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Problem and models The context

Assumptions and main result

Context

The Fokker-Planck operator :
P = y.hdx — V'(x).hd, +~(—hd, + y/).(hd, + y/2)

position x € RY, velocity y € RY, friction coefficient .
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Problem and models The context

Assumptions and main result

Context

The Fokker-Planck operator :
P = y.hdx — V'(x).hd, +~(—hd, + y/).(hd, + y/2)

position x € RY, velocity y € RY, friction coefficient .
Some natural 1/2 classical questions arise

@ Eigenvalues, resolvent estimate

@ Return to the equilibrium for the heat problem

@ Tunnel effect (in the case of multiple critical points for V)
@ Intrinsic structure — supersymetry

Hérau, Hitrik, Sjostrand Tunnel effect for KFP



Problem and models The context

Assumptions and main result

Context

The Fokker-Planck operator :
P = y.hdx — V'(x).hd, +~(—hd, + y/).(hd, + y/2)

position x € RY, velocity y € RY, friction coefficient .
Some natural 1/2 classical questions arise

@ Eigenvalues, resolvent estimate
@ Return to the equilibrium for the heat problem
@ Tunnel effect (in the case of multiple critical points for V)
@ Intrinsic structure — supersymetry
Intensive work last years : Helffer, Nier, Lebeau, Bismut...
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Problem and models The context

Assumptions and main result

@ (Linearized) Kinetic equations Xy — L,
o Krammers-Fokker-Planck

Linear Boltzmann (not local)

Linearized Boltzmann, Landau, ...

Probabilistic models, other models
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Problem and models The context

Assumptions and main result

@ (Linearized) Kinetic equations Xy — L,

e Krammers-Fokker-Planck

e Linear Boltzmann (not local)

e Linearized Boltzmann, Landau, ...

e Probabilistic models, other models
@ Related questions and structures :
Hypoellipticity
Hypocoercivity and trend to the equilibrium
Supersymetry and inner structures (KFP-like)
Boundary, potentials, non-linear problems, perturbative
study...
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Assumptions and main result

@ (Linearized) Kinetic equations Xy — L,

e Krammers-Fokker-Planck

e Linear Boltzmann (not local)

e Linearized Boltzmann, Landau, ...

e Probabilistic models, other models
@ Related questions and structures :
Hypoellipticity
Hypocoercivity and trend to the equilibrium
Supersymetry and inner structures (KFP-like)
Boundary, potentials, non-linear problems, perturbative
study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet,
Hairer...
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Problem and models

The context
Assumptions and main result

Very constructive interaction

@ 1/2 classical @ hypocoercivity,
methods
@ trend to gq.
@ ¢ dO methods @ perturbative study
@ supersymetry ... ° ..
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Assumptions and main result

Back to the Fokker-Planck operator

P = y.hdy — V'(x).hd, + v(—hd, + y/2).(hd, + y/2)
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Assumptions and main result

Back to the Fokker-Planck operator
P = y.hox — V'(x).hd, + ~(—hd, + y/2).(hdy + y/2)

We impose on the potential V the following :
@ 0V =0(Q1)for |a| > 2,
@ |VV|>1/C, for |x| > C with C sufficiently large

@ V has 3 critical points : 2 local minima and 1 critical point
of index 1
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Assumptions and main result

Back to the Fokker-Planck operator
P = y.hox — V'(x).hd, + ~(—hd, + y/2).(hdy + y/2)

We impose on the potential V the following :
@ 0V =0(Q1)for |a| > 2,
@ |VV|>1/C, for |x| > C with C sufficiently large

@ V has 3 critical points : 2 local minima and 1 critical point
of index 1

Then P has 2 eigenvalues in the disc D(0, C/h) for h
sufficiently small, o = 0 and 4, with uq of the form

it = h (@ (e 25/M 4 a_y(h)e 251/M) |8 = V(x) ~ V().
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Other cases

@ "Simple well" : V has precisely 1 local minimum and
V(x) — oo then from [HHSO07], P has only 1 eigenvalue
uo = 0 in the disc D(0, C/h) for h <« 1.
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Other cases

@ "Simple well" : V has precisely 1 local minimum and
V(x) — oo then from [HHSO07], P has only 1 eigenvalue
uo = 0 in the disc D(0, C/h) for h <« 1.

@ "A well and the sea" : V has precisely 1 local minimum x;
and 1 critical point xp, then P has only 1 eigenvalue p4 in
the disc D(0, C/h).

py = hay(h)e™25/" Sy = V(xy) — V(x).
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Problem and models
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Other cases

@ "Simple well" : V has precisely 1 local minimum and
V(x) — oo then from [HHSO07], P has only 1 eigenvalue
uo = 0 in the disc D(0, C/h) for h <« 1.

@ "A well and the sea" : V has precisely 1 local minimum x;
and 1 critical point xp, then P has only 1 eigenvalue p4 in
the disc D(0, C/h).

py = hay(h)e™25/" Sy = V(xy) — V(x).

@ "multiple wells" : Serious hope to get similar results as in
the Witten case (see recent work about linear algebra by le
peutrec in the Witten case).
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Problem and models
The context

Assumptions and main result

Other cases

@ "Simple well" : V has precisely 1 local minimum and
V(x) — oo then from [HHSO07], P has only 1 eigenvalue
uo = 0 in the disc D(0, C/h) for h <« 1.

@ "A well and the sea" : V has precisely 1 local minimum x;
and 1 critical point xp, then P has only 1 eigenvalue p4 in
the disc D(0, C/h).

py = hay(h)e™25/" Sy = V(xy) — V(x).

@ "multiple wells" : Serious hope to get similar results as in
the Witten case (see recent work about linear algebra by le
peutrec in the Witten case).

Main problem : resolvent estimates, spectral projectors not
selfadjoint...

Hérau, Hitrik, Sjostrand Tunnel effect for KFP



Problem and models
The context
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Heat problem

Analyse of e~t/h.

@ In the case without "tunneling effect” (e.g. the simple well
case), the return to equilibrium is of order of magnitude 1.

@ What is this rate in the case of tunneling effect ("double
well" and " a well and the sea").
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Assumptions and main result

Heat problem

Analyse of e~t/h.
@ In the case without "tunneling effect” (e.g. the simple well
case), the return to equilibrium is of order of magnitude 1.
@ What is this rate in the case of tunneling effect ("double
well" and " a well and the sea").

Main result

In the double well case, Let I1; the spectral projection
associated to p;, then

N =o0(), h—o.

and uniformly as t > 0, and h — 0,

e /M =Ty + e ™/"Ny + O(1)e"C, C>0, inL(L? L?).
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A coercive estimate
Sketch of proof KFP type Operators

Return to equilibrium in double well case

Sketch of proof
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A coercive estimate
Sketch of proof KFP type Operators
Return to equilibrium in double well case

A coercive estimate

Eigenvalues [HHSO07] : let p be the symbol of KFP and py ; be
the symbol of the quadratic approximation at p; critical point.
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A coercive estimate

Eigenvalues [HHSO07] : let p be the symbol of KFP and py ; be
the symbol of the quadratic approximation at p; critical point.
The spectrum of P in D(0, Bh) is discrete and equal to

Nk(h) ~ (i BN+ RN )
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A coercive estimate

Eigenvalues [HHSO07] : let p be the symbol of KFP and py ; be
the symbol of the quadratic approximation at p; critical point.
The spectrum of P in D(0, Bh) is discrete and equal to

Nk(h) ~ (i BN+ RN )

Recall that 1 x are all numbers in D(0, B) of the form

n

1 1
Kk = 7 ; (Vj,k,z + 2) )\j,e, Vjke € N,

forsome j € {1,...N}. Here \;,, 1 </ < n, are the
eigenvalues of the Hamilton map of the quadratic part of p at
pj € C, for whichIm\;, > 0.
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A coercive estimate
Sketch of proof KFP type Operators
Return to equilibrium in double well case

Crucial estimate :

Let B > 0 and g the corresponding spectral projector, then for
all u € Ran(1 — Np),

He—”’/huH —0(1)e YC, ¢ =c(B)
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Sketch of proof KFP type Operators
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Crucial estimate :

Let B > 0 and g the corresponding spectral projector, then for
all u € Ran(1 — Np),

He—”’/huH —0(1)e YC, ¢ =c(B)

difficulties :
@ [z not selfadjoint,
@ Re(Pu,u) > Chlu|® not true
@ Re(Pu,u). > Ch ||u||§ true with a modified norm !
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Exists Global FIO A. exploiting the hypoelliptic properties of P

def
such that ||u||. = ||A-ul| ~ ||u]|.

Study of P. = AZ"P.A.in L2 :

Tunnel effect for KFP
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Exists Global FIO A. exploiting the hypoelliptic properties of P

def
such that ||u||. = ||A-ul| ~ ||u]|.

Study of P. = AZ"P.A.in L2 :
We already know [HHSO07] that for all u
Re ((P. + K.)u,u) > ch|u|?

where K. is (micro-)localized near the critical points. Sufficient
to prove ||K.u|| < h|ul.
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Exists Global FIO A. exploiting the hypoelliptic properties of P

def
such that ||u||. = ||A-ul| ~ ||u]|.

Study of P. = AZ"P.A.in L2 :
We already know [HHSO07] that for all u
Re ((P. + K.)u,u) > ch|u|?

where K. is (micro-)localized near the critical points. Sufficient
to prove ||K.u|| < hlul.
@ Building a selfadjoint operator Q (an harmonic oscillator)
adapted to the evs < B.
@ Posing K. = x(Q/B).
@ This gives the semi-group property.
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General form

Previous results valid for a large class of 2nd order differential
operators :
P = P2+ ip1 + Po

where

P2 = bik&ick, P1=Y_G(X)§, po=po(X)
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General form

Previous results valid for a large class of 2nd order differential
operators :
P = P2+ ip1 + Po

where
P2 = bik&ick, P1=Y_G(X)§, po=po(X)

with the following assumptions :
@ positivity po, and py > 0,
@ growth [9%b| + [0°F¢| +|0°F2pg| = O(1), |a| >0,
o finite critical set {(x,0) with pp(x;) = 0, c(x;) = 0},
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General form

Previous results valid for a large class of 2nd order differential
operators :
P = P2+ ip1 + Po

where
P2 = bik&ick, P1=Y_G(X)§, po=po(X)

with the following assumptions :
@ positivity po, and py > 0,
@ growth [9%b| + [0°F¢| +|0°F2pg| = O(1), |a| >0,
o finite critical set {(x;, 0) with po(X;) = 0, c(x;) = 0},
andif <p>= 7 [i_r n(Po+p2/ < &>P)at,
@ local dynamic < p >~ |p — pj|? near p;
@ global dynamic < p >> C away.
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A coercive estimate
Sketch of proof KFP type Operators
Return to equilibrium in double well case

Supersymetry

They are defined through
@ An invertible real d x d matrix A= B+ C, B sym., C skew.

@ A morse function ¢ where 0%¢ and 0¢ < BV¢, V¢ > are
o).
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Supersymetry

They are defined through
@ An invertible real d x d matrix A= B+ C, B sym., C skew.
@ A morse function ¢ where 0%¢ and 0¢ < BV¢, V¢ > are

o).
The Witten Hodge Laplacian is
Z —H? Z 0B Ok + Z 0i¢B,; kOkd — htr(Bg¢")
+) " 06Cik0k + Y _ 0Cikkd

Principal symbol : p = (B¢, &) +2i (CV ¢, &) + (BVP, Vo),
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Supersymetry

They are defined through
@ An invertible real d x d matrix A= B+ C, B sym., C skew.
@ A morse function ¢ where 0%¢ and 0¢ < BV¢, V¢ > are

o).
The Witten Hodge Laplacian is
Z —H? Z 0B Ok + Z 0i¢B,; kOkd — htr(Bg¢")
+) " 06Cik0k + Y _ 0Cikkd

Principal symbol : p = (B¢, &) + 2i (CV ¢, &) + (BV ¢, Vo), Of
Witten Hodge Laplacian type : —A4 = d(;"*dd) on k—forms.
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Return to equilibrium

With the supersymetric structure : reduce the problem of exp.
small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for —Aﬁ\o)
and —AS), as in the treatment by Helffer-Sjostrand [HS80’].
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Return to equilibrium

With the supersymetric structure : reduce the problem of exp.
small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for —Aﬁ\o)
and —AS), as in the treatment by Helffer-Sjostrand [HS80’].

e.g. ej(X) = h_n/4cj(h)e1ﬁ(¢(x)_¢(xl))
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Return to equilibrium

With the supersymetric structure : reduce the problem of exp.
small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for —Aﬁ\o)
and —AS), as in the treatment by Helffer-Sjostrand [HS80’].

e.g. ej(X) = h_n/4cj(h)e1ﬁ(¢(x)_¢(xl))

Back to the double well case : 2 minima, therefore 2 exp. small
evs (0 and u1).

@ Express explicitly the projectors Ny for each exp. small
eigenvalue.
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Return to equilibrium

With the supersymetric structure : reduce the problem of exp.
small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for —Aﬁ\o)
and —AS), as in the treatment by Helffer-Sjostrand [HS80’].

e.g. ej(X) = h_n/4cj(h)e1ﬁ(¢(x)_¢(xl))
Back to the double well case : 2 minima, therefore 2 exp. small

evs (0 and u1).

@ Express explicitly the projectors Ny for each exp. small
eigenvalue.

o Write e~/ = e=®/N(Ny + Ny + Nz_p) + (1 — Np))
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A coercive estimate
Sketch of proof KFP type Operators
Return to equilibrium in double well case

Return to equilibrium

With the supersymetric structure : reduce the problem of exp.
small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for —Aﬁ\o)
and —AS), as in the treatment by Helffer-Sjostrand [HS80’].

e.g. ej(X) = h_n/4cj(h)e1ﬁ(¢(x)_¢(xl))
Back to the double well case : 2 minima, therefore 2 exp. small

evs (0 and u1).

@ Express explicitly the projectors Ny for each exp. small
eigenvalue.

o Write e~/ = e=®/N(Ny + Ny + Nz_p) + (1 — Np))
@ Use the former result for the last term, and the 2 first ( the
third one is easy with resolvent estimates from [HHS07]).
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Examples of KFP type operators
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Probability

Some problem may come from Probability. Let
dx(t) = b(x(t))dt + cdw

where w is a d-dimentionnal process, ¢ a constant matrix and
0“b = O(1). Then there exists a unique solution (in an L2
adapted space) for xp [ [ w.
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Probability

Some problem may come from Probability. Let
dx(t) = b(x(t))dt + cdw

where w is a d-dimentionnal process, ¢ a constant matrix and
0“b = O(1). Then there exists a unique solution (in an L2
adapted space) for xp [ [ w.

Define the associated semi group by

E (¢(x(1))) = T'¢(x0)
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Probability

Some problem may come from Probability. Let
dx(t) = b(x(t))dt + cdw

where w is a d-dimentionnal process, ¢ a constant matrix and
0“b = O(1). Then there exists a unique solution (in an L2
adapted space) for xp [ [ w.

Define the associated semi group by

E (¢(x(1))) = T'¢(x0)

This is a strongly semi-group (on Co, We can work also on L?)
whose infinitesimal generator is

L=V.DV + b(x).V  withD = %O'Ut
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Witten and Fokker-Planck

Examples of KFP type operators Anharmonic chains of operators

Its formal adjoint is
L* = V.DV — V.b(x)

and is the infinitesimal generator of (T!)*) (at least its closure in
an L2 setting).
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Probabilistic description
Witten and Fokker-Planck

Examples of KFP type operators Anharmonic chains of operators

Its formal adjoint is
L* = V.DV — V.b(x)

and is the infinitesimal generator of (T!)*) (at least its closure in
an L2 setting).

This means that if g = fodx is the a.c. measure of probability
of xp, then iy = f(t,.)dx is the one of x(t) and 0;f — L*f =0,
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Probabilistic description

Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Its formal adjoint is
L* = V.DV — V.b(x)

and is the infinitesimal generator of (T!)*) (at least its closure in
an L2 setting).

This means that if g = fodx is the a.c. measure of probability
of xp, then iy = f(t,.)dx is the one of x(t) and 0;f — L*f =0, ie

{ oif + (—=V.D.V + V.b)f =0
fli—o = fo
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Probabilistic description
Witten and Fokker-Planck

Examples of KFP type operators Anharmonic chains of operators

Its formal adjoint is
L* = V.DV — V.b(x)

and is the infinitesimal generator of (T!)*) (at least its closure in
an L2 setting).

This means that if g = fodx is the a.c. measure of probability
of xp, then iy = f(t,.)dx is the one of x(t) and 0;f — L*f =0, ie

{ oif + (—=V.D.V + V.b)f =0
fli—o = fo

An invariant measure will be associated to a time-independant
function M. What remains in particular cases is

@ exhibit the Maxwellian M,

@ do a conjugation, a 1/2 classical scaling

@ recognize a supersymetric structure
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Witten case

W : dx = —v0x Vdt + /2y Tadw
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Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Taw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Taw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
@ Density : 0if — v0x.(TOx + 0x V)f = 0.

Hérau, Hitrik, Sjostrand Tunnel effect for KFP



Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Tadw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
@ Density : 0if — v0x.(TOx + 0x V)f = 0.
@ Lett = hand xh: hoif —vhox.(hox + OxV)f = 0.
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Tadw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
@ Density : 0if — v0x.(TOx + 0x V)f = 0.
@ Lett = hand xh: hoif — yhox.(hox + OxV)f = 0.
@ Maxwellian : M = e~ V/".
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Tadw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
@ Density : 0if — v0x.(TOx + 0x V)f = 0.
@ Lett = hand xh: hoif — yhox.(hox + OxV)f = 0.
@ Maxwellian : M = e~ V/h,
@ Conjugation f = M'/2h:
hotu + v(—hox + 0x V /2).(hox + 0xV /2)u = 0.
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Witten case

W : dx = —v0x Vdt + /2y Tadw
@ Parameters: D =oc*0/2 =T and b(x) = —yox V.
@ Density : 0if — v0x.(TOx + 0x V)f = 0.
@ Lett = hand xh: hoif — yhox.(hox + OxV)f = 0.
@ Maxwellian : M = e~ V/h,
@ Conjugation f = M'/2h:
hotu + v(—hox + 0x V /2).(hox + 0xV /2)u = 0.
@ Supersymetry : A= ~1, ¢(x) = V(x)/2.
@ Potential : V Morse and
9*V(x) = O(1) when |a| = 2 and O(< x >~1) when |a| > 3.
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Fokker-Planck case

ax = ydt

KFP :{ dy = —ydt — O, Vdt + 27 Tdw
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Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Fokker-Planck case

ax = ydt
dy = —yydt — o Vdt + /2y Tdw
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Fokker-Planck case

ax = ydt
dy = —yydt — o Vdt + /2y Tdw

. o o [y
@ Parameters : D = [O VT} and b(x) = [—vy—ﬁxV]'

@ Density, scaling :

e Maxwellian : M = C~1e(=V()+y?/2)/h,

@ Conjugation :
hotu+~(—ho,+y/2).(hdy+y/2)u+~yhoxu—0x Vho,u = 0.

;I] and ¢(x, v) = V(x)/2 + y?/4.
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/

Hérau, Hitrik, Sjostrand Tunnel effect for KFP



Probabilistic description
Witten and Fokker-Planck
Examples of KFP type operators Anharmonic chains of operators

Fokker-Planck case

ax = ydt
dy = —yydt — o Vdt + /2y Tdw

. o o [y
@ Parameters : D = [O VT} and b(x) = [—vy—ﬁxV]'

@ Density, scaling :

o Maxwellian : M = C—1e(=V()+y?/2)/h,

@ Conjugation :
hotu+~(—hdy+y/2).(hdy+y/2)u+~yhdxu—0x Vhdyu = 0.

@ Supersymetry : A = [? ;I] and ¢(x, v) = V(x)/2 + y?/4.

@ potential : V Morse and 0“V(x) = O(1).

KFP :{
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azy = —yzydt + yxqdt — /2y T1 dwy
dzo = —vzydt + vxodt — /27 Todws
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Chains case

( dX1 =W at
dy; = —8)(1 Vat + zydt
azy = —yzydt + yxqdt — /2y T1 dwy
dzo = —vzydt + vxodt — /27 Todws
dy> = —8)(2 Vat + z>dt
ng = ygdt.
where V(x1, X2) = Vp(x1) + Vp(x2) + V(X1 — X2).
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Chains case

( dX1 =W at
dy; = —8)(1 Vat + zydt
azy = —yzydt + yxqdt — /2y T1 dwy
dzo = —vzydt + vxodt — /27 Todws
dy> = —8)(2 Vat + z>dt
ng = ygdt.
where V(x1, X2) = Vp(x1) + Vp(x2) + V(X1 — X2).

Ch:

00 O y
@ Parameters:D= [0 0 O | and b(x)= [-0xV + 2| .
0 0 ~T v(x — 2)
@ Scaling T1 = a1h, T, = ash, and xh:
hof + yaq(—hoz,).(hoz, + (21 — x1) /o) f
+ va2(—hdz).(hdz, + (22 — X2)/c2)f
+ (yoxf — (0xV — z)0,)f = 0.
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Difficult to exhibit a Maxwellian (although existence OK under
additional conditions [EPR99]) Restriction to the case of same
temperature for the bathes.

e Maxwellian : M, = C~1e~(V(X)+y?/2+2%/2—2x)/ah

@ Conjugation :

hatU
1
+ you <—haz1 + 5 (z1 — X1)) . <h821 + (041 - 2a> (z1 - X1)>
1 1 1
+ Yoo (—h@zz + 5(22 — Xg) . (h@zz + (Oéz — 2a> (Zg — X2)>

+ (yYhoxf — (0xV — z)hdy)u = 0.
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Probabilistic description
Witten and Fokker-Planck

Examples of KFP type operators Anharmonic chains of operators
0 d O
@ Supersymetry :A=a |—-/d 0 0 | and
0 0 ~Id

b = (V(x)+y2/2+ 22/2 — 2X) /2]«
@ Potential : V Morse, 0*V(x) = O(1) and for example, V,, of
double well type and V. of simple well type.
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