

The Thermodynamic Limit of Quantum Coulomb Systems: a New Approach

Mathieu LEWIN

Mathieu.Lewin@math.cnrs.fr

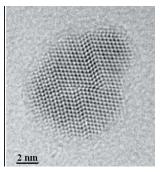
(CNRS & University of Cergy-Pontoise)

Joint work with C. Hainzl (Birmingham, USA) & J.P. Solovej (Copenhagen, Denmark)

QMath 10 - September 2007

Coulomb forces

Goal: describe macroscopic systems using Quantum Mechanics.



Picture of CdSe Crystal (CEA-SP2M-NPSC)

Two different issues related to stability:

- the singularity at 0 of 1/|x|;
- the "slow" decay at infinity of 1/|x|.

Mathieu LEWIN (CNRS / Cergy)

Ordinary matter is composed of electrons and nuclei interacting via Coulomb forces.

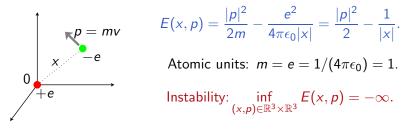
The Coulomb potential between two charges z and z' located at $x, x' \in \mathbb{R}^3$ is

$$\frac{zz'}{4\pi\epsilon_0|x-x'|}.$$

Stability of the first kind

Singularity at zero of 1/|x|: need to explain why a particle does not rush to a particle of the opposite sign.

Example: Hydrogen atom. • *Classical* energy of the electron at $x \in \mathbb{R}^3$ with momentum $p \in \mathbb{R}^3$:



• Quantum mechanics: Kato's inequality $= \forall \epsilon > 0, \quad \frac{1}{|x|} \le \epsilon(-\Delta) + \frac{C}{\epsilon}$ \implies stability of the first kind: $-\frac{\Delta}{2} - \frac{1}{|x|} \ge -C$

Macroscopic behavior

• Slow decay of 1/|x| at infinity: explain how a very large number of particles can stay bounded together to form macroscopic systems, although each particle interacts with many other charged particles.

Let E(N) be the ground state energy of a system (to be defined) of N quantum particles, interacting via Coulomb forces.

Stability of the first kind: $E(N) > -\infty$.

Goal: prove the following physical macroscopic behavior:

 $E(N) \sim_{N \to \infty} CN.$

Rmk. If $E(N) \sim CN^p$ with $p \neq 1$, then |E(2N) - 2E(N)| can be very big as $N \gg 1$: a very large amount of energy will be necessary (or released) to put two identical systems together.

Occupied volume is usually proportional to $N \Longrightarrow$ this is the same as

 $E(\Omega) \sim_{|\Omega| \to \infty} C|\Omega|$

where $E(\Omega) =$ ground state energy of the system in the domain Ω .

Screening

• Consider classical identical particles on the lattice $\mathbb{Z}^3,$ interacting via the potential $1/|x|^p,\ p<3.$

$$E(L) = \sum_{x,y \in \mathbb{Z}^3 \cap (-L/2; L/2]^3} \frac{1}{|x-y|^p} \sim CL^{6-p} = CN^{5/3} \text{ if } p = 1.$$

For Coulomb, a thermodynamic limit will exist only when particles have different charges ! \rightarrow screening

• Nuclei (charge 1) on \mathbb{Z}^3 . An electron (charge -1) at a fixed distance δ of each nucleus. They interact through the Coulomb potential.

Let E(L) be the ground state energy (optimize the position of the electrons) in a box of size L. It can be proved that $E(L) \sim CL^3$.

 \rightarrow In quantum mechanics, screening is a subtle effect because particles are delocalized.

Historical overview

- Ruelle (HPA '63) and Fisher (ARMA '64) first raised the question of stability of matter (=of the second kind) for quantum systems: $E(\Omega) \ge -C|\Omega|$ or $E(N) \ge -CN$. Proof for short-range potentials. Dyson-Lenard (JMP '66): proof for Coulomb.
- Lieb-Thirring (PRL '75): new proof based on a functional inequality.
- Dyson (JMP '67): bosonic matter is unstable. Proof by Conlon, Lieb, Yau, Solovej (CMP '88, '04 & '06).
- Lieb-Lebowitz (Adv. Math. '72): proof that $E(\Omega_n) \sim \bar{e}|\Omega_n|$ for 'regular' sequences $|\Omega_n| \to \infty$. System composed of quantum electrons and quantum nuclei. Important use of the invariance by rotation.
- Lieb-Simon (Adv. Math. '77), Catto-Le Bris-Lions (AHP '98) Study of the thermo. limit of the crystal for approximate models (TF, HF).
- Fefferman (CMP '85) : proof that $E(\Omega_n) \sim \bar{e}|\Omega_n|$ for the many-body Schrödinger model of the crystal.
- Graf-Schenker (CMP '95): an electrostatic inequality inspired by Conlon-Lieb-Yau (CMP '89) = starting point of our new approach.

The quantum crystal

For simplicity, we put identical nuclei of charge +1 on each site of \mathbb{Z}^3 . Let Ω be a bounded open set of \mathbb{R}^3 and define:

$$H_{\Omega}^{N} := \sum_{i=1}^{N} -\frac{\Delta_{x_{i}}}{2} + V_{\Omega}(x_{1}, ..., x_{N}),$$
$$V_{\Omega}(x) = \sum_{i=1}^{N} \sum_{R \in \mathbb{Z}^{3} \cap \Omega} \frac{-1}{|R - x_{i}|} + \frac{1}{2} \sum_{1 \le i \ne j \le N} \frac{1}{|x_{i} - x_{j}|} + \frac{1}{2} \sum_{R \ne R' \in \mathbb{Z}^{3} \cap \Omega} \frac{1}{|R - R'|}.$$

 $-\Delta =$ **Dirichlet Laplacian on** Ω . H_{Ω}^{N} acts on *N*-body fermionic wavefunctions $\Psi(x_{1}, .., x_{N}) \in \bigwedge_{1}^{N} L^{2}(\Omega)$. Stability of the first kind:

$$E_{\Omega}^{N} = \inf\left\{\left\langle \Psi, H_{\Omega}^{N}\Psi\right\rangle, \ \Psi \in \bigwedge_{1}^{N} H_{0}^{1}(\Omega), \ \|\Psi\|_{L^{2}} = 1\right\} > -\infty.$$

Define: $E(\Omega) := \inf_{N \ge 0} E_{\Omega}^N = \inf_{N \ge 0} \inf \sigma_{\bigwedge_1^N L^2(\Omega)}(H_{\Omega}^N).$

Grand canonical formalism

Fock space:

$$\mathcal{F}_{\Omega} := \mathbb{C} \oplus \bigoplus_{N \ge 1} \bigwedge_{1}^{N} L^{2}(\Omega), \qquad H_{\Omega} := \bigoplus_{N \ge 0} H_{\Omega}^{N} \text{ and } \mathcal{N} := \bigoplus_{N \ge 0} N.$$
$$\implies \qquad E(\Omega) = \inf_{\sigma(H_{\Omega})} \sigma(H_{\Omega}) = \inf_{\substack{\Gamma \in \mathcal{B}(\mathcal{F}_{\Omega}), \ \Gamma^{*} = \Gamma, \\ 0 \le \Gamma \le 1, \ \operatorname{tr}_{\mathcal{F}_{\Omega}}(\Gamma) = 1.}} \operatorname{tr}_{\mathcal{F}_{\Omega}}(H_{\Omega}\Gamma).$$

Free Energy at temperature $T = 1/\beta$ and chemical potential $\mu \in \mathbb{R}$:

$$\begin{split} F(\Omega,\beta,\mu) &:= \inf_{\substack{\Gamma \in \mathcal{B}(\mathcal{F}_{\Omega}), \ \Gamma^{*} = \Gamma, \\ 0 \leq \Gamma \leq 1, \ \operatorname{tr}_{\mathcal{F}_{\Omega}}(\Gamma) = 1. }} \left(\operatorname{tr}_{\mathcal{F}_{\Omega}}((H_{\Omega} - \mu \mathcal{N})\Gamma) + \frac{1}{\beta} \operatorname{tr}_{\mathcal{F}_{\Omega}}(\Gamma \log \Gamma) \right) \\ &= -\frac{1}{\beta} \log \operatorname{tr}_{\mathcal{F}_{\Omega}} \left[e^{-\beta(H_{\Omega} - \mu \mathcal{N})} \right]. \end{split}$$

We shall mainly consider the energy for simplicity.

Mathieu LEWIN (CNRS / Cergy)

Thermo. Limit of Coulomb Systems

Theorem (Stability of Matter)

There exists a constant C such that the following holds:

$$\mathsf{E}(\Omega) \geq -\mathsf{C}|\Omega|, \qquad \mathsf{F}(\Omega,eta,\mu) \geq -\mathsf{C}\left(1+eta^{-5/2}+\mu_+^{5/2}
ight)|\Omega|$$

for any bounded open set $\Omega \subset \mathbb{R}^3$ and any $\beta > 0$, $\mu \in \mathbb{R}$.

A proof (energy): 1) Inequality of Baxter (1980) / Lieb-Yau (1988):

$$V(x_1,...,x_N) \ge -\sum_{i=1}^N rac{3/2 + \sqrt{2}}{\delta(x_i)}$$

where $\delta(x) = \inf_{R \in \mathbb{Z}^3} |x - R|$ is the distance to the closest nucleus. Hence:

$$H_{\Omega}^{N} \geq \sum_{i=1}^{N} \left(-rac{\Delta_{x_i}}{2} - rac{c}{\delta(x_i)}
ight)$$

Stability of matter

2) Stability of the first kind (Sobolev inequality):

$$-rac{\Delta}{4}-rac{c}{\delta(x)}\geq C,\qquad$$
 even on $L^2(\mathbb{R}^3).$

3) Lieb-Thirring inequality for a fermionic wavefunction $\Psi \in \bigwedge_{1}^{N} L^{2}(\Omega)$:

$$\left\langle \left(\sum_{i=1}^{N} - \frac{\Delta_{x_i}}{4}\right) \Psi, \Psi \right\rangle \ge C \int_{\Omega} \rho_{\Psi}^{5/3} \ge C \left(\int_{\Omega} 1\right)^{-2/3} \left(\int_{\Omega} \rho_{\Psi}\right)^{5/3}$$
$$= C |\Omega|^{-2/3} N^{5/3}.$$

Here $\rho_{\Psi} \in L^1(\Omega)$ is the density of charge which satisfies $\int_{\Omega} \rho_{\Psi} = N$:

$$\rho_{\Psi}(x) = N \int_{\Omega^{3(N-1)}} dx' |\Psi(x,x')|^2 dx'.$$

4) Conclusion:

$$H_{\Omega}^{N} \geq C|\Omega|^{-2/3}N^{5/3} - CN \geq C'|\Omega|.$$

Definition (Regular domains)

Let be a > 0 and $\epsilon > 0$.

1) We say that a bounded open set $\Omega \subseteq \mathbb{R}^3$ has an a-regular boundary in the sense of Fisher if

$$\forall t \leq 1, \qquad \left| \left\{ x \in \mathbb{R}^3 \mid \mathsf{d}(x, \partial \Omega) \leq |\Omega|^{1/3} t \right\} \right| \leq |\Omega| \, \mathsf{a}|t|,$$

where $\partial \Omega = \overline{\Omega} \setminus \Omega$ is the boundary of Ω .

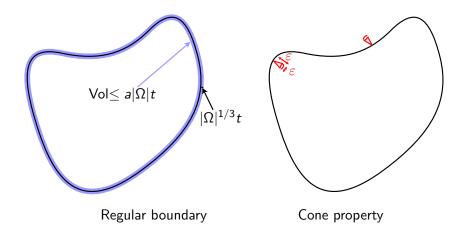
2) We say that a bounded open set $\Omega \subseteq \mathbb{R}^3$ satisfies the ε -cone property if for any $x \in \Omega$ there is a unit vector $a_x \in \mathbb{R}^3$ such that

$$y \in \mathbb{R}^3 \mid (x - y) \cdot a_x > (1 - \varepsilon^2) |x - y|, \ |x - y| < \varepsilon \} \subseteq \Omega.$$

We denote by $\mathcal{R}_{a,\varepsilon}$ the set of all $\Omega \subseteq \mathbb{R}^3$ which have an *a*-regular boundary and such that both Ω and $\mathbb{R}^3 \setminus \Omega$ satisfy the ε -cone property.

Rmk. any open convex set is in $\mathcal{R}_{a,\varepsilon}$ for some a > 0 large enough and $\varepsilon > 0$ small enough.

Regular domains



Theorem (Existence of the Thermodynamic Limit for the Crystal)

There exist $\bar{e} \in \mathbb{R}$ and a function $\bar{f} : (0, \infty) \times \mathbb{R} \to \mathbb{R}$ such that the following holds: for any sequence $\{\Omega_n\}_{n\geq 1} \subseteq \mathcal{R}_{a,\epsilon}$ of connected domains with $|\Omega_n| \to \infty$, $a \geq a_0 > 0$ and $0 < \varepsilon \leq \varepsilon_0$,

$$\lim_{n \to \infty} \frac{E(\Omega_n)}{|\Omega_n|} = \bar{e}, \qquad \lim_{n \to \infty} \frac{F(\Omega_n, \beta, \mu)}{|\Omega_n|} = \bar{f}(\beta, \mu).$$
(1)

By definition $p(\beta, \mu) = -\beta \overline{f}(\beta, \mu)$ is the pressure.

Remarks. a) The same theorem was proved by Fefferman (CMP '85) assuming $\Omega_n = \ell_n(\Omega + x_n)$ with $\{x_n\} \subseteq \mathbb{R}^3$ and $\ell_n \to \infty$, Ω being a fixed convex set with a non-empty interior.

b) One can perturb a bit the crystal and obtain the same limit.

c) A similar result can be proved in the Hartree-Fock approximation.

Other models

Our proof is general and can be applied to other models.

• Quantum nuclei and electrons in a periodic magnetic field. $T(A) = (-i\nabla + A(x))^2 \text{ where } B = \nabla \times A \text{ is periodic and } A \in L^2_{loc}(\mathbb{R}^3).$ $H^{N,K}_{\Omega} := \sum_{i=1}^{N} T(A)_{x_i} + \sum_{k=1}^{K} T(A)_{R_k} + V(x,R)$ $V(x,R) = \sum_{i,k} \frac{-1}{|R_k - x_i|} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|x_i - x_j|} + \frac{1}{2} \sum_{k \neq k'} \frac{1}{|R_k - R_{k'}|}$ $E(\Omega) := \inf_{N,K \geq 0} \inf \sigma_{\bigotimes_1^K L^2(\Omega) \otimes \bigwedge_1^N L^2(\Omega)} \left(H^{N,K}_{\Omega}\right).$

Lieb-Lebowitz '72 when $A \equiv 0$ (rotation-inv. used to obtain screening).

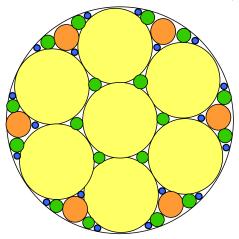
• Classical nuclei with optimized position. $\forall R \subset \Omega, \ \#R < \infty$, define

$$H_{\Omega}^{N,R} := \sum_{i=1}^{N} -\frac{\Delta_{x_i}}{2} + V(x,R)$$
$$E(\Omega) := \inf_{\substack{N \ge 0 \\ \#R < \infty}} \inf_{\substack{R \subset \Omega, \\ \#R < \infty}} \sigma_{\Lambda_1^N L^2(\mathbb{R}^3)} \left(H_{\Omega}^{N,R} \right).$$

Mathieu LEWIN (CNRS / Cergy)

The Lieb-Lebowitz proof

Idea: pack a big ball with small balls (swiss cheese).



- Put the neutral ground state in each little ball.
- Average over rotations of states in each little ball to find one such that the interaction between all the subsystems cancel.

$\Rightarrow E(B) \leq \sum_i E(B_i).$

• This is used to prove the existence of the limit for balls in the neutral case.

 \rightarrow fixed decomposition of the big domain into small pieces. Average over states in the little balls (only rotation-invariant model !).

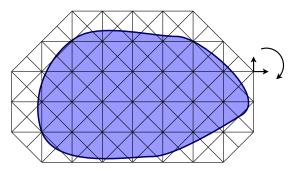
Mathieu LEWIN (CNRS / Cergy)

The Graf-Schenker inequality

A tiling of simplices instead of packing by balls. Based on ideas of Conlon, Lieb and Yau (CMP '89).

 \rightarrow fixed state in the big domain.

Average over the different decompositions in small domains.



 \Rightarrow an inequality of the form $E(\Omega) \ge \sum_i E(\triangle_i) + \text{errors.}$

 \rightarrow First prove the existence of the thermodynamic limit for simplices.

The Graf-Schenker inequality

Let $G = \mathbb{R}^3 \rtimes SO_3(\mathbb{R})$ be the group of translations and rotations acting on \mathbb{R}^3 , and denote by $d\lambda(g)$ its Haar measure.

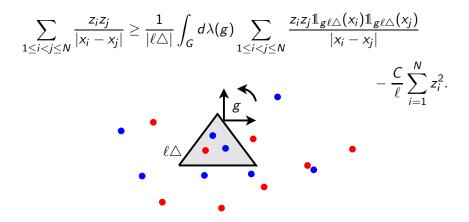
Theorem (Graf-Schenker - CMP '95)

Let \triangle be a simplex in \mathbb{R}^3 . There exists a constant C such that for any $N \in \mathbb{N}$, $z_1, ..., z_N \in \mathbb{R}$, $x_i \in \mathbb{R}^3$ and any $\ell > 0$,

$$\sum_{1 \le i < j \le N} \frac{z_i z_j}{|x_i - x_j|} \ge \frac{1}{|\ell \bigtriangleup|} \int_G d\lambda(g) \sum_{1 \le i < j \le N} \frac{z_i z_j \mathbb{1}_{g\ell \bigtriangleup}(x_i) \mathbb{1}_{g\ell \bigtriangleup}(x_j)}{|x_i - x_j|} - \frac{C}{\ell} \sum_{i=1}^N z_i^2.$$

Remark. Similar result proved for the Yukawa potential and cubes by Conlon, Lieb and Yau (CMP '89). But only translations were considered $(G = \mathbb{R}^3)$.

The Graf-Schenker inequality



Rmk. (i) The inequality can be used to prove stability of matter (Graf, HPA '96).

(ii) Generalizations ? As such, only seems to hold for Coulomb, with simplices and in 3D.

Mathieu LEWIN (CNRS / Cergy)

Thermo. Limit of Coulomb Systems QMat

QMath 10 - September 2007 18 / 25

Proof. 1) If
$$\hat{f} \ge 0$$
, then $\sum_{k \neq \ell=1}^{N} z_k z_\ell f(x_k - x_\ell) + f(0) \sum_{k=1}^{N} z_k^2 \ge 0$.
2) The idea is to show that $\hat{f} \ge 0$ with

$$f(x-y) = \frac{1}{|x-y|} - \frac{1}{|\ell \bigtriangleup|} \int_G d\lambda(g) \frac{\mathbbm{1}_{g\ell \bigtriangleup}(x) \mathbbm{1}_{g\ell \bigtriangleup}(y)}{|x-y|} := \frac{1 - h(|x-y|)}{|x-y|}$$

and

$$h(|x-y|) = \int_{G} d\lambda(g) \frac{\mathbb{1}_{g\ell \bigtriangleup}(x)\mathbb{1}_{g\ell \bigtriangleup}(y)}{|\ell \bigtriangleup|} = \int_{SO_{3}} du \frac{|\ell \bigtriangleup \cap (\ell \bigtriangleup - u(x-y))|}{|\ell \bigtriangleup|}.$$

Notice h(0) = 1. Graf and Schenker proved that $h \in C^2([0,\infty))$ (in particular f(0) is well-defined) and that $\hat{f} \ge 0$ by an explicit computation.

General framework

Let $\mathcal{M} = \{\Omega \subset \mathbb{R}^3 \text{ open and bounded}\}\ \text{and consider } E : \mathcal{M} \to \mathbb{R}.\ \text{Assume}\ \exists \Delta \in \mathcal{R}_{a,\epsilon}, \ \alpha \text{ with } \lim_{\ell \to \infty} \alpha(\ell) = 0 \text{ and } \kappa, \delta \text{ such that}\$

- (A1) (Normalization). $E(\emptyset) = 0$.
- (A2) (Stability). $\forall \Omega \in \mathcal{M}, E(\Omega) \geq -\kappa |\Omega|.$
- (A3) (Translation Invariance). $\forall \Omega \in \mathcal{R}_{a,\epsilon}, \forall z \in \mathbb{Z}^3, E(\Omega + z) = E(\Omega).$

(A4) (Continuity). $\forall \Omega \in \mathcal{R}_{a,\epsilon}, \forall \Omega' \in \mathcal{R}_{a',\epsilon'}$ with $\Omega' \subseteq \Omega$ and $d(\partial\Omega, \partial\Omega') > \delta$, $E(\Omega) \leq E(\Omega') + \kappa |\Omega \setminus \Omega'| + |\Omega|\alpha(|\Omega|).$

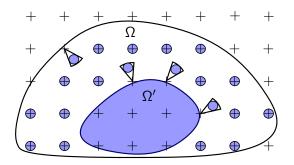
(A5) (Subaverage Property). For all $\Omega \in \mathcal{M}$, we have

$$E(\Omega) \geq \frac{1}{|\ell \bigtriangleup|} \int_{G} E(\Omega \cap g \cdot (\ell \bigtriangleup)) \, d\lambda(g) - |\Omega|_{r} \, \alpha(\ell)$$
(2)

where $|\Omega|_r := \inf\{|\tilde{\Omega}|, \quad \Omega \subseteq \tilde{\Omega}, \quad \tilde{\Omega} \in \mathcal{R}_{a,\epsilon}\} = \text{regularized volume of }\Omega.$

Proof of (A1)-(A5) for the crystal

- (A1) and (A3) are obvious. (A2) is stability of matter.
- (A5) is the Graf-Schenker inequality + localization of the kinetic energy.
- (A4) $\Omega' \subset \Omega$ regular sets $\Rightarrow E(\Omega) \leq E(\Omega') + \kappa |\Omega \setminus \Omega'| + o(|\Omega|)$. Dipole argument:



Need to show that the interaction between the dipoles and the ground state in Ω' is $o(|\Omega|)$.

Thermodynamic limit for the reference set \triangle

Assumption (A3) can be replaced by a much weaker one.

Theorem (In preparation)

Assume $E : \mathcal{M} \to \mathbb{R}$ satisfies the above properties (A1)–(A5) for some convex set $\triangle \in \mathcal{R}_{a,\epsilon}$ with $0 \in \triangle$. There exists $\bar{e} \in \mathbb{R}$ such that $e_{\ell}(g) = |\ell \triangle|^{-1} E(g \ell \triangle)$ converges uniformly towards \bar{e} for $g \in G = \mathbb{R}^3 \rtimes SO(3)$ and as $\ell \to \infty$. Additionally, the limit \bar{e} does not depend on the set \triangle .

Idea of the proof. a) By (A1), (A2) and (A4), e_{ℓ} is unif. bounded on G.

b) (A5), (A2) and (A3) can be used to prove that $\forall g' \in G, \quad e_L(g') \geq \int_{g \in SO3 \times [0,1]^3} e_\ell(g) d\lambda(g) - C\ell/L - \alpha(L^3).$

c) $\inf_G e_\ell$ and $\int_{g \in SO3 \times [0,1]^3} e_\ell$ have the same limit \overline{e} .

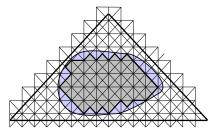
- d) $e_\ell \to \bar{e} \text{ in } L^1(\textit{SO3} \times [0,1]^3).$
- e) (A4) implies that the limit is uniform.

Proof for general domains

For all regular domain sequences we can only get

$$\liminf_{n\to\infty}\frac{E(\Omega_n)}{|\Omega_n|}\geq \bar{e}.$$

To get an upper bound, we need to add some assumptions. We assume that \triangle yields a tiling of \mathbb{R}^3 and that the interaction is "two-body" (or more generally finite-body).



Upper bound: we use the state in a large reference set $L\triangle$ to build a trial state for A_n , which is itself an approximation of Ω_n , constructed as a union of small $\ell\triangle$'s.

An important ingredient is the strong subadditivity of the entropy. It was proved for quantum systems by Lieb & Ruskai '73.

The two-body assumption

 $\mathsf{F} \text{ subgroup of } \mathcal{G}. \ \cup_{\mu \in \mathsf{F}} \mu \triangle = \mathbb{R}^3, \ \mu \triangle \cap \nu \triangle = \emptyset \text{ for } \mu \neq \nu.$

(A6) (*Two-body decomposition*). For all L and ℓ we can find $g \in G$ and maps $E_g : \Gamma \to \mathbb{R}$, $I_g : \Gamma \times \Gamma \to \mathbb{R}$, $s_g : \{\mathcal{P} : \mathcal{P} \subseteq \Gamma\} \to \mathbb{R}$ such that

•
$$E(L\triangle) \ge \sum_{\mu \in \Gamma} E_g(\mu) + \frac{1}{2} \sum_{\substack{\mu, \nu \in \Gamma \\ \mu \neq \nu}} I_g(\mu, \nu) - s_g(\Gamma) - |L\triangle|\alpha(\ell)$$

• For all $\mathcal{P} \subseteq \Gamma$ and $A_{\mathcal{P}} = L \triangle \cap \bigcup_{\mu \in \mathcal{P}} \ell g \mu \triangle$

$$\mathsf{E}(\mathsf{A}_{\mathcal{P}}) \leq \sum_{\mu \in \mathcal{P}} \mathsf{E}_{\mathsf{g}}(\mu) + \frac{1}{2} \sum_{\substack{\mu, \nu \in \mathcal{P} \\ \mu \neq \nu}} \mathsf{I}_{\mathsf{g}}(\mu, \nu) - \mathsf{s}_{\mathsf{g}}(\mathcal{P}) + |\mathsf{A}_{\mathcal{P}}|\alpha(\ell),$$

(Strong subadditivity). For any disjoint subsets P₁, P₂, P₃ ⊆ Γ
 s_g(P₁ ∪ P₂ ∪ P₃) + s_g(P₂) ≤ s_g(P₁ ∪ P₂) + s_g(P₂ ∪ P₃)

• (Subaverage property).
$$\int_{G/\Gamma} dg \sum_{\substack{\mu,\nu\in\Gamma\\\mu\neq\nu}} I_g(\mu,\nu) \geq -|L\triangle|\alpha(\ell).$$

Open problems

• (i) Convergence of the energy is not enough, one would like to prove convergence of states.

• (ii) If a local potential V is added to the crystal (modelling a defect and/or deplacement of some nuclei), then the thermodynamic limit is the same. Open problem: prove that

 $E^V(\Omega_n) = E^0(\Omega_n) + f(V) + o(1)$ as $|\Omega_n| \to \infty$.

For some approximate models of the crystal, (i) was solved by Lieb-Simon (Thomas-Fermi '77), Catto-Le Bris-Lions (TFW + reduced HF '98).

Proof of (ii) with identification of f(V) done by

- Cancès-Deleurence-L. (preprint) for the reduced-HF model of the crystal ;
- Hainzl-L.-Solovej (CPAM '07) for the Hartree-Fock approximation of no-photon QED.