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A number of mathematical results on the Feynman path integral
for the quantum mechanics have been obtained.

On the other hand, the speaker doesn't know any mathematical
results on

~written as QED.

A functional integral representation for the nonrelativistic QED
model on the Fock spaces with was obtained by
Hiroshima (RMP,1997) in terms of the probabilistic method.



Our aim in this talk is to give

. especially studied
in Feynman (PR,1950) and Feynman - Hibbs (book,1965) by the
time-slicing method.

In my talk the Fourier coefficient of electromagnetic potentials
are quantized, which is a familiar method in physics (cf. Dirac'’s

book,1958), and photons with large momentum are arbitrarily cut
OfF.



In our method between charged parti-
cles naturally appear, which is well known in physics (cf. Fermi
(RMPh,1932)).

Our study is defferent from the one for the QED model on the
Fock spaces.



We consider n charged nonrelativistic particles 2 (7) c R3 (j =
1,2,...,n) with mass m; > 0 and charge e; € R.

We take a constant 7" > O arbitarily.

Let #(t,z) € R be a scalar potential and A(t,z) € R3 a vector
potential for (¢t,z) € [0,T] x R3.



Then

IS given by

for the
with
n .
pt,2) = ejo(a —al)),
=1
n

and the

(1)



with an indefinite constant C.
It seems that an indefinite constant C' in L
(cf. Feynman-Hibbs (1965), Sakurai's book (1967),
Spohn’s book (2004)).



As in Fermi (1932) and Feynman (1950) we consider a very large

010)°¢
— [_ﬂ ﬂ] y [_2 2] y [_@ 2]
2° 2 272 2° 2
We consider periodic potentials ¢(t,x) and A(t,x) satisfying
V - A(t,z) = 0 (the Coulomb gauge) in [0,T] x R3 (2)
and

/V 6(t, z)dz = O, /VA(t, 2)dz = 0, (3)



Let
2 2 2
k= <L—7]1_-817L—7;327L—7;83) (81782783 € Z)
be wave number vectors.
We take e;(k) € R3 (j = 1,2) such that (e7(k),e3(k),k/|k|) for
k #= 0 forms a set of mutually orthogonal unit vectors and
& (—k)=—-¢(k) (=1,2).

for all k.



Let |V| = L1LoL3.
We can expand o(t,z) and A(t,x) into

Ao, {ay ) = Y27 > {ae™ el (k) + agpe™ T3 (k)},  (4)
|V| H20
ol {op) = — > ppe™*® (5)
|V| =

from the Coulomb gauge (2) and a1g = asg = ¢g = 0 (3).



We write

L)L (2)
ap =: —& ﬁ"“ (1=1,2), (6)
b =: ¢\ — il (7)

Take acccount of the constraint condition, roughly V- E = 4mp, in
L (1) and determine an indefinite constant C formally in £ as

21 [ « Tuclk|
m Zej Z|k|2+ Z (8)

j=1 k70 k70
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Then, £ (1) can be written as

n

EC(?y _3.3>7 {aig}, {aix}) = Z

7=1

ﬁ|j3(j)|2
2

n

DD

jl=1,;#1 k0

zn: +@ . 46D, {and)

a2 (clk])2(all?

1
T3 ; (zv B 2|V

(9)
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We shall arbitrarily cut off the terms with the large wave number

kin L. (9).
Let M4y be an arbitrary positive number and consider

2 2 2

N={k= (—81,—82,—83> 7 0; |k| < My}

L1 Ly < Ls
We can write
AN=NU=N, NNn-=N = empty set.

Since
(1) 1) (2 _ (2
Y_p = Y Y — Y
from A € R3, SO L= {al(lig)}i,|,k€/\/ c R4N (N L= ﬁ/\/) are

. In addition, replace A in L. (4) with
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(10)
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ZZ

f: ()2
—

eje;cosk - (z0) — ()

k|2

(clk])2[al) |2

> oD
. 2|V

2|V

hc|k|

2

) .

(11)
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Let

A O=1mp<n<...<p =T, |A| .= max —Ti_1).
0 < T1 Ty A 1§1§V(Tz T—1)
Let o+ := (z(1), ... (™M) € R3" and c R*N pe

We take arbitrarily
70 w1 o p3n

and

af\(?), e ag\lf_l) e RN,
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Then, we write on [0,T] connecting 7 at

0=7 (1=0,1,....,v, TW =7 as e R3".
In the same way we define the broken line paths c R*N on
[0, T] for a§\9), e af\lf_l),

We write the classical action

T .
Se(T,0: T psapp) = /O Fo(T a0, TAO).

aA/A(Q),dA/A(Q))dQ,
which is a function with respect to = = («(1),... z(™) and =

{af/l)}u,ke/\'-
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Theorem 1. We assume for g(xz) and ¥ (0) in
1,3d0; > 0 satisfying

B (0)] < Cr (1 +[0))~ U F, e R
and that Va, 40, > 0 satisfying
9%g(x)| < Ca(l + |z)~(1T09) | 2 ¢ R3.
|04

(10) that VI >
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Let f(T,apn) € L2(R37T4NV),
T hen, the function

n 1 ] 3 v
I 1] :
2mih(m — 1_1) 2|V |mwih(m — 11-1)

j=11=1 =1

X Os—/---/(expih‘l )f(?A(O),

a/\/A(O))d?(O) G MO NS
converges to the so-called
// (exp ih~1S.(T,0; ¢, a/\/))f(ﬁ(o)7 apn(0))D G Dan
in LQ(R3n-|—4N)

AN

(12)
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In addition, this limit satisfies the Schrodinger type equation

L 0 _ __
zhau(t) = H(t)u(t), u(0) = f,
where

O e 2
bt _ A9 an,
’L@x(J) C (CU ,CL/\)

.e; COS k - (z() — £ ()

or e,
v > oy Bk

7,l=1 ,];ﬁlké/\
( \
VI[(h 8 k)2 hclk
e 3 (0] e
keN i, Oayy,

-~

(13)
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Remark 1. We note about the term in L. (11) and H(t) that we
have

2 n e.e;cosk - (x() — £
lim lim 7” Sy ;2 )
Ly,L2,L3—00 M1—00 | |j,l=1,j7£lke/\ k]

— l - €€l : I P3N
— 5 Z. ) 0] S(RT) (14)
J,l=1,571

( ) as in Fermi (1932) by means of

1 .. 11 1
(2r)? /e’”k Z/|k|?dk = 2] = (2)? /cosk-x/|k|2dk

in S'(R3).
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Remark 2. We can write the last term of H(t) defined by (13) as

( )

Vi[n_ o (cll~c|)2 hclkl
Hygq = Z Z > | 540 2|V| ‘ (2 0
ke li=1 | day )
= Y nclkla],an.
keN |
We see that
clk| clk| <(1)2 (2)2)}
W = exp ¢ —
oten =TI zviee{ =gy (o +
keN |
IS the ground state of H,,4, called , whose energy is O and

that the state of
are given by V_(ap) = (a,k)n’wo(a/\,) written concretely.
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Remark 3.We determined an indefinite constant C in L by (8).

This gives the disapperance of co =301 > ;> ejel
x cosk - (z(7) — x(l>)/|l-<:|2 in L. (11) and H(t) (13), and also the
disappearance of > ken helk|(— oo as M1 —

00).
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Let’'s not consider the constraint condition.

Let TA(0) € R3 and ana(8) € R be the broken line paths
defined before.

Let {5(')}_ _ € R2. Take €O FW  and €¢1 in k2

Y

arbitrarily. Then, we define the path
_ 7Oy 4mpr (¢ a(6))
Sk P2

where p.(7) € R? is the vector consisting of the real part and the
imaginary part of the Fourier coefficient of p.

€R% 1_1<0<mT, (15)
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Let S be the classical action for Z(Z, @, apns, anr, {bk}gep) Where A
is replaced with A (10) in £ (1).

Theorem 2. Let f(Z,apn) € L2(R3T4N). Then, under the as-
sumptions of Theorem 1 the function

n v m; 3 v 1 4 N
H H \/27?@'71(77 —T_1) H {\/2|V|7rih(7'l —T_1)

[=1

dalQ - dal Y T (16)

24



is equal to (12) in Theorem 1.

So it follows from Theorem 1 that , then (16) just
above converges to the Feynman path integral

/// (expih—ls(T,O; 7,a/\,,¢/\,)) f(?(O),

ap/(0))D g DapDep.
This form is given in §9-8 in
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The outline of the proof of Theorem 1. The proof is mainly done

by studying and by applying the
abstract on
Fora=1,2,... we consider

B :={f(T,apn) € L*(R*"T*N); | fllpa := | /]
+ > (efll + 1(rd=)VFI) < o0}, & = (T, apnn).

la|=a

We set BO = 2.
We can prove : (1) 3p* >0 and 3K, >0 (a = 0,1,2,...) such that
we have a somewhat delicate estimate

ICA(t,0)fllga < €™ fllpe, O <[A] <P, (17)
where (Ca(t,0)f) (Z',an) is defined by (12) in Theorem 1.
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(2) 3M > 2 such that for < t,t' < T we have

t
i (CA(t,0)f —Ca(t,0)f) — /t/ H(@)CA(H,O)deH

< Ca [t =N fI , 0< A< p”

and so
[CA(,0)f —CaA(,0)f|| . < Const.|t — ||| f]

(18)
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The embedding map from Bet2M _, pat+M jg

Let f € . Then we can apply the abstract
theorem to {Ca(t,0)f} A in CO([0,T1; ) from the compactness
and

Consequently we can prove

3 lim C t,0
A A, (8 0)f
uniformly in CO9([0, T7]; ).
This limit satisfies from (18).
We can prove Theorem 1 from the above together with the

of solutions to the Schrodinger type equation, and (17) just
above.
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Theorem 2 is proved by means of

oo -
/ e g9 = /L (a > 0).
a

— 0

29



