ R
3:

bb

bb

x

p = mv

−e

+e
0

E (x , p) =
|p|2
2m

− e2

4πǫ0|x |
=

|p|2
2

− 1

|x | .

Atomic units: m = e = 1/(4πǫ0) = 1.

Instability: inf
(x ,p)∈R3×R3

E (x , p) = −∞.

• Quantum mechanics: Kato’s inequality = ∀ǫ > 0,
1

|x | ≤ ǫ(−∆) +
C

ǫ

=⇒ stability of the first kind: −∆

2
− 1

|x | ≥ −C
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Macroscopic behavior

• Slow decay of 1/|x | at infinity: explain how a very large number of
particles can stay bounded together to form macroscopic systems,
although each particle interacts with many other charged particles.

Let E (N) be the ground state energy of a system (to be defined) of N
quantum particles, interacting via Coulomb forces.

Stability of the first kind: E (N) > −∞.

Goal: prove the following physical macroscopic behavior:

E (N) ∼N→∞ CN.

Rmk. If E (N) ∼ CNp with p 6= 1, then |E (2N) − 2E (N)| can be very big
as N ≫ 1: a very large amount of energy will be necessary (or released) to
put two identical systems together.
Occupied volume is usually proportional to N =⇒ this is the same as

E (Ω) ∼|Ω|→∞ C |Ω|
where E (Ω) = ground state energy of the system in the domain Ω.
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Screening

• Consider classical identical particles on the lattice Z
3, interacting via the

potential 1/|x |p , p < 3.

E (L) =
∑

x ,y∈Z3∩(−L/2;L/2]3

1

|x − y |p ∼ CL6−p = CN5/3 if p = 1.

For Coulomb, a thermodynamic limit will exist only when particles have
different charges ! → screening

• Nuclei (charge 1) on Z
3. An electron (charge −1) at a fixed distance δ

of each nucleus. They interact through the Coulomb potential.

Let E (L) be the ground state energy (optimize the
position of the electrons) in a box of size L. It can
be proved that E (L) ∼ CL3.

→ In quantum mechanics, screening is a subtle effect because particles are
delocalized.
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Historical overview

• Ruelle (HPA ’63) and Fisher (ARMA ’64) first raised the question of
stability of matter (=of the second kind) for quantum systems:
E (Ω) ≥ −C |Ω| or E (N) ≥ −CN. Proof for short-range potentials.
Dyson-Lenard (JMP ’66): proof for Coulomb.
Lieb-Thirring (PRL ’75): new proof based on a functional inequality.

• Dyson (JMP ’67): bosonic matter is unstable. Proof by Conlon, Lieb,
Yau, Solovej (CMP ’88, ’04 & ’06).

• Lieb-Lebowitz (Adv. Math. ’72): proof that E (Ωn) ∼ ē|Ωn| for
‘regular’ sequences |Ωn| → ∞. System composed of quantum electrons
and quantum nuclei. Important use of the invariance by rotation.

• Lieb-Simon (Adv. Math. ’77), Catto-Le Bris-Lions (AHP ’98) Study
of the thermo. limit of the crystal for approximate models (TF, HF).

• Fefferman (CMP ’85) : proof that E (Ωn) ∼ ē|Ωn| for the many-body
Schrödinger model of the crystal.

• Graf-Schenker (CMP ’95): an electrostatic inequality inspired by
Conlon-Lieb-Yau (CMP ’89) = starting point of our new approach.
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The quantum crystal

For simplicity, we put identical nuclei of charge +1 on each site of Z
3.

Let Ω be a bounded open set of R
3 and define:

HN
Ω :=

N∑

i=1

−∆xi

2
+ VΩ(x1, ..., xN ),

VΩ(x) =
N∑

i=1

∑

R∈Z3∩Ω

−1

|R − xi |
+

1

2

∑

1≤i 6=j≤N

1

|xi − xj |
+

1

2

∑

R 6=R′∈Z3∩Ω

1

|R − R ′| .

−∆=Dirichlet Laplacian on Ω. HN
Ω acts on N-body fermionic

wavefunctions Ψ(x1, .., xN ) ∈ ∧N
1 L2(Ω).

Stability of the first kind:

EN
Ω = inf

{〈
Ψ,HN

Ω Ψ
〉
, Ψ ∈

N∧

1

H1
0 (Ω), ||Ψ||L2 = 1

}

> −∞.

Define: E (Ω) := inf
N≥0

EN
Ω = inf

N≥0
inf σVN

1 L2(Ω)(H
N
Ω ).
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Grand canonical formalism

Fock space:

FΩ := C ⊕
⊕

N≥1

N∧

1

L2(Ω), HΩ :=
⊕

N≥0

HN
Ω and N :=

⊕

N≥0

N.

=⇒ E (Ω) = inf σ(HΩ) = inf
Γ∈B(FΩ), Γ∗=Γ,

0≤Γ≤1, trFΩ
(Γ)=1.

trFΩ
(HΩΓ) .

Free Energy at temperature T = 1/β and chemical potential µ ∈ R:

F (Ω, β, µ) := inf
Γ∈B(FΩ), Γ∗=Γ,

0≤Γ≤1, trFΩ
(Γ)=1.

(
trFΩ

((HΩ − µN )Γ) +
1

β
trFΩ

(Γ log Γ)

)
.

= − 1

β
log trFΩ

[
e−β(HΩ−µN )

]
.

We shall mainly consider the energy for simplicity.
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Stability of matter

Theorem (Stability of Matter)

There exists a constant C such that the following holds:

E (Ω) ≥ −C |Ω|, F (Ω, β, µ) ≥ −C
(
1 + β−5/2 + µ

5/2
+

)
|Ω|

for any bounded open set Ω ⊂ R
3 and any β > 0, µ ∈ R.

A proof (energy): 1) Inequality of Baxter (1980) / Lieb-Yau (1988):

V (x1, ..., xN ) ≥ −
N∑

i=1

3/2 +
√

2

δ(xi )

where δ(x) = infR∈Z3 |x −R | is the distance to the closest nucleus. Hence:

HN
Ω ≥

N∑

i=1

(
−∆xi

2
− c

δ(xi )

)
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Stability of matter

2) Stability of the first kind (Sobolev inequality):

−∆

4
− c

δ(x)
≥ C , even on L2(R3).

3) Lieb-Thirring inequality for a fermionic wavefunction Ψ ∈ ∧N
1 L2(Ω):

〈(
N∑

i=1

−∆xi

4

)
Ψ,Ψ

〉
≥ C

∫

Ω
ρ
5/3
Ψ ≥ C

(∫

Ω
1

)−2/3(∫

Ω
ρΨ

)5/3

= C |Ω|−2/3N5/3.

Here ρΨ ∈ L1(Ω) is the density of charge which satisfies
∫
Ω ρΨ = N:

ρΨ(x) = N

∫

Ω3(N−1)

dx ′|Ψ(x , x ′)|2dx ′.

4) Conclusion:
HN

Ω ≥ C |Ω|−2/3N5/3 − CN ≥ C ′|Ω|.
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Regular domains

Definition (Regular domains)

Let be a > 0 and ǫ > 0.
1) We say that a bounded open set Ω ⊆ R

3 has an a-regular boundary in
the sense of Fisher if

∀t ≤ 1,
∣∣{x ∈ R

3 | d(x , ∂Ω) ≤ |Ω|1/3t
}∣∣ ≤ |Ω| a|t|,

where ∂Ω = Ω \ Ω is the boundary of Ω.

2) We say that a bounded open set Ω ⊆ R
3 satisfies the ε-cone property if

for any x ∈ Ω there is a unit vector ax ∈ R
3 such that

{y ∈ R
3 | (x − y) · ax > (1 − ε2)|x − y |, |x − y | < ε} ⊆ Ω.

We denote by Ra,ε the set of all Ω ⊆ R3 which have an a-regular
boundary and such that both Ω and R

3 \ Ω satisfy the ε-cone property.

Rmk. any open convex set is in Ra,ε for some a > 0 large enough and
ε > 0 small enough.
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Regular domains

|Ω|1/3t

Vol≤ a|Ω|t
ε
ε

Regular boundary Cone property
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The thermodynamic limit

Theorem (Existence of the Thermodynamic Limit for the Crystal)

There exist ē ∈ R and a function f̄ : (0,∞) × R → R such that the
following holds: for any sequence {Ωn}n≥1 ⊆ Ra,ǫ of connected domains
with |Ωn| → ∞, a ≥ a0 > 0 and 0 < ε ≤ ε0,

lim
n→∞

E (Ωn)

|Ωn|
= ē, lim

n→∞

F (Ωn, β, µ)

|Ωn|
= f̄ (β, µ). (1)

By definition p(β, µ) = −β f̄ (β, µ) is the pressure.

Remarks. a) The same theorem was proved by Fefferman (CMP ’85)
assuming Ωn = ℓn(Ω + xn) with {xn} ⊆ R

3 and ℓn → ∞, Ω being a fixed
convex set with a non-empty interior.

b) One can perturb a bit the crystal and obtain the same limit.

c) A similar result can be proved in the Hartree-Fock approximation.
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Other models

Our proof is general and can be applied to other models.

• Quantum nuclei and electrons in a periodic magnetic field.
T (A) = (−i∇ + A(x))2 where B = ∇× A is periodic and A ∈ L2

loc
(R3).

HN,K
Ω :=

N∑

i=1

T (A)xi
+

K∑

k=1

T (A)Rk
+ V (x ,R)

V (x ,R) =
∑

i ,k

−1

|Rk − xi |
+

1

2

∑

i 6=j

1

|xi − xj |
+

1

2

∑

k 6=k′

1

|Rk − Rk′ |

E (Ω) := inf
N,K≥0

inf σNK
1 L2(Ω)⊗

VN
1 L2(Ω)

(
HN,K

Ω

)
.

Lieb-Lebowitz ’72 when A ≡ 0 (rotation-inv. used to obtain screening).

• Classical nuclei with optimized position. ∀R ⊂ Ω, #R < ∞, define

HN,R
Ω :=

N∑

i=1

−∆xi

2
+ V (x ,R)

E (Ω) := inf
N≥0

inf
R⊂Ω,

#R<∞

inf σVN
1 L2(R3)

(
HN,R

Ω

)
.
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The Lieb-Lebowitz proof

Idea: pack a big ball with small balls (swiss cheese).

• Put the neutral ground state
in each little ball.

• Average over rotations of
states in each little ball to find
one such that the interaction
between all the subsystems can-
cel.

⇒ E (B) ≤∑i E (Bi).

• This is used to prove the ex-
istence of the limit for balls in
the neutral case.

→ fixed decomposition of the big domain into small pieces.
Average over states in the little balls (only rotation-invariant model !).
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The Graf-Schenker inequality

A tiling of simplices instead of packing by balls. Based on ideas of Conlon,
Lieb and Yau (CMP ’89).

→ fixed state in the big domain.
Average over the different decompositions in small domains.

⇒ an inequality of the form E (Ω) ≥∑i E (△i ) + errors.

→ First prove the existence of the thermodynamic limit for simplices.
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The Graf-Schenker inequality

Let G = R
3

⋊ SO3(R) be the group of translations and rotations acting on
R

3, and denote by dλ(g) its Haar measure.

Theorem (Graf-Schenker - CMP ’95)

Let △ be a simplex in R
3. There exists a constant C such that for any

N ∈ N, z1, ..., zN ∈ R, xi ∈ R
3 and any ℓ > 0,

∑

1≤i<j≤N

zizj

|xi − xj |
≥ 1

|ℓ△|

∫

G

dλ(g)
∑

1≤i<j≤N

zizj1gℓ△(xi )1gℓ△(xj )

|xi − xj |

− C

ℓ

N∑

i=1

z2
i .

Remark. Similar result proved for the Yukawa potential and cubes by
Conlon, Lieb and Yau (CMP ’89). But only translations were considered
(G = R

3).
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The Graf-Schenker inequality

∑

1≤i<j≤N

zizj

|xi − xj |
≥ 1

|ℓ△|

∫

G

dλ(g)
∑

1≤i<j≤N

zizj1gℓ△(xi )1gℓ△(xj )

|xi − xj |

− C

ℓ

N∑

i=1

z2
i .

g

ℓ△

Rmk. (i) The inequality can be used to prove stability of matter (Graf,
HPA ’96).

(ii) Generalizations ? As such, only seems to hold for Coulomb, with
simplices and in 3D.
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Hints on the Graf-Schenker inequality

Proof. 1) If f̂ ≥ 0, then
∑N

k 6=ℓ=1 zkzℓf (xk − xℓ) + f (0)
∑N

k=1 z2
k ≥ 0.

2) The idea is to show that f̂ ≥ 0 with

f (x − y) =
1

|x − y | −
1

|ℓ△|

∫

G

dλ(g)
1gℓ△(x)1gℓ△(y)

|x − y | :=
1 − h(|x − y |)

|x − y |

and

h(|x−y |) =

∫

G

dλ(g)
1gℓ△(x)1gℓ△(y)

|ℓ△| =

∫

SO3

du
|ℓ△∩ (ℓ△− u(x − y))|

|ℓ△| .

Notice h(0) = 1. Graf and Schenker proved that h ∈ C 2([0,∞)) (in
particular f (0) is well-defined) and that f̂ ≥ 0 by an explicit computation.
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General framework

Let M = {Ω ⊂ R
3 open and bounded} and consider E : M → R. Assume

∃△ ∈ Ra,ǫ, α with limℓ→∞ α(ℓ) = 0 and κ, δ such that

(A1) (Normalization). E (∅) = 0.

(A2) (Stability). ∀Ω ∈ M, E (Ω) ≥ −κ|Ω|.
(A3) (Translation Invariance). ∀Ω ∈ Ra,ǫ, ∀z ∈ Z

3, E (Ω + z) = E (Ω).

(A4) (Continuity). ∀Ω ∈ Ra,ǫ, ∀Ω′ ∈ Ra′,ǫ′ with Ω′ ⊆ Ω and
d(∂Ω, ∂Ω′) > δ,

E (Ω) ≤ E (Ω′) + κ|Ω \ Ω′| + |Ω|α(|Ω|).
(A5) (Subaverage Property). For all Ω ∈ M, we have

E (Ω) ≥ 1

|ℓ△|

∫

G

E
(
Ω ∩ g · (ℓ△)

)
dλ(g) − |Ω|r α(ℓ) (2)

where |Ω|r := inf{|Ω̃|, Ω ⊆ Ω̃, Ω̃ ∈ Ra,ǫ} = regularized volume of Ω.
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Proof of (A1)–(A5) for the crystal

• (A1) and (A3) are obvious. (A2) is stability of matter.

• (A5) is the Graf-Schenker inequality + localization of the kinetic energy.

• (A4) Ω′ ⊂ Ω regular sets ⇒ E (Ω) ≤ E (Ω′) + κ|Ω \ Ω′| + o(|Ω|).
Dipole argument:

+ + + ++

+ + + + + +

+

++

+++

+ + + + +

++ +

Ω

Ω′

+

+

+

+ +++

+

+

+

+

+ +

+

+

Need to show that the interaction between the dipoles and the ground
state in Ω′ is o(|Ω|).
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Thermodynamic limit for the reference set △
Assumption (A3) can be replaced by a much weaker one.

Theorem (In preparation)

Assume E : M → R satisfies the above properties (A1)–(A5) for some
convex set △ ∈ Ra,ǫ with 0 ∈ △. There exists ē ∈ R such that
eℓ(g) = |ℓ△|−1E

(
gℓ△

)
converges uniformly towards ē for

g ∈ G = R
3

⋊ SO(3) and as ℓ → ∞.
Additionally, the limit ē does not depend on the set △.

Idea of the proof. a) By (A1), (A2) and (A4), eℓ is unif. bounded on G .

b) (A5), (A2) and (A3) can be used to prove that
∀g ′ ∈ G , eL(g

′) ≥
∫
g∈SO3×[0,1]3 eℓ(g)dλ(g) − Cℓ/L − α(L3).

c) infG eℓ and
∫
g∈SO3×[0,1]3 eℓ have the same limit ē.

d) eℓ → ē in L1(SO3 × [0, 1]3).

e) (A4) implies that the limit is uniform.
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Proof for general domains

For all regular domain sequences we can only get

lim inf
n→∞

E (Ωn)

|Ωn|
≥ ē.

To get an upper bound, we need to add some assumptions. We assume
that △ yields a tiling of R

3 and that the interaction is “two-body” (or
more generally finite-body).

Upper bound: we use the state in
a large reference set L△ to build a
trial state for An, which is itself an
approximation of Ωn, constructed
as a union of small ℓ△’s.

An important ingredient is the strong subadditivity of the entropy. It was
proved for quantum systems by Lieb & Ruskai ’73.
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The two-body assumption

Γ subgroup of G . ∪µ∈Γµ△ = R
3, µ△∩ ν△ = ∅ for µ 6= ν.

(A6) (Two-body decomposition). For all L and ℓ we can find g ∈ G and
maps Eg : Γ → R, Ig : Γ × Γ → R, sg : {P : P ⊆ Γ} → R such that

E (L△) ≥
∑

µ∈Γ

Eg (µ) +
1

2

∑

µ,ν∈Γ
µ6=ν

Ig (µ, ν) − sg (Γ) − |L△|α(ℓ)

For all P ⊆ Γ and AP = L△∩⋃µ∈P ℓgµ△

E (AP) ≤
∑

µ∈P

Eg (µ) +
1

2

∑

µ,ν∈P
µ6=ν

Ig (µ, ν) − sg (P) + |AP |α(ℓ),

(Strong subadditivity). For any disjoint subsets P1, P2, P3 ⊆ Γ

sg (P1 ∪ P2 ∪ P3) + sg (P2) ≤ sg (P1 ∪ P2) + sg (P2 ∪ P3)

(Subaverage property).

∫

G/Γ
dg
∑

µ,ν∈Γ
µ6=ν

Ig (µ, ν) ≥ −|L△|α(ℓ).

Mathieu LEWIN (CNRS / Cergy) Thermo. Limit of Coulomb Systems QMath 10 - September 2007 24 / 25



Open problems

• (i) Convergence of the energy is not enough, one would like to prove
convergence of states.

• (ii) If a local potential V is added to the crystal (modelling a defect
and/or deplacement of some nuclei), then the thermodynamic limit is the
same. Open problem: prove that

EV (Ωn) = E 0(Ωn) + f (V ) + o(1) as |Ωn| → ∞.

For some approximate models of the crystal, (i) was solved by Lieb-Simon
(Thomas-Fermi ’77), Catto-Le Bris-Lions (TFW + reduced HF ’98).

Proof of (ii) with identification of f (V ) done by

Cancès-Deleurence-L. (preprint) for the reduced-HF model of the
crystal ;

Hainzl-L.-Solovej (CPAM ’07) for the Hartree-Fock approximation of
no-photon QED.
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