Tunnel effect for Krammers-Fokker-Planck type operators: return to equilibrium and applications

F. Hérau¹ M. Hitrik³ J. Sjöstrand³

¹Laboratoire de Mathématiques
Université de Reims

²Département of Mathematics
UCLA

³CMLS
Ecole Polytechnique

Qmath10 conference, Brasov 2007
The Fokker-Planck operator:

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma (-h \partial_y + y/) \cdot (h \partial_y + y/2) \]

position \(x \in \mathbb{R}^d \), velocity \(y \in \mathbb{R}^d \), friction coefficient \(\gamma \).

Some natural 1/2 classical questions arise:

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for \(V \))
- Intrinsic structure \(\rightarrow \) supersymmetry

Intensive work last years: Helffer, Nier, Lebeau, Bismut...
The Fokker-Planck operator:

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma(-h \partial_y + y/)(h \partial_y + y/2) \]

position \(x \in \mathbb{R}^d \), velocity \(y \in \mathbb{R}^d \), friction coefficient \(\gamma \).

Some natural 1/2 classical questions arise:

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for \(V \))
- Intrinsic structure → supersymmetry

Intensive work last years: Helffer, Nier, Lebeau, Bismut...
The Fokker-Planck operator:

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma (-h \partial_y + y/)(h \partial_y + y/2) \]

position \(x \in \mathbb{R}^d \), velocity \(y \in \mathbb{R}^d \), friction coefficient \(\gamma \).

Some natural 1/2 classical questions arise:

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for \(V \))
- Intrinsic structure \(\rightarrow \) supersymmetry

Intensive work last years: Helffer, Nier, Lebeau, Bismut...
(Linearized) Kinetic equations $X_0 - L$,
- Krammers-Fokker-Planck
- Linear Boltzmann (not local)
- Linearized Boltzmann, Landau, ...
- Probabilistic models, other models

Related questions and structures:
- Hypoellipticity
- Hypocoercivity and trend to the equilibrium
- Supersymmetry and inner structures (KFP-like)
- Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet, Hairer...
(Linearized) Kinetic equations $X_0 - L$,
- Krammers-Fokker-Planck
- Linear Boltzmann (not local)
- Linearized Boltzmann, Landau, ...
- Probabilistic models, other models

Related questions and structures:
- Hypoellipticity
- Hypocoercivity and trend to the equilibrium
- Supersymmetry and inner structures (KFP-like)
- Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet, Hairer...
(Linearized) Kinetic equations $X_0 - L$,
- Krammers-Fokker-Planck
- Linear Boltzmann (not local)
- Linearized Boltzmann, Landau, ...
- Probabilistic models, other models

Related questions and structures:
- Hypoellipticity
- Hypocoercivity and trend to the equilibrium
- Supersymmetry and inner structures (KFP-like)
- Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-belllet, Hairer...
Very constructive interaction

P.D.E
- 1/2 classical methods
- ϕ dO methods
- supersymmetry ...

Kinetic
- hypocoercivity,
- trend to eq.
- perturbative study
- ...

Hérau, Hitrik, Sjöstrand
Tunnel effect for KFP
Table of contents

1. Problem and models
 - The context
 - Assumptions and main result

2. Sketch of proof
 - A coercive estimate
 - KFP type Operators
 - Return to equilibrium in double well case

3. Examples of KFP type operators
 - Probabilistic description
 - Witten and Fokker-Planck
 - Anharmonic chains of operators
Assumptions and main result

Back to the Fokker-Planck operator

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma(-h \partial_y + y/2) \cdot (h \partial_y + y/2) \]

We impose on the potential \(V \) the following:

- \(\partial^\alpha V = O(1) \) for \(|\alpha| \geq 2 \),
- \(|\nabla V| \geq 1/C \), for \(|x| \geq C \) with \(C \) sufficiently large
- \(V \) has 3 critical points: 2 local minima and 1 critical point of index 1

Then \(P \) has 2 eigenvalues in the disc \(D(0, C/h) \) for \(h \) sufficiently small, \(\mu_0 = 0 \) and \(\mu_1 \), with \(\mu_1 \) of the form

\[\mu_1 = h \left(a_1(h) e^{-2S_1/h} + a_{-1}(h) e^{-2S_{-1}/h} \right), \quad S_j = V(x_j) - V(x_0). \]
Assumptions and main result

Back to the Fokker-Planck operator

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma(-h \partial_y + y/2) \cdot (h \partial_y + y/2) \]

We impose on the potential \(V \) the following:

- \(\partial^\alpha V = O(1) \) for \(|\alpha| \geq 2 \),
- \(|\nabla V| \geq 1/C \), for \(|x| \geq C \) with \(C \) sufficiently large
- \(V \) has 3 critical points: 2 local minima and 1 critical point of index 1

Then \(P \) has 2 eigenvalues in the disc \(D(0, C/h) \) for \(h \) sufficiently small, \(\mu_0 = 0 \) and \(\mu_1 \), with \(\mu_1 \) of the form

\[\mu_1 = h \left(a_1(h)e^{-2S_1/h} + a_{-1}(h)e^{-2S_{-1}/h} \right), \quad S_j = V(x_j) - V(x_0). \]
Assumptions and main result

Back to the Fokker-Planck operator

\[P = y \cdot h \partial_x - V'(x) \cdot h \partial_y + \gamma(-h \partial_y + y/2)(h \partial_y + y/2) \]

We impose on the potential \(V \) the following:

- \(\partial^\alpha V = O(1) \) for \(|\alpha| \geq 2 \),
- \(|\nabla V| \geq 1/C \), for \(|x| \geq C \) with \(C \) sufficiently large
- \(V \) has 3 critical points: 2 local minima and 1 critical point of index 1

Then \(P \) has 2 eigenvalues in the disc \(D(0, C/h) \) for \(h \) sufficiently small, \(\mu_0 = 0 \) and \(\mu_1 \), with \(\mu_1 \) of the form

\[\mu_1 = h \left(a_1(h)e^{-2S_1/h} + a_{-1}(h)e^{-2S_{-1}/h} \right), \quad S_j = V(x_j) - V(x_0). \]
"Simple well" : V has precisely 1 local minimum and $V(x) \to \infty$ then from [HHS07], P has only 1 eigenvalue $\mu_0 = 0$ in the disc $D(0, C/h)$ for $h \ll 1$.

"A well and the sea" : V has precisely 1 local minimum x_1 and 1 critical point x_0, then P has only 1 eigenvalue μ_1 in the disc $D(0, C/h)$.

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

"multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

Main problem : resolvent estimates, spectral projectors not selfadjoint...
Other cases

"Simple well" : V has precisely 1 local minimum and $V(x) \to \infty$ then from [HHS07], P has only 1 eigenvalue $\mu_0 = 0$ in the disc $D(0, C/h)$ for $h \ll 1$.

"A well and the sea" : V has precisely 1 local minimum x_1 and 1 critical point x_0, then P has only 1 eigenvalue μ_1 in the disc $D(0, C/h)$.

$$\mu_1 = h a_1(h) e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

"multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

Main problem : resolvent estimates, spectral projectors not selfadjoint...
Other cases

- "Simple well" : V has precisely 1 local minimum and $V(x) \to \infty$ then from [HHS07], P has only 1 eigenvalue $\mu_0 = 0$ in the disc $D(0, C/h)$ for $h \ll 1$.

- "A well and the sea" : V has precisely 1 local minimum x_1 and 1 critical point x_0, then P has only 1 eigenvalue μ_1 in the disc $D(0, C/h)$.

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

- "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

Main problem : resolvent estimates, spectral projectors not selfadjoint...
Other cases

- "Simple well" : V has precisely 1 local minimum and $V(x) \to \infty$ then from [HHS07], P has only 1 eigenvalue $\mu_0 = 0$ in the disc $D(0, C/h)$ for $h \ll 1$.

- "A well and the sea" : V has precisely 1 local minimum x_1 and 1 critical point x_0, then P has only 1 eigenvalue μ_1 in the disc $D(0, C/h)$.

 \[\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0). \]

- "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

Main problem : resolvent estimates, spectral projectors not selfadjoint...
Heat problem

Analyse of $e^{-tP/h}$.

- In the case without "tunneling effect" (e.g. the simple well case), the return to equilibrium is of order of magnitude 1.
- What is this rate in the case of tunneling effect ("double well" and "a well and the sea").

Main result

In the double well case, Let Π_j the spectral projection associated to μ_j, then

$$\Pi_j = O(1), \quad h \to 0.$$

and uniformly as $t \geq 0$, and $h \to 0$,

$$e^{-tP/h} = \Pi_0 + e^{-t\mu_1/h} \Pi_1 + O(1)e^{-t/C}, \quad C > 0, \quad \text{in } L^2(L^2, L^2).$$
Heat problem

Analyse of $e^{-tP/h}$.

- In the case without "tunneling effect" (e.g. the simple well case), the return to equilibrium is of order of magnitude 1.
- What is this rate in the case of tunneling effect ("double well" and "a well and the sea").

Main result

In the double well case, Let Π_j the spectral projection associated to μ_j, then

$$\Pi_j = O(1), \quad h \to 0.$$

and uniformly as $t \geq 0$, and $h \to 0$,

$$e^{-tP/h} = \Pi_0 + e^{-t\mu_1/h} \Pi_1 + O(1)e^{-t/C}, \quad C > 0, \quad \text{in} \mathcal{L}(L^2, L^2).$$
Sketch of proof
Eigenvalues [HHS07] : let \(p \) be the symbol of KFP and \(\rho_{0,j} \) be the symbol of the quadratic approximation at \(\rho_j \) critical point. The spectrum of \(P \) in \(D(0, Bh) \) is discrete and equal to

\[
\lambda_{j,k}(h) \sim h \left(\mu_{j,k} + h^{1/N_{j,k}} \mu_{j,k,1} + h^{2/N_{j,k}} \mu_{j,k,2} + \ldots \right),
\]

Recall that \(\mu_{j,k} \) are all numbers in \(D(0, B) \) of the form

\[
\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbb{N},
\]

for some \(j \in \{1, \ldots, N\} \). Here \(\lambda_{j,\ell} \), \(1 \leq \ell \leq n \), are the eigenvalues of the Hamilton map of the quadratic part of \(p \) at \(\rho_j \in \mathcal{C} \), for which \(\text{Im} \lambda_{j,\ell} > 0 \).
A coercive estimate

Eigenvalues [HHS07] : let p be the symbol of KFP and $\rho_{0,j}$ be the symbol of the quadratic approximation at ρ_j critical point. The spectrum of P in $D(0, Bh)$ is discrete and equal to

$$\lambda_{j,k}(h) \sim h \left(\mu_{j,k} + h^{1/N_{j,k}} \mu_{j,k,1} + h^{2/N_{j,k}} \mu_{j,k,2} + \ldots \right),$$

Recall that $\mu_{j,k}$ are all numbers in $D(0, B)$ of the form

$$\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbb{N},$$

for some $j \in \{1, \ldots N\}$. Here $\lambda_{j,\ell}$, $1 \leq \ell \leq n$, are the eigenvalues of the Hamilton map of the quadratic part of p at $\rho_j \in \mathbb{C}$, for which $\text{Im} \lambda_{j,\ell} > 0$.
A coercive estimate

Eigenvalues [HHS07]: let p be the symbol of KFP and $\rho_{0,j}$ be the symbol of the quadratic approximation at ρ_j critical point. The spectrum of P in $D(0, Bh)$ is discrete and equal to

$$\lambda_{j,k}(h) \sim h \left(\mu_{j,k} + h^{1/N_{j,k}} \mu_{j,k,1} + h^{2/N_{j,k}} \mu_{j,k,2} + \ldots \right),$$

Recall that $\mu_{j,k}$ are all numbers in $D(0, B)$ of the form

$$\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbb{N},$$

for some $j \in \{1, \ldots, N\}$. Here $\lambda_{j,\ell}, 1 \leq \ell \leq n$, are the eigenvalues of the Hamilton map of the quadratic part of p at $\rho_j \in C$, for which $\text{Im} \lambda_{j,\ell} > 0$.
Crucial estimate:

Lemma

Let $B \geq 0$ and Π_B the corresponding spectral projector, then for all $u \in \text{Ran}(1 - \Pi_B)$,

$$\left\| e^{-tP/h}u \right\| = O(1) e^{-t/C}, \quad C = C(B)$$

difficulties:

- Π_B not selfadjoint,
- $\text{Re} \langle Pu, u \rangle \geq Ch \| u \|^2$ not true
- $\text{Re} \langle Pu, u \rangle_\epsilon \geq Ch \| u \|^2_\epsilon$ true with a modified norm!
Crucial estimate:

Lemma

Let $B \geq 0$ and Π_B the corresponding spectral projector, then for all $u \in \text{Ran}(1 - \Pi_B)$,

$$\left\| e^{-tP/h}u \right\| = \mathcal{O}(1)e^{-t/C}, \quad C = C(B)$$

difficulties:

- Π_B not selfadjoint,
- $\text{Re} \left(Pu, u \right) \geq Ch \| u \|^2$ not true
- $\text{Re} \left(Pu, u \right)_\varepsilon \geq Ch \| u \|^2_\varepsilon$ true with a modified norm!
Exists Global FIO A_ε exploiting the hypoelliptic properties of P such that $\|u\|_\varepsilon \overset{\text{def}}{=} \|A_\varepsilon u\| \sim \|u\|$.

Study of $P_\varepsilon = A_\varepsilon^{-1} P_\varepsilon A_\varepsilon$ in L^2:

We already know [HHS07] that for all u

$$\text{Re } ((P_\varepsilon + K_\varepsilon)u, u) \geq ch \|u\|^2$$

where K_ε is (micro-)localized near the critical points. Sufficient to prove $\|K_\varepsilon u\| \ll h \|u\|$.

- Building a selfadjoint operator Q (an harmonic oscillator) adapted to the evs $\leq B$.
- Posing $K_\varepsilon = \chi(Q/B)$.
- This gives the semi-group property.
Exists Global FIO A_{ε} exploiting the hypoelliptic properties of P such that $\|u\|_{\varepsilon} \overset{\text{def}}{=} \|A_{\varepsilon}u\| \sim \|u\|$.

Study of $P_{\varepsilon} = A_{\varepsilon}^{-1}P_{\varepsilon}A_{\varepsilon}$ in L^2:

We already know [HHS07] that for all u

$$\text{Re } ((P_{\varepsilon} + K_{\varepsilon})u, u) \geq ch \|u\|^2$$

where K_{ε} is (micro-)localized near the critical points. Sufficient to prove $\|K_{\varepsilon}u\| \ll h \|u\|$.

- Building a selfadjoint operator Q (an harmonic oscillator) adapted to the evs $\leq B$.
- Posing $K_{\varepsilon} = \chi(Q/B)$.
- This gives the semi-group property.
Exists Global FIO A_ε exploiting the hypoelliptic properties of P such that $\|u\|_{\varepsilon} \overset{\text{def}}{=} \|A_\varepsilon u\| \sim \|u\|$.

Study of $P_\varepsilon = A_\varepsilon^{-1} P_\varepsilon A_\varepsilon$ in L^2:

We already know [HHS07] that for all u

$$\Re ((P_\varepsilon + K_\varepsilon)u, u) \geq ch\|u\|^2$$

where K_ε is (micro-)localized near the critical points. Sufficient to prove $\|K_\varepsilon u\| \ll h\|u\|$.

- Building a selfadjoint operator Q (an harmonic oscillator) adapted to the evs $\leq B$.
- Posing $K_\varepsilon = \chi(Q/B)$.
- This gives the semi-group property.
Previous results valid for a large class of 2nd order differential operators:

\[p = p_2 + ip_1 + p_0 \]

where

\[p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x) \xi_j, \quad p_0 = p_0(x) \]

with the following assumptions:

- positivity \(p_2 \) and \(p_0 \geq 0 \),
- growth \(|\partial^\alpha b| + |\partial^{\alpha+1} c| + |\partial^{\alpha+2} p_0| = O(1), \quad |\alpha| \geq 0 \),
- finite critical set \(\{(x_l,0) \text{ with } p_0(x_l) = 0, \ c(x_l) = 0\} \),

and if \[<p> = \frac{1}{T} \int_{[-T,T]} (p_0 + p_2 / <\xi>^2) dt, \]

- local dynamic \(<p> \sim |\rho - \rho_j|^2 \) near \(\rho_j \)
- global dynamic \(<p> \geq C \) away.
General form

Previous results valid for a large class of 2nd order differential operators:

\[p = p_2 + ip_1 + p_0 \]

where

\[p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x) \xi_j, \quad p_0 = p_0(x) \]

with the following assumptions:

- positivity \(p_2 \) and \(p_0 \geq 0 \),
- growth \(|\partial^\alpha b| + |\partial^{\alpha+1} c| + |\partial^{\alpha+2} p_0| = O(1), \quad |\alpha| \geq 0 \),
- finite critical set \(\{(x_l, 0) \text{ with } p_0(x_l) = 0, \, c(x_l) = 0\} \),

and if \(\langle p \rangle = \frac{1}{T} \int_{[-T, T]} (p_0 + p_2 / \langle \xi \rangle^2) dt \),

- local dynamic \(\langle p \rangle \sim |\rho - \rho_j|^2 \) near \(\rho_j \)
- global dynamic \(\langle p \rangle \geq C \) away.
General form

Previous results valid for a large class of 2nd order differential operators:

\[p = p_2 + ip_1 + p_0 \]

where

\[p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x)\xi_j, \quad p_0 = p_0(x) \]

with the following assumptions:

- positivity \(p_2 \) and \(p_0 \geq 0 \),
- growth \(|\partial^\alpha b| + |\partial^{\alpha+1} c| + |\partial^{\alpha+2} p_0| = O(1), \quad |\alpha| \geq 0 \),
- finite critical set \(\{(x_l, 0) \text{ with } p_0(x_l) = 0, \; c(x_l) = 0 \} \),

and if \(< p > = \frac{1}{T} \int_{[-T,T]} (p_0 + p_2/ < \xi >^2) dt \),

- local dynamic \(< p > \sim |\rho - \rho_j|^2 \) near \(\rho_j \)
- global dynamic \(< p > \geq C \) away.
They are defined through:

- An invertible real $d \times d$ matrix $A = B + C$, B sym., C skew.
- A morse function ϕ where $\partial^\alpha \phi$ and $\partial^\alpha < B \nabla \phi, \nabla \phi >$ are $O(1)$.

The Witten Hodge Laplacian is

$$
\sum -\hbar^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - \hbar \text{tr}(B \phi'')
+ \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi
$$

Principal symbol: $p = \langle B \xi, \xi \rangle + 2i \langle C \nabla \phi, \xi \rangle + \langle B \nabla \phi, \nabla \phi \rangle$, Of Witten Hodge Laplacian type: $-\Delta_A = d^A_\phi \ast d_\phi$ on k–forms.
They are defined through

- An invertible real $d \times d$ matrix $A = B + C$, B sym., C skew.
- A morse function ϕ where $\partial^\alpha \phi$ and $\partial^\alpha < B\nabla \phi, \nabla \phi >$ are $O(1)$.

The Witten Hodge Laplacian is

$$\sum -\hbar^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - htr(B\phi'')$$

$$+ \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi$$

Principal symbol: $p = \langle B\xi, \xi \rangle + 2i \langle C\nabla \phi, \xi \rangle + \langle B\nabla \phi, \nabla \phi \rangle$, Of Witten Hodge Laplacian type: $-\Delta_A = d_{\phi}^A d_{\phi}^*$ on k–forms.
They are defined through

- An invertible real \(d \times d \) matrix \(A = B + C \), \(B \) sym., \(C \) skew.
- A morse function \(\phi \) where \(\partial^{\alpha} \phi \) and \(\partial^{\alpha} < B \nabla \phi, \nabla \phi > \) are \(\mathcal{O}(1) \).

The Witten Hodge Laplacian is

\[
\sum - \hbar^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - \text{htr}(B \phi'') \\
+ \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi
\]

Principal symbol : \(p = \langle B \xi, \xi \rangle + 2i \langle C \nabla \phi, \xi \rangle + \langle B \nabla \phi, \nabla \phi \rangle \), Of Witten Hodge Laplacian type : \(-\Delta_A = d^A_\phi * d_\phi\) on \(k \)-forms.
Return to equilibrium

With the supersymmetric structure: reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta^{(0)}_A$ and $-\Delta^{(1)}_A$, as in the treatment by Helffer-Sjöstrand [HS80'].

\[e_j(x) = h^{-n/4} c_j(h) e^{\frac{1}{\hbar}(\phi(x) - \phi(x_j))} \]

Back to the double well case: 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/\hbar} = e^{-tP/\hbar}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 - \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).
With the supersymmetric structure: reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta^{(0)}_A$ and $-\Delta^{(1)}_A$, as in the treatment by Helffer-Sjöstrand [HS80'].

\[
e_j(x) = h^{-n/4} c_j(h) e^{\frac{1}{\hbar}(\phi(x) - \phi(x_j))}
\]

Back to the double well case: 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 - \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).
Return to equilibrium

With the supersymmetric structure: reduce the problem of exp. small evs to a finite dimensional problem. In particular build the corresponding eigenfunctions for $-\Delta^{(0)}_A$ and $-\Delta^{(1)}_A$, as in the treatment by Helffer-Sjöstrand [HS80’].

\[e_j(x) = h^{-n/4} c_j(h) e^{\frac{1}{\hbar}}(\phi(x) - \phi(x_j)) \]

Back to the double well case: 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/\hbar} = e^{-tP/\hbar}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 - \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).
Return to equilibrium

With the supersymmetric structure: reduce the problem of exp. small evs to a finite dimensional problem. In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80’].

\[e_j(x) = h^{-n/4} c_j(h) e^\frac{1}{\hbar}(\phi(x) - \phi(x_j)) \]

Back to the double well case: 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/\hbar} = e^{-tP/\hbar}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 - \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).
Return to equilibrium

With the supersymmetric structure: reduce the problem of exp. small evs to a finite dimensional problem. In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80’].

\[e.g. \quad e_j(x) = h^{-n/4} c_j(h) e^{\frac{1}{\hbar}(\phi(x) - \phi(x_j))} \]

Back to the double well case: 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 - \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).
Examples of KFP type operators
Some problem may come from Probability. Let

\[dx(t) = b(x(t))dt + \sigma dw \]

where \(w \) is a \(d \)-dimensional process, \(\sigma \) a constant matrix and \(\partial^\alpha b = O(1) \). Then there exists a unique solution (in an \(L^2 \) adapted space) for \(x_0 \perp w \).

Define the associated semi group by

\[\mathbb{E}(\phi(x(t))) = T^t\phi(x_0) \]

This is a strongly semi-group (on \(C_\infty \), we can work also on \(L^2 \)) whose infinitesimal generator is

\[L = \nabla \cdot D \nabla + b(x) \cdot \nabla \quad \text{with} \quad D = \frac{1}{2} \sigma \sigma^t \]
Some problem may come from Probability. Let

\[dx(t) = b(x(t))dt + \sigma dw \]

where \(w \) is a \(d \)-dimensional process, \(\sigma \) a constant matrix and \(\partial^\alpha b = \mathcal{O}(1) \). Then there exists a unique solution (in an \(L^2 \) adapted space) for \(x_0 \mid w \).

Define the associated semi group by

\[E(\phi(x(t))) = T_t \phi(x_0) \]

This is a strongly semi-group (on \(C_\infty \), we can work also on \(L^2 \)) whose infinitesimal generator is

\[L = \nabla \cdot D \nabla + b(x) \cdot \nabla \quad \text{with} \quad D = \frac{1}{2} \sigma \sigma^t \]
Some problem may come from Probability. Let

\[dx(t) = b(x(t))dt + \sigma dw \]

where \(w \) is a \(d \)-dimensional process, \(\sigma \) a constant matrix and \(\partial^\alpha b = O(1) \). Then there exists a unique solution (in an \(L^2 \) adapted space) for \(x_0 \bigcup w \).

Define the associated semigroup by

\[\mathbb{E}(\phi(x(t))) = T^t \phi(x_0) \]

This is a strongly semi-group (on \(C_\infty \), we can work also on \(L^2 \)) whose infinitesimal generator is

\[L = \nabla \cdot D \nabla + b(x) \cdot \nabla \quad \text{with} \quad D = \frac{1}{2} \sigma \sigma^t \]
Its formal adjoint is

$$L^* = \nabla.D\nabla - \nabla.b(x)$$

and is the infinitesimal generator of $(T^t)^*$ (at least its closure in an L^2 setting).

This means that if $\mu_0 = f_0 dx$ is the a.c. measure of probability of x_0, then $\mu_t = f(t, .) dx$ is the one of $x(t)$ and $\partial_t f - L^* f = 0$, ie

$$\begin{cases}
\partial_t f + (-\nabla.D\nabla + \nabla.b)f = 0 \\
 f|_{t=0} = f_0
\end{cases}$$

An invariant measure will be associated to a time-independent function M. What remains in particular cases is

- exhibit the Maxwellian M,
- do a conjugation, a $1/2$ classical scaling
- recognize a supersymmetric structure
Its formal adjoint is

\[L^* = \nabla.D\nabla - \nabla.b(x) \]

and is the infinitesimal generator of \((T^t)^*\) (at least its closure in an \(L^2\) setting).

This means that if \(\mu_0 = f_0 \, dx\) is the a.c. measure of probability of \(x_0\), then \(\mu_t = f(t, .) \, dx\) is the one of \(x(t)\) and \(\partial_t f - L^* f = 0\), i.e.

\[
\begin{aligned}
\partial_t f + (-\nabla.D\nabla + \nabla.b)f &= 0 \\
f|_{t=0} &= f_0
\end{aligned}
\]

An invariant measure will be associated to a time-independant function \(M\). What remains in particular cases is

- exhibit the Maxwellian \(M\),
- do a conjugation, a 1/2 classical scaling
- recognize a supersymetric structure
Its formal adjoint is

\[L^* = \nabla.D\nabla - \nabla.b(x) \]

and is the infinitesimal generator of \((T^t)^*\) (at least its closure in an \(L^2\) setting).

This means that if \(\mu_0 = f_0 dx\) is the a.c. measure of probability of \(x_0\), then \(\mu_t = f(t,.) dx\) is the one of \(x(t)\) and \(\partial_t f - L^* f = 0\), i.e.

\[
\begin{cases}
\partial_t f + (-\nabla.D\nabla + \nabla.b)f = 0 \\
 f|_{t=0} = f_0
\end{cases}
\]

An invariant measure will be associated to a time-independant function \(M\). What remains in particular cases is

- exhibit the Maxwellian \(M\),
- do a conjugation, a 1/2 classical scaling
- recognize a supersymmetric structure
Its formal adjoint is

\[L^* = \nabla . D \nabla - \nabla . b(x) \]

and is the infinitesimal generator of \((T^t)^*\) (at least its closure in an \(L^2\) setting).

This means that if \(\mu_0 = f_0 \, dx\) is the a.c. measure of probability of \(x_0\), then \(\mu_t = f(t, .) \, dx\) is the one of \(x(t)\) and \(\partial_t f - L^* f = 0\), i.e.

\[
\begin{cases}
\partial_t f + (-(\nabla . D) . \nabla + \nabla . b)f = 0 \\
 f|_{t=0} = f_0
\end{cases}
\]

An invariant measure will be associated to a time-independent function \(M\). What remains in particular cases is

- exhibit the Maxwellian \(M\),
- do a conjugation, a 1/2 classical scaling
- recognize a supersymmetrical structure
Witten case

\[W : dx = -\gamma \partial_x V dt + \sqrt{2\gamma T} dw \]

- Parameters: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- Density: \(\partial_t f - \gamma \partial_x (T \partial_x + \partial_x V) f = 0 \).
- Let \(t = h \) and \(\times h : h\partial_t f - \gamma h \partial_x (h\partial_x + \partial_x V) f = 0 \).
- Maxwellian: \(\mathcal{M} = e^{-V / h} \).
- Conjugation \(f = \mathcal{M}^{1/2} h : h\partial_t u + \gamma (-h\partial_x + \partial_x V / 2). (h\partial_x + \partial_x V / 2) u = 0 \).
- Supersymmetry: \(A = \gamma I, \phi(x) = V(x) / 2 \).
- Potential: \(V \) Morse and \(\partial^\alpha V(x) = O(1) \) when \(|\alpha| = 2 \) and \(O(<x>^{-1}) \) when \(|\alpha| \geq 3 \).
Witten case

\[W : dx = -\gamma \partial_x V dt + \sqrt{2\gamma} T dw \]

- Parameters: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- Density: \(\partial_t f - \gamma \partial_x (T \partial_x + \partial_x V)f = 0 \).
- Let \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x (h \partial_x + \partial_x V)f = 0 \).
- Maxwellian: \(M = e^{-V/h} \).
- Conjugation \(f = M^{1/2} h : h \partial_t u + \gamma (-h \partial_x + \partial_x V/2)(h \partial_x + \partial_x V/2)u = 0 \).
- Supersymmetry: \(A = \gamma I, \phi(x) = V(x)/2 \).
- Potential: \(V \) Morse and \(\partial^\alpha V(x) = O(1) \) when \(|\alpha| = 2 \) and \(O(<x>^{-1}) \) when \(|\alpha| \geq 3 \).
Witten case

\[W : dx = -\gamma \partial_x Vdt + \sqrt{2\gamma T} dw \]

- Parameters: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- Density: \(\partial_t f - \gamma \partial_x . (T \partial_x + \partial_x V) f = 0. \)
- Let \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x . (h \partial_x + \partial_x V) f = 0. \)
- Maxwellian: \(\mathcal{M} = e^{-V/h} \).
- Conjugation: \(f = \mathcal{M}^{1/2} h : h \partial_t u + \gamma (-h \partial_x + \partial_x V/2) . (h \partial_x + \partial_x V/2) u = 0. \)
- Supersymmetry: \(A = \gamma l, \phi(x) = V(x)/2. \)
- Potential: \(V \) Morse and
 \[\partial^\alpha V(x) = \mathcal{O}(1) \text{ when } |\alpha| = 2 \text{ and } \mathcal{O}(< x >^{-1}) \text{ when } |\alpha| \geq 3. \]
Witten case

\[W : dx = -\gamma \partial_x V dt + \sqrt{2\gamma T} dw \]

- **Parameters**: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- **Density**: \(\partial_t f - \gamma \partial_x (T \partial_x + \partial_x V) f = 0 \).
- **Let** \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x (h \partial_x + \partial_x V) f = 0 \).
- **Maxwellian**: \(M = e^{-V/h} \).
- **Conjugation** \(f = M^{1/2} h : h \partial_t u + \gamma (-h \partial_x + \partial_x V / 2). (h \partial_x + \partial_x V / 2) u = 0 \).
- **Supersymmetry**: \(A = \gamma I, \phi(x) = V(x)/2 \).
- **Potential**: \(V \) Morse and
 \[\partial^\alpha V(x) = \mathcal{O}(1) \text{ when } |\alpha| = 2 \text{ and } \mathcal{O}(\langle x \rangle^{-1}) \text{ when } |\alpha| \geq 3. \]
Witten case

\[W : dx = -\gamma \partial_x V dt + \sqrt{2\gamma T} dw \]

- **Parameters** : \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- **Density** : \(\partial_t f - \gamma \partial_x (T \partial_x + \partial_x V) f = 0 \).
- **Let** \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x (h \partial_x + \partial_x V) f = 0 \).
- **Maxwellian** : \(\mathcal{M} = e^{-V/h} \).
- **Conjugation** \(f = \mathcal{M}^{1/2} h : h \partial_t u + \gamma (-h \partial_x + \partial_x V/2). (h \partial_x + \partial_x V/2) u = 0 \).
- **Supersymmetry** : \(A = \gamma I, \phi(x) = V(x)/2 \).
- **Potential** : \(V \) Morse and
 \[\partial^\alpha V(x) = \mathcal{O}(1) \] when \(|\alpha| = 2 \) and \(\mathcal{O}(< x >^{-1}) \) when \(|\alpha| \geq 3 \).
Witten case

\[W : dx = -\gamma \partial_x V dt + \sqrt{2\gamma T} dw \]

- Parameters: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- Density: \(\partial_t f - \gamma \partial_x (T \partial_x + \partial_x V) f = 0 \).
- Let \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x (h \partial_x + \partial_x V) f = 0 \).
- Maxwellian: \(\mathcal{M} = e^{-V/h} \).
- Conjugation \(f = \mathcal{M}^{1/2} h : \)
 \[h \partial_t u + \gamma (-h \partial_x + \partial_x V/2) (h \partial_x + \partial_x V/2) u = 0. \]
- Supersymmetry: \(A = \gamma I, \phi(x) = V(x)/2. \)
- Potential: \(V \) Morse and
 \(\partial^\alpha V(x) = O(1) \) when \(|\alpha| = 2 \) and \(O(<x>^{-1}) \) when \(|\alpha| \geq 3. \)
\textbf{Witten case}

\[W : \, dx = -\gamma \partial_x V dt + \sqrt{2\gamma T} dw \]

- Parameters: \(D = \sigma^* \sigma / 2 = \gamma T \) and \(b(x) = -\gamma \partial_x V \).
- Density: \(\partial_t f - \gamma \partial_x \cdot (T \partial_x + \partial_x V) f = 0 \).
- Let \(t = h \) and \(\times h : h \partial_t f - \gamma h \partial_x \cdot (h \partial_x + \partial_x V) f = 0 \).
- Maxwellian: \(M = e^{-V/h} \).
- Conjugation \(f = M^{1/2} h : \)
 \[h \partial_t u + \gamma (-h \partial_x + \partial_x V/2) \cdot (h \partial_x + \partial_x V/2) u = 0 \]
- Supersymmetry: \(A = \gamma I, \, \phi(x) = V(x)/2 \).
- Potential: \(V \) Morse and
 \[\partial^\alpha V(x) = O(1) \text{ when } |\alpha| = 2 \text{ and } O(<x>^{-1}) \text{ when } |\alpha| \geq 3. \]
Fokker-Planck case

\[
\text{KFP : } \begin{cases}
 dx = y dt \\
 dy = -\gamma y dt - \partial_x V dt + \sqrt{2\gamma} T dw
\end{cases}
\]

- Parameters : \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).
- Density, scaling :
 \(h \partial_t f - \gamma h \partial_y (h \partial_y + y) f + y h \partial_x f - \partial_x V h \partial_y f = 0 \).
- Maxwellian : \(M = C^{-1} e^{(-V(x)+y^2/2)/\hbar} \).
- Conjugation :
 \(h \partial_t u + \gamma (-h \partial_y + y/2) (h \partial_y + y/2) u + \gamma y h \partial_x u - \partial_x V h \partial_y u = 0 \).
- Supersymmetry : \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, \nu) = V(x)/2 + y^2/4 \).
- Potential : \(V \) Morse and \(\partial^\alpha V(x) = O(1) \).
KFP : \[
\begin{aligned}
dx &= y dt \\
dy &= -\gamma y dt - \partial_x V dt + \sqrt{2\gamma T} dw
\end{aligned}
\]

- Parameters :
 \[D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix}\] and
 \[b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \].

- Density, scaling :
 \[h \partial_t f - \gamma h \partial_y . (h \partial_y + y) f + y h \partial_x f - \partial_x V h \partial_y f = 0.\]

- Maxwellian :
 \[M = C^{-1} e^{(-V(x)+y^2/2)/h}.\]

- Conjugation :
 \[h \partial_t u + \gamma (-h \partial_y + y/2) . (h \partial_y + y/2) u + \gamma y h \partial_x u - \partial_x V h \partial_y u = 0.\]

- Supersymmetry :
 \[A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}\] and
 \[\phi(x, \nu) = V(x)/2 + y^2/4.\]

- potential :
 \[V \text{ Morse and } \partial^\alpha V(x) = O(1).\]
Fokker-Planck case

KFP :\[
\begin{align*}
 dx &= y dt \\
 dy &= -\gamma y dt - \partial_x V dt + \sqrt{2\gamma T} dw
\end{align*}
\]

- Parameters: \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).

- Density, scaling:
 \(h \partial_t f - \gamma h \partial_y (h \partial_y + y)f + yh \partial_x f - \partial_x V h \partial_y f = 0. \)

- Maxwellian:
 \(\mathcal{M} = C^{-1} e^{(-V(x) + y^2/2)/h}. \)

- Conjugation:
 \(h \partial_t u + \gamma (h \partial_y + y/2)(h \partial_y + y/2)u + \gamma y h \partial_x u - \partial_x V h \partial_y u = 0. \)

- Supersymmetry:
 \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, v) = V(x)/2 + y^2/4. \)

- Potential:
 Morse and \(\partial^\alpha V(x) = \mathcal{O}(1). \)
Fokker-Planck case

KFP : \[
\begin{align*}
 dx &= y dt \\
 dy &= -\gamma y dt - \partial_x V dt + \sqrt{2\gamma T} dw
\end{align*}
\]

- **Parameters**: \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).

- **Density, scaling**:
 \[
h \partial_t f - \gamma h \partial_y . (h \partial_y + y) f + y h \partial_x f - \partial_x V h \partial_y f = 0.
\]

- **Maxwellian**: \(\mathcal{M} = C^{-1} e^{(-V(x)+y^2/2)/h} \).

- **Conjugation**:
 \[
h \partial_t u + \gamma (-h \partial_y + y/2) . (h \partial_y + y/2) u + \gamma y h \partial_x u - \partial_x V h \partial_y u = 0.
\]

- **Supersymmetry**: \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, v) = V(x)/2 + y^2/4 \).

- **potential**: \(V \) Morse and \(\partial^\alpha V(x) = \mathcal{O}(1) \).
Fokker-Planck case

KFP : \[
\begin{align*}
\frac{dx}{dt} &= y dt \\
\frac{dy}{dt} &= -\gamma y dt - \partial_x V dt + \sqrt{2\gamma} T dw
\end{align*}
\]

- **Parameters**: \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).

- **Density, scaling**:
 \(h \partial_t f - \gamma h \partial_y . (h \partial_y + y) f + yh \partial_x f - \partial_x V h \partial_y f = 0. \)

- **Maxwellian**:
 \(\mathcal{M} = C^{-1} e^{(-V(x)+y^2/2)/h}. \)

- **Conjugation**:
 \(h \partial_t u + \gamma (-h \partial_y + y/2) . (h \partial_y + y/2) u + \gamma y h \partial_x u - \partial_x V h \partial_y u = 0. \)

- **Supersymmetry**: \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, \nu) = V(x)/2 + y^2/4. \)

- **Potential**: \(V \) Morse and \(\partial^\alpha V(x) = \mathcal{O}(1). \)
Fokker-Planck case

KFP \begin{cases}
 dx = y dt \\
 dy = -\gamma y dt - \partial_x V dt + \sqrt{2\gamma T} dw
\end{cases}.

- Parameters: \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).

- Density, scaling:
 \[h \partial_t f - \gamma h \partial_y (h \partial_y + y)f + yh \partial_x f - \partial_x Vh \partial_y f = 0. \]

- Maxwellian: \(M = C^{-1} e^{(-V(x)+y^2/2)/h} \).

- Conjugation:
 \[h \partial_t u + \gamma (-h \partial_y + y/2)(h \partial_y + y/2)u + yh \partial_x u - \partial_x Vh \partial_y u = 0. \]

- Supersymmetry: \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, v) = V(x)/2 + y^2/4. \)

- Potential: \(V \) Morse and \(\partial^\alpha V(x) = \mathcal{O}(1) \).
Fokker-Planck case

KFP : \[
\begin{align*}
 dx &= y dt \\
 dy &= -\gamma y dt - \partial_x V dt + \sqrt{2\gamma} T dw
\end{align*}
\]

- Parameters : \(D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} \).
- Density, scaling :
 \(h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x V h\partial_y f = 0. \)
- Maxwellian : \(\mathcal{M} = C^{-1} e^{(-V(x) + y^2/2)/h} \).
- Conjugation :
 \(h\partial_t u + \gamma (-h\partial_y + y/2)(h\partial_y + y/2)u + \gamma y h\partial_x u - \partial_x V h\partial_y u = 0. \)
- Supersymmetry : \(A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix} \) and \(\phi(x, \nu) = V(x)/2 + y^2/4. \)
- potential : \(V \) Morse and \(\partial^\alpha V(x) = \mathcal{O}(1) \).
Chains case

\[
\begin{align*}
 dx_1 &= y_1 \, dt \\
 dy_1 &= -\partial_{x_1} V dt + z_1 \, dt \\
 dz_1 &= -\gamma z_1 \, dt + \gamma x_1 \, dt - \sqrt{2\gamma T_1} \, dw_1 \\
 dz_2 &= -\gamma z_1 \, dt + \gamma x_2 \, dt - \sqrt{2\gamma T_2} \, dw_2 \\
 dy_2 &= -\partial_{x_2} V dt + z_2 \, dt \\
 dx_2 &= y_2 \, dt.
\end{align*}
\]

where \(V(x_1, x_2) = V_p(x_1) + V_p(x_2) + V_c(x_1 - x_2) \).

- Parameters: \(D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\partial_x V + z \\ \gamma(x - z) \end{bmatrix} \).
- Scaling \(T_1 = \alpha_1 h, \ T_2 = \alpha_2 h, \) and \(\times h : \)

\[
\begin{align*}
 h\partial_t f + \gamma\alpha_1(-h\partial_{z_1})(h\partial_{z_1} + (z_1 - x_1)/\alpha_1)f \\
 + \gamma\alpha_2(-h\partial_{z_2})(h\partial_{z_2} + (z_2 - x_2)/\alpha_2)f \\
 + (y\partial_x f - (\partial_x V - z)\partial_y)f = 0.
\end{align*}
\]
Chains case

\[
\begin{align*}
 dx_1 &= y_1 \, dt \\
 dy_1 &= -\partial_{x_1} V dt + z_1 \, dt \\
 dz_1 &= -\gamma z_1 \, dt + \gamma x_1 \, dt - \sqrt{2\gamma T_1} \, dw_1 \\
 dz_2 &= -\gamma z_2 \, dt + \gamma x_2 \, dt - \sqrt{2\gamma T_2} \, dw_2 \\
 dy_2 &= -\partial_{x_2} V dt + z_2 \, dt \\
 dx_2 &= y_2 \, dt.
\end{align*}
\]

where \(V(x_1, x_2) = V_p(x_1) + V_p(x_2) + V_c(x_1 - x_2) \).

- Parameters: \(D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\partial_x V + z \\ \gamma(x - z) \end{bmatrix} \).

- Scaling: \(T_1 = \alpha_1 h, \ T_2 = \alpha_2 h, \) and \(\times h : \)

\[

 h \partial_t f + \gamma \alpha_1 (-h \partial_{z_1}). (h \partial_{z_1} + (z_1 - x_1)/\alpha_1) f \\
 + \gamma \alpha_2 (-h \partial_{z_2}). (h \partial_{z_2} + (z_2 - x_2)/\alpha_2) f \\
 + (y \partial_x f - (\partial_x V - z) \partial_y) f = 0.
\]
Chains case

\[
\begin{align*}
\text{Ch :} & \\
\begin{cases}
 dx_1 &= y_1 \, dt \\
 dy_1 &= -\partial_{x_1} V \, dt + z_1 \, dt \\
 dz_1 &= -\gamma z_1 \, dt + \gamma x_1 \, dt - \sqrt{2\gamma T_1} \, dw_1 \\
 dz_2 &= -\gamma z_1 \, dt + \gamma x_2 \, dt - \sqrt{2\gamma T_2} \, dw_2 \\
 dy_2 &= -\partial_{x_2} V \, dt + z_2 \, dt \\
 dx_2 &= y_2 \, dt.
\end{cases}
\end{align*}
\]

where \(V(x_1, x_2) = V_p(x_1) + V_p(x_2) + V_c(x_1 - x_2) \).

- Parameters: \(D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ -\partial_x V + z \\ \gamma(x - z) \end{bmatrix} \).

- Scaling \(T_1 = \alpha_1 h \), \(T_2 = \alpha_2 h \), and \(\times h : \)

\[
\begin{align*}
 h \partial_t f + \gamma \alpha_1 (-h \partial_z_1). (h \partial_z_1 + (z_1 - x_1)/\alpha_1) f \\
 + \gamma \alpha_2 (-h \partial_z_2). (h \partial_z_2 + (z_2 - x_2)/\alpha_2) f \\
 + (y \partial_x f - (\partial_x V - z) \partial_y) f = 0.
\end{align*}
\]
Chains case

\[\begin{align*}
\text{Ch} : \quad & d x_1 = y_1 \ dt \\
& d y_1 = - \partial x_1 \ V dt + z_1 \ dt \\
& d z_1 = - \gamma z_1 \ dt + \gamma x_1 \ dt - \sqrt{2 \gamma T_1} \ dw_1 \\
& d z_2 = - \gamma z_1 \ dt + \gamma x_2 \ dt - \sqrt{2 \gamma T_2} \ dw_2 \\
& d y_2 = - \partial x_2 \ V dt + z_2 \ dt \\
& d x_2 = y_2 \ dt.
\end{align*} \]

where \(V(x_1, x_2) = V_p(x_1) + V_p(x_2) + V_c(x_1 - x_2) \).

- Parameters: \(D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix} \) and \(b(x) = \begin{bmatrix} y \\ - \partial_x V + z \\ \gamma (x - z) \end{bmatrix} \).

- Scaling \(T_1 = \alpha_1 h, \ T_2 = \alpha_2 h, \) and \(\times h : \)

\[
\begin{align*}
& h \partial_t f + \gamma \alpha_1 (-h \partial z_1). (h \partial z_1 + (z_1 - x_1)/\alpha_1) f \\
& \hspace{1cm} + \gamma \alpha_2 (-h \partial z_2). (h \partial z_2 + (z_2 - x_2)/\alpha_2) f \\
& \hspace{1cm} + (y \partial_x f - (\partial_x V - z) \partial_y) f = 0.
\end{align*}
\]
Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99])

- Maxwellian: \(\mathcal{M}_\alpha = C^{-1} e^{-\left(V(x)+y^2/2+z^2/2-\alpha^2x\right)/\alpha h} \).

- Conjugation:

\[
\begin{align*}
 h\partial_t u & + \gamma_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha}(z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) u \\
 & + \gamma_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha}(z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) u \\
 & + (y h\partial_x f - (\partial_x V - z) h\partial_y) u = 0.
\end{align*}
\]
Difficult to exhibit a Maxwellian (although existence OK under additional conditions \([\text{EPR99}]\)) Restriction to the case of same temperature for the baths.

- Maxwellian: \(\mathcal{M}_\alpha = C^{-1} e^{-\left(V(x) + y^2/2 + z^2/2 - zx\right)/\alpha h}\).
- Conjugation:

\[
\begin{align*}
&h\partial_t u \\
&+ \gamma \alpha_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha_1}(z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha_1} \right)(z_1 - x_1) \right) u \\
&+ \gamma \alpha_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha_2}(z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha_2} \right)(z_2 - x_2) \right) u \\
&+ (y h\partial_x f - (\partial_x V - z) h\partial_y) u = 0.
\end{align*}
\]
Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the bathes.

- Maxwellian: \(\mathcal{M}_\alpha = C^{-1} e^{-(V(x) + y^2/2 + z^2/2 - zx)/\alpha h} \).
- Conjugation:

\[
\begin{align*}
\hbar \partial_t u & \quad + \gamma \alpha_1 \left(- \hbar \partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(\hbar \partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) u \\
& \quad + \gamma \alpha_2 \left(- \hbar \partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(\hbar \partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) u \\
& \quad + (y \hbar \partial_x f - (\partial_x V - z) \hbar \partial_y) u = 0.
\end{align*}
\]
Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the baths.

- **Maxwellian**: \(\mathcal{M}_\alpha = C^{-1} e^{-(V(x)+y^2/2+z^2/2-zx)/\alpha h} \).
- **Conjugation**:

\[
\begin{align*}
\hbar \partial_t u & + \gamma \alpha_1 \left(-\hbar \partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(\hbar \partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) u \\
+ \gamma \alpha_2 \left(-\hbar \partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(\hbar \partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) u \\
+ (y\hbar \partial_x f - (\partial_x V - z)\hbar \partial_y) u & = 0.
\end{align*}
\]
Supersymmetry: \(A = \alpha \begin{bmatrix} 0 & \text{Id} & 0 \\ -\text{Id} & 0 & 0 \\ 0 & 0 & \gamma \text{Id} \end{bmatrix} \) and
\[\phi_\alpha = \left(V(x) + y^2/2 + z^2/2 - zx \right)/2/\alpha. \]

Potential: \(V \) Morse, \(\partial^\alpha V(x) = \mathcal{O}(1) \) and for example, \(V_p \) of double well type and \(V_c \) of simple well type.
Supersymmetry: \(A = \alpha \begin{bmatrix} 0 & \text{Id} & 0 \\ -\text{Id} & 0 & 0 \\ 0 & 0 & \gamma \text{Id} \end{bmatrix} \) and

\[\phi_\alpha = \left(V(x) + \frac{y^2}{2} + \frac{z^2}{2} - zx \right) / 2 / \alpha. \]

Potential: \(V \) Morse, \(\partial^\alpha V(x) = \mathcal{O}(1) \) and for example, \(V_p \) of double well type and \(V_c \) of simple well type.