The periodic magnetic Schrödinger operators: spectral gaps and tunneling effect

Yuri Kordyukov Institute of Mathematics Russian Academy of Sciences Ufa, Russia

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

References

[1] Helffer B., Kordyukov Yu. A. The periodic magnetic Schrödinger operators: spectral gaps and tunneling effect, preprint math.SP/0702776; to appear in Proc. Steklov Inst. of Math.

[2] Helffer B., Kordyukov Yu. A. Semiclassical asymptotics and gaps in the spectra of periodic Schrödinger operators with magnetic wells, preprint math.SP/0601366; to appear in Trans. Amer. Math. Soc.

[3] Kordyukov Yu. A. Spectral gaps for periodic Schrödinger operators with strong magnetic fields, Commun. Math. Phys. 253 (2005), no. 2, 371–384.

Notation

- M a noncompact oriented smooth manifold of dimension $n\geq 2$ such that $H^1(M,\mathbb{R})=0.$
- Γ a finitely generated, discrete group, which acts properly discontinuously on M so that M/Γ is a compact smooth manifold.
- $g \in \Gamma$ -invariant Riemannian metric on M:

$$g = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij}(x) dx^{i} dx^{j}.$$

Magnetic field

• **B** — a real-valued Γ -invariant closed 2-form on M:

$$\mathbf{B} = \sum_{i < j} b_{ij}(x) dx^i \wedge dx^j.$$

• ASSUME:
$$\mathbf{A} = \sum_{i=1}^{n} a_i(x) dx^i$$
 a 1-form on M such that

$$d\mathbf{A} = \mathbf{B} \Longleftrightarrow b_{ij} = \frac{\partial a_j}{\partial x^i} - \frac{\partial a_i}{\partial x^j}.$$

• g_{ij} and b_{ij} Γ -periodic, a_i , in general, NOT.

The magnetic Schrödinger operator

• The Schrödinger operator with magnetic potential A — a self-adjoint operator in $L^2(M)$:

$$H^{h} = (ih d + \mathbf{A})^{*}(ih d + \mathbf{A}), \quad h > 0.$$

• In \mathbb{R}^n , a self-adjoint operator in $L^2(\mathbb{R}^n,\sqrt{g}dx)$

$$H^{h} = \frac{1}{\sqrt{g}} \sum_{j,k} (ih\frac{\partial}{\partial x^{j}} + a_{j}(x)) \left[g^{jk}(x)\sqrt{g}(ih\frac{\partial}{\partial x^{k}} + a_{k}(x)) \right]$$

 $(g = \det(g_{ij}), g^{jk}$ the inverse of g_{jk})

The main problem

• A gap in the spectrum $\sigma(T)$ of a self-adjoint operator T is a maximal interval (a,b) such that

 $(a,b)\cap\sigma(T)=\emptyset$

(
$$\Leftrightarrow$$
 a component of $\mathbb{R} \setminus \sigma(T)$)
PROBLEMS:

- Are there gaps in the spectrum of H^h in the semiclassical limit (as $h \rightarrow 0$)?
- Are there arbitrarily many number of gaps in the spectrum of H^h in the semiclassical limit (as $h \rightarrow 0$)?

Some more notation

• $B(x): T_x M \to T_x M, x \in M$ the anti-symmetric linear operator:

$$g_x(B(x)u, v) = \mathbf{B}_x(u, v), \quad u, v \in T_x M.$$

• In local coordinates

$$B_j^i = \sum_{k=1}^n g^{ik} b_{kj} = \sum_{k=1}^n g^{ik} \left(\frac{\partial a_k}{\partial x^j} - \frac{\partial a_j}{\partial x^k} \right).$$

Even more notation

• The intensity of the magnetic field

Tr ⁺(B(x)) =
$$\frac{1}{2}$$
Tr ([B^{*}(x) · B(x)]^{1/2}).

• If
$$\pm \lambda_j(x), j = 1, 2, ..., d, \lambda_j(x) > 0$$
, are the eigenvalues of $B(x)$, then

$$\operatorname{Tr}^{+}(B(x)) = \sum_{j=1}^{d} \lambda_j(x).$$

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Magnetic wells

• DENOTE

$$b_0 = \min\{\operatorname{Tr}^+(B(x)) : x \in M\}.$$

• ASSUME:

there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge b_0 + \epsilon_0, \quad x \in \partial \mathcal{F}.$$
 (1)

Magnetic wells. II

• For any $\epsilon_1 \leq \epsilon_0$, let

$$U_{\epsilon_1} = \{ x \in \mathcal{F} : \text{Tr}^+(B(x)) < b_0 + \epsilon_1 \}.$$

- U_{ϵ_1} an open subset of \mathcal{F} such that $U_{\epsilon_1} \cap \partial \mathcal{F} = \emptyset$;
- For $\epsilon_1 < \epsilon_0$, $\overline{U_{\epsilon_1}}$ is compact and included in the interior of \mathcal{F} .
- Any connected component of U_{ε1} with ε1 < ε0 a magnetic well (attached to the effective potential h · Tr ⁺(B(x))).

The general case

THEOREM [B. Helffer, Yu. K., 2007]

• ASSUME: there exist a (connected) fundamental domain ${\cal F}$ and $\epsilon_0>0$ such that

$$\operatorname{Tr}^+(B(x)) \ge b_0 + \epsilon_0, \quad x \in \partial \mathcal{F}.$$

(\iff there are magnetic wells).

• THEN: for any natural N, there exists $h_0 > 0$ such that, for any $h \in (0, h_0]$,

$$\sigma(H^h) \cap [0, h(b_0 + \epsilon_0)]$$

has at least N gaps.

Potential wells with the regular point bottom

THEOREM [B. Helffer, Yu. K. 2007] ASSUME

- H^h satisfies the condition (1) with some $\epsilon_0 > 0$:
- there exists a zero \bar{x}_0 of B, $B(\bar{x}_0) = 0$, such that $\exists C > 0$

$$C^{-1}|x - x_0|^k \le \text{Tr}^+(B(x)) \le C|x - x_0|^k$$

for all x in some neighborhood of x_0 with some integer k > 0.

Potential wells with the regular point bottom

THEN

for any natural N, there exist C > 0 and $h_0 > 0$ such that

$$\sigma(H^h) \cap [0, Ch^{\frac{2k+2}{k+2}}]$$

has at least N gaps for any $h \in (0, h_0)$.

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

The spectral concentration

THEOREM [Yu. K. 2005] ASSUME

- $b_0 = 0$.
- For some integer k > 0, $B(x_0) = 0 \Rightarrow \exists C > 0$

$$C^{-1}|x - x_0|^k \le \text{Tr}^+(B(x)) \le C|x - x_0|^k$$

for all x in some neighborhood of x_0 .

The spectral concentration

THEN

there exists an increasing sequence

$$\lambda_1 < \lambda_2 < \lambda_3 < \dots, \quad \lambda_m \to \infty \text{ as } m \to \infty,$$

such that for any a and b with $\lambda_m < a < b < \lambda_{m+1}$,

$$[ah^{\frac{2k+2}{k+2}}, bh^{\frac{2k+2}{k+2}}] \cap \sigma(H^h) = \emptyset.$$

Potential wells with the one-dimensional bottom

ASSUME:

- $b_0 = 0$, and the zero set of the magnetic field **B** has a connected component γ , which is a bounded smooth curve;
- there are constants $k \in \mathbb{N}$ and C > 0 such that for all x in some neighborhood of γ the estimates hold:

$$C^{-1}d(x,\gamma)^k \le |B(x)| \le Cd(x,\gamma)^k.$$

• REMARK: For k = 1 the last condition means that ∇B does not vanish on γ .

More notation

- ω is the Riemannian volume form on M;
- $\bullet\,$ Write the 2-form ${\bf B}$ as

$$\mathbf{B} = B(x)\omega, \quad x \in M;$$

More notation

- N the external unit normal vector to γ ;
- \tilde{N} an arbitrary extension of N to a smooth vector field on M;
- $\beta_1 \in C^{\infty}(M)$ given by

$$\beta_1(x) = \tilde{N}^k B(x), \quad x \in M.$$

• By assumption, we have

 $\beta_1(x) \neq 0, \quad x \in \gamma.$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Potential wells with the one-dimensional bottom: the main result

ASSUME: the restriction of β_1 to γ (which is independent of the choice of smooth extension \tilde{N}) is constant along γ :

$$\beta_1(x) \equiv \beta_1 = \text{const}, \quad x \in \gamma.$$

REMARK: For k = 1, this means that the length of the gradient $|\nabla B|$ is constant along γ .

Potential wells with the one-dimensional bottom: the main result

THEOREM: [B. Helffer, Yu. K. 2007]

Under the given assumptions, for any natural N there exist constants C>0 and $h_0>0$ such that

$$\sigma(H^h) \cap [0, Ch^{\frac{2k+2}{k+2}}]$$

has at least N gaps for any $h \in (0, h_0)$.

Tunneling and localization in wells

- Fix arbitrary $\epsilon_1 < \epsilon_2 < \epsilon_0$.
- H_D^h the Dirichlet realization of H^h in $D = \overline{U_{\epsilon_2}}$.

THEOREM [B. Helffer, Yu. K., 2006] $\exists C, c, h_0 > 0 \ \forall h \in (0, h_0]$

 $\sigma(H^h) \cap [0, h(b_0 + \epsilon_1)] \subset \{\lambda \in [0, h(b_0 + \epsilon_2)] : \operatorname{dist}(\lambda, \sigma(H_D^h)) < Ce^{-c/\sqrt{h}}\},\$

 $\sigma(H_D^h) \cap [0, h(b_0 + \epsilon_1)] \subset \{\lambda \in [0, h(b_0 + \epsilon_2)] : \operatorname{dist}(\lambda, \sigma(H^h)) < Ce^{-c/\sqrt{h}}\}.$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Quasimodes and spectral gaps

THEOREM: Let $N \ge 1$.

SUPPOSE $\mu_0^h < \mu_1^h < \ldots < \mu_N^h$ a subset of an interval $I(h) \subset [0, h(b_0 + \epsilon_1))$:

1. There exist constants c>0 and $M\geq 1$ such that for any h>0 small enough

$$\mu_j^h - \mu_{j-1}^h > ch^M, \quad j = 1, \dots, N,$$

$$\operatorname{dist}(\mu_0^h, \partial I(h)) > ch^M, \quad \operatorname{dist}(\mu_N^h, \partial I(h)) > ch^M;$$

Quasimodes and spectral gaps

2. Each μ_i^h is an approximate eigenvalue of H_D^h :

$$||H_D^h v_j^h - \mu_j^h v_j^h|| = \alpha_j(h) ||v_j^h||,$$

where
$$v_j^h \in C^\infty_c(D)$$
 and $\alpha_j(h) = o(h^M)$ as $h \to 0$.
THEN

 $\sigma(H^h) \cap I(h)$ has at least N gaps for any sufficiently small h > 0.

Quasimodes and spectral gaps: sketch of the proof

There exists $\lambda_j^h \in \sigma(H^h) \cap I(h), j = 0, 1, \dots, N$

$$\lambda_j^h - \mu_j^h = o(h^M), \quad h \to 0.$$

For any h > 0 small enough, we have

$$\lambda_j^h - \lambda_{j-1}^h > ch^M, \quad j = 1, \dots, N.$$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Quasimodes and spectral gaps: sketch of the proof

DENOTE

 $N_h(\alpha,\beta)$ — the number of eigenvalues of H_D^h on an arbitrary interval $(h\alpha,h\beta)$.

LEMMA: For some C and h_0

 $N_h(\alpha,\beta) \le Ch^{-n}, \quad \forall h \in (0,h_0].$

Quasimodes and spectral gaps: sketch of the proof

• LEMMA: Let M > 0 and c > 0. There exist C > 0 and $h_1 > 0$ such that

IF α^h and β^h are two points in the spectrum of H^h on the interval I(h) with $\beta^h - \alpha^h > ch^M$, THEN for any $h \in (0, h_1]$, $\sigma(H^h) \cap (\alpha^h, \beta^h)$ has at least one gap of length $\geq Ch^{M+n}$.

- By this lemma, each interval $(\lambda_j^h,\lambda_{j+1}^h)$ contains at least one gap in the spectrum of H^h of length $\geq Ch^{M+n}$
- \implies The spectrum of H^h on the interval I(h) has at least N gaps of length $\geq Ch^{M+n}$ for any h small enough.

The general case: sketch of the proof

• Fix some natural N. Choose some

$$b_0 < \mu_0 < \mu_1 < \ldots < \mu_N < b_0 + \epsilon_1.$$

• For any
$$j = 0, 1, \ldots, N$$
, take any $x_j \in D$ such that

 $\operatorname{Tr}^+(B(x_j)) = \mu_j.$

The general case: sketch of the proof

• **PROPOSITION** (Helffer-Mohamed, JFA, 1996):

For any μ in the image of ${\rm Tr}\;^+B$ and for any $h\in (0,1],$ there exists C>0 such that

$$(-h^{4/3}C + h\mu, h\mu + h^{4/3}C) \cap \sigma(H_D^h) \neq \emptyset.$$

• So Theorem follows from the abstract result with

$$\mu_j^h = h\mu_j, \quad M = 1.$$

The general case: a construction of quasimodes

- Choose a local chart $f_j: U_j \to \mathbb{R}^n$ defined in a neighborhood U_j of x_j with local coordinates $X = (X_1, X_2, \dots, X_n) \in \mathbb{R}^n$.
- Suppose that
 - $f_j(U_j)$ is a ball B = B(0,r) in \mathbb{R}^n , $f_j(x_j) = 0$,
 - the Riemannian metric at x_j becomes the standard Euclidean metric on \mathbb{R}^n , - $\mathbf{B}(x_j) = \sum_{k=1}^{d_j} \mu_{jk} dX_{2k-1} \wedge dX_{2k}$.

The general case: a construction of quasimodes

• Let φ_j be a smooth function on B such that

$$|\mathbf{A}(X) - d\varphi_j(X) - A_j^q(X)| \le C|X|^2,$$

where
$$A_j^q(X) = \frac{1}{2} \sum_{k=1}^{d_j} \mu_{jk} \left(X_{2k-1} dX_{2k} - X_{2k} dX_{2k-1} \right).$$

• Write
$$X'' = (X_{2d_j+1}, ..., X_n).$$

• Let $\chi_j \in C_c^{\infty}(D)$ supported in a neighborhood of x_j , and $\chi_j(x) \equiv 1$ near x_j .

The general case: a construction of quasimodes

• $v_j^h \in C_c^\infty(D)$ defined as

$$v_j^h(x) = \chi_j(x) \exp\left(-i\frac{\varphi_j(x)}{h}\right) \times \\ \times \exp\left(-\frac{1}{4h}\sum_{k=1}^{d_j}\mu_{jk}(X_{2k-1}^2 + X_{2k}^2)\right) \exp\left(-\frac{|X''|^2}{h^{2/3}}\right)$$

• THEN

$$||(H_D^h - h\mu_j)v_j^h|| \le Ch^{4/3}||v_j^h||.$$

The regular point bottom: the model operator

• ASSUME: \bar{x}_0 a zero of **B** such that, for all x in some neighborhood of x_0 ,

$$C^{-1}|x - x_0|^k \le \operatorname{Tr}^+(B(x)) \le C|x - x_0|^k.$$

• Write the 2-form **B** in the local coordinates

$$f: U(\bar{x}_0) \to f(U(\bar{x}_0)) = B \subset \mathbb{R}^n, \quad f(\bar{x}_0) = 0,$$

as

$$\mathbf{B}(X) = \sum_{1 \le l < m \le n} b_{lm}(X) \, dX_l \wedge dX_m, \quad X = (X_1, \dots, X_n) \in B.$$

The regular point bottom: the model operator

• \mathbf{B}^0 the 2-form in \mathbb{R}^n with polynomial components

$$\mathbf{B}^{0}(X) = \sum_{1 \le l < m \le n} \sum_{|\alpha| = k} \frac{X^{\alpha}}{\alpha!} \frac{\partial^{\alpha} b_{lm}}{\partial X^{\alpha}}(0) \, dX_{l} \wedge dX_{m},$$

• $\exists \mathbf{A}^0$ a 1-form on \mathbb{R}^n with polynomial components:

$$d\mathbf{A}^0(X) = \mathbf{B}^0(X), \quad X \in \mathbb{R}^n.$$

The regular point bottom: the model operator

• $K^h_{\overline{x}_0}$ a self-adjoint differential operator in $L^2(\mathbb{R}^n)$:

$$K_{\bar{x}_0}^h = (ih \, d + \mathbf{A}^0)^* (ih \, d + \mathbf{A}^0),$$

where the adjoints are taken with respect to the Hilbert structure in $L^2(\mathbb{R}^n)$ given by the flat Riemannian metric $(g_{lm}(0))$ in \mathbb{R}^n :

$$K_{\bar{x}_0}^h = \sum_{j,k} g^{jk}(0) \left(ih \frac{\partial}{\partial x^j} + a_j^0(x) \right) \left(ih \frac{\partial}{\partial x^k} + a_k^0(x) \right).$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

The regular point bottom: a construction of quasimodes

• For any $j \in \mathbb{N}$, let

$$K^h_{\bar{x}_0}w^h_j = h^{\frac{2k+2}{k+2}}\lambda_j w^h_j, \quad w^h_j \in L^2(\mathbb{R}^n).$$

- Let $\chi \in C_c^{\infty}(U(\bar{x}_0))$ equal 1 in a neighborhood of \bar{x}_0 .
- Define

$$v_j^h(x) = \chi(x)w_j^h(x).$$

The regular point bottom: a construction of quasimodes

• We have

$$\| \left(H_D^h - h^{\frac{2k+2}{k+2}} \lambda_j \right) v_j^h \| \le C_j h^{\frac{2k+3}{k+2}} \| v_j^h \|.$$

- For a given natural N, choose any $C > \lambda_{N+1}$.
- Then the result follows from the abstract theorem with

$$\mu_j^h = h^{\frac{2k+2}{k+2}} \lambda_j.$$