Tunnel effect for Krammers-Fokker-Planck type operators: return to equilibrium and applications

F. Hérau¹ M. Hitrik³ J. Sjöstrand³

¹Laboratoire de Mathématiques Université de Reims

²Départment of Mathematics UCLA

> ³CMLS Ecole Polytechnique

Qmath10 conference, Brasov 2007 . CENCENCE Sources

Hérau, Hitrik, Sjöstrand Tunnel effect for KFP

・ロト ・回ト ・ヨト ・ヨト

Context

The Fokker-Planck operator :

$$P = y \cdot h\partial_x - V'(x) \cdot h\partial_y + \gamma(-h\partial_y + y/) \cdot (h\partial_y + y/2)$$

position $x \in \mathbb{R}^d$, velocity $y \in \mathbb{R}^d$, friction coefficient γ . Some natural 1/2 classical questions arise

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for V)
- Intrinsic structure \rightarrow supersymetry

Intensive work last years : Helffer, Nier, Lebeau, Bismut...

イロト イポト イヨト イヨト

Context

The Fokker-Planck operator :

$$P = y . h\partial_x - V'(x) . h\partial_y + \gamma(-h\partial_y + y/) . (h\partial_y + y/2)$$

position $x \in \mathbb{R}^d$, velocity $y \in \mathbb{R}^d$, friction coefficient γ . Some natural 1/2 classical questions arise

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for V)
- Intrinsic structure → supersymetry

Intensive work last years : Helffer, Nier, Lebeau, Bismut...

ヘロト ヘアト ヘビト ヘ

Context

The Fokker-Planck operator :

$$P = y . h\partial_x - V'(x) . h\partial_y + \gamma(-h\partial_y + y/) . (h\partial_y + y/2)$$

position $x \in \mathbb{R}^d$, velocity $y \in \mathbb{R}^d$, friction coefficient γ . Some natural 1/2 classical questions arise

- Eigenvalues, resolvent estimate
- Return to the equilibrium for the heat problem
- Tunnel effect (in the case of multiple critical points for V)
- Intrinsic structure \rightarrow supersymetry

Intensive work last years : Helffer, Nier, Lebeau, Bismut...

The context Assumptions and main result

くロト (過) (目) (日)

- (Linearized) Kinetic equations $X_0 L$,
 - Krammers-Fokker-Planck
 - Linear Boltzmann (not local)
 - Linearized Boltzmann, Landau, ...
 - Probabilistic models, other models
- Related questions and structures :
 - Hypoellipticity
 - Hypocoercivity and trend to the equilibrium
 - Supersymetry and inner structures (KFP-like)
 - Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet, Hairer...

The context Assumptions and main result

ヘロト 人間 ト ヘヨト ヘヨト

- (Linearized) Kinetic equations $X_0 L$,
 - Krammers-Fokker-Planck
 - Linear Boltzmann (not local)
 - Linearized Boltzmann, Landau, ...
 - Probabilistic models, other models
- Related questions and structures :
 - Hypoellipticity
 - Hypocoercivity and trend to the equilibrium
 - Supersymetry and inner structures (KFP-like)
 - Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet, Hairer...

くロト (過) (目) (日)

- (Linearized) Kinetic equations $X_0 L$,
 - Krammers-Fokker-Planck
 - Linear Boltzmann (not local)
 - Linearized Boltzmann, Landau, ...
 - Probabilistic models, other models
- Related questions and structures :
 - Hypoellipticity
 - Hypocoercivity and trend to the equilibrium
 - Supersymetry and inner structures (KFP-like)
 - Boundary, potentials, non-linear problems, perturbative study...

Villani, Mouhot, Guo, Schmeiser, Talay, Eckmann, Rey-bellet, Hairer...

The context Assumptions and main result

Very constructive interaction

P.D.E

- 1/2 classical methods
- ϕ dO methods
- supersymetry ...

Kinetic hypocoercivity, trend to eq. perturbative study ...

ヘロン ヘアン ヘビン ヘビン

The context Assumptions and main result

▲ @ ▶ ▲ ⊇ ▶

Table of contents

Problem and models

- The context
- Assumptions and main result

2 Sketch of proof

- A coercive estimate
- KFP type Operators
- Return to equilibrium in double well case
- Examples of KFP type operators
 - Probabilistic description
 - Witten and Fokker-Planck
 - Anharmonic chains of operators

ヘロト ヘアト ヘヨト ヘ

Assumptions and main result

Back to the Fokker-Planck operator

$$P = y \cdot h\partial_x - V'(x) \cdot h\partial_y + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2)$$

We impose on the potential V the following :

•
$$\partial^{\alpha} V = \mathcal{O}(1)$$
 for $|\alpha| \geq 2$,

- $|\nabla V| \ge 1/C$, for $|x| \ge C$ with *C* sufficiently large
- V has 3 critical points : 2 local minima and 1 critical point of index 1

Then *P* has 2 eigenvalues in the disc D(0, C/h) for *h* sufficiently small, $\mu_0 = 0$ and μ_1 , with μ_1 of the form

$$\mu_1 = h\left(a_1(h)e^{-2S_1/h} + a_{-1}(h)e^{-2S_{-1}/h}\right), \quad S_j = V(x_j) - V(x_0).$$

イロト イポト イヨト イヨト

Assumptions and main result

Back to the Fokker-Planck operator

$$P = y \cdot h\partial_x - V'(x) \cdot h\partial_y + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2)$$

We impose on the potential V the following :

•
$$\partial^{\alpha} V = \mathcal{O}(1)$$
 for $|\alpha| \ge 2$,

- $|\nabla V| \ge 1/C$, for $|x| \ge C$ with *C* sufficiently large
- V has 3 critical points : 2 local minima and 1 critical point of index 1

Then *P* has 2 eigenvalues in the disc D(0, C/h) for *h* sufficiently small, $\mu_0 = 0$ and μ_1 , with μ_1 of the form

$$\mu_1 = h\left(a_1(h)e^{-2S_1/h} + a_{-1}(h)e^{-2S_{-1}/h}\right), \quad S_j = V(x_j) - V(x_0).$$

ヘロト ヘアト ヘヨト ヘ

Assumptions and main result

Back to the Fokker-Planck operator

$$P = y \cdot h\partial_x - V'(x) \cdot h\partial_y + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2)$$

We impose on the potential V the following :

•
$$\partial^{\alpha} V = \mathcal{O}(1)$$
 for $|\alpha| \ge 2$,

- $|\nabla V| \ge 1/C$, for $|x| \ge C$ with *C* sufficiently large
- V has 3 critical points : 2 local minima and 1 critical point of index 1

Then *P* has 2 eigenvalues in the disc D(0, C/h) for *h* sufficiently small, $\mu_0 = 0$ and μ_1 , with μ_1 of the form

$$\mu_1 = h\left(a_1(h)e^{-2S_1/h} + a_{-1}(h)e^{-2S_{-1}/h}\right), \quad S_j = V(x_j) - V(x_0).$$

The context Assumptions and main result

Other cases

- "Simple well" : *V* has precisely 1 local minimum and $V(x) \rightarrow \infty$ then from [HHS07], *P* has only 1 eigenvalue $\mu_0 = 0$ in the disc D(0, C/h) for $h \ll 1$.
- "A well and the sea" : *V* has precisely 1 local minimum x_1 and 1 critical point x_0 , then *P* has only 1 eigenvalue μ_1 in the disc D(0, C/h).

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

• "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

The context Assumptions and main result

Other cases

- "Simple well" : *V* has precisely 1 local minimum and $V(x) \rightarrow \infty$ then from [HHS07], *P* has only 1 eigenvalue $\mu_0 = 0$ in the disc D(0, C/h) for $h \ll 1$.
- "A well and the sea" : *V* has precisely 1 local minimum x_1 and 1 critical point x_0 , then *P* has only 1 eigenvalue μ_1 in the disc D(0, C/h).

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

• "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

The context Assumptions and main result

Other cases

- "Simple well" : *V* has precisely 1 local minimum and $V(x) \rightarrow \infty$ then from [HHS07], *P* has only 1 eigenvalue $\mu_0 = 0$ in the disc D(0, C/h) for $h \ll 1$.
- "A well and the sea" : *V* has precisely 1 local minimum x_1 and 1 critical point x_0 , then *P* has only 1 eigenvalue μ_1 in the disc D(0, C/h).

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

 "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

The context Assumptions and main result

ъ

Other cases

- "Simple well" : *V* has precisely 1 local minimum and $V(x) \rightarrow \infty$ then from [HHS07], *P* has only 1 eigenvalue $\mu_0 = 0$ in the disc D(0, C/h) for $h \ll 1$.
- "A well and the sea" : *V* has precisely 1 local minimum x_1 and 1 critical point x_0 , then *P* has only 1 eigenvalue μ_1 in the disc D(0, C/h).

$$\mu_1 = ha_1(h)e^{-2S_1/h}, \quad S_1 = V(x_1) - V(x_0).$$

 "multiple wells" : Serious hope to get similar results as in the Witten case (see recent work about linear algebra by le peutrec in the Witten case).

The context Assumptions and main result

Heat problem

Analyse of $e^{-tP/h}$.

- In the case without "tunneling effect" (e.g. the simple well case), the return to equilibrium is of order of magnitude 1.
- What is this rate in the case of tunneling effect ("double well" and " a well and the sea").

Main result

In the double well case, Let Π_j the spectral projection associated to μ_j , then

$$\Pi_j = \mathcal{O}(1), \quad h \to 0.$$

and uniformly as $t \ge 0$, and $h \rightarrow 0$,

 $e^{-tP/h} = \Pi_0 + e^{-t\mu_1/h}\Pi_1 + \mathcal{O}(1)e^{-t/C}, \quad C > 0, \quad in\mathcal{L}(L^2, L^2).$

The context Assumptions and main result

Heat problem

Analyse of $e^{-tP/h}$.

- In the case without "tunneling effect" (e.g. the simple well case), the return to equilibrium is of order of magnitude 1.
- What is this rate in the case of tunneling effect ("double well" and " a well and the sea").

Main result

In the double well case, Let Π_j the spectral projection associated to $\mu_j,$ then

$$\Pi_j = \mathcal{O}(1), \quad h \to 0.$$

and uniformly as $t \ge 0$, and $h \rightarrow 0$,

$$e^{-tP/h} = \Pi_0 + e^{-t\mu_1/h}\Pi_1 + \mathcal{O}(1)e^{-t/C}, \quad C > 0, \quad in\mathcal{L}(L^2, L^2).$$

Problem and models A coercive estimate Sketch of proof KFP type Operators Examples of KFP type operators Return to equilibrium in double well case

Sketch of proof

Hérau, Hitrik, Sjöstrand Tunnel effect for KFP

イロト 不得 とくほ とくほとう

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロン 人間 とくほど くほとう

A coercive estimate

Eigenvalues [HHS07] : let p be the symbol of KFP and $p_{0,j}$ be the symbol of the quadratic approximation at ρ_j critical point. The spectrum of *P* in D(0, Bh) is discrete and equal to

$$\lambda_{j,k}(h) \sim h\left(\mu_{j,k} + h^{1/N_{j,k}}\mu_{j,k,1} + h^{2/N_{j,k}}\mu_{j,k,2} + \dots\right),$$

Recall that $\mu_{j,k}$ are all numbers in D(0, B) of the form

$$\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbf{N},$$

for some $j \in \{1, ..., N\}$. Here $\lambda_{j,\ell}$, $1 \le \ell \le n$, are the eigenvalues of the Hamilton map of the quadratic part of p at $\rho_j \in C$, for which $\operatorname{Im} \lambda_{j,\ell} > 0$.

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロン 人間 とくほど くほとう

A coercive estimate

Eigenvalues [HHS07] : let p be the symbol of KFP and $p_{0,j}$ be the symbol of the quadratic approximation at ρ_j critical point. The spectrum of *P* in *D*(0, *Bh*) is discrete and equal to

$$\lambda_{j,k}(h) \sim h\left(\mu_{j,k} + h^{1/N_{j,k}}\mu_{j,k,1} + h^{2/N_{j,k}}\mu_{j,k,2} + \dots\right),$$

Recall that $\mu_{j,k}$ are all numbers in D(0, B) of the form

$$\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbf{N},$$

for some $j \in \{1, ..., N\}$. Here $\lambda_{j,\ell}$, $1 \le \ell \le n$, are the eigenvalues of the Hamilton map of the quadratic part of p at $\rho_j \in C$, for which $\operatorname{Im} \lambda_{j,\ell} > 0$.

A coercive estimate KFP type Operators Return to equilibrium in double well case

イロン イロン イヨン イヨン

A coercive estimate

Eigenvalues [HHS07] : let p be the symbol of KFP and $p_{0,j}$ be the symbol of the quadratic approximation at ρ_j critical point. The spectrum of *P* in *D*(0, *Bh*) is discrete and equal to

$$\lambda_{j,k}(h) \sim h\left(\mu_{j,k} + h^{1/N_{j,k}}\mu_{j,k,1} + h^{2/N_{j,k}}\mu_{j,k,2} + \dots\right),$$

Recall that $\mu_{j,k}$ are all numbers in D(0, B) of the form

$$\mu_{j,k} = \frac{1}{i} \sum_{\ell=1}^{n} \left(\nu_{j,k,\ell} + \frac{1}{2} \right) \lambda_{j,\ell}, \quad \nu_{j,k,\ell} \in \mathbf{N},$$

for some $j \in \{1, ..., N\}$. Here $\lambda_{j,\ell}$, $1 \le \ell \le n$, are the eigenvalues of the Hamilton map of the quadratic part of p at $\rho_j \in C$, for which $\operatorname{Im} \lambda_{j,\ell} > 0$.

A coercive estimate KFP type Operators Return to equilibrium in double well case

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Crucial estimate :

Lemma

Let $B \ge 0$ and Π_B the corresponding spectral projector, then for all $u \in \text{Ran}(1 - \Pi_B)$,

$$\left\| e^{-tP/h} u \right\| = \mathcal{O}(1) e^{-t/C}, \quad C = C(B)$$

difficulties :

- Π_B not selfadjoint,
- $\operatorname{Re}(\operatorname{Pu}, u) \geq \operatorname{Ch} \|u\|^2$ not true
- $\operatorname{R}e(Pu, u)_{\varepsilon} \geq Ch \|u\|_{\varepsilon}^{2}$ true with a modified norm !

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロト ヘアト ヘビト ヘビト

1

Crucial estimate :

Lemma

Let $B \ge 0$ and Π_B the corresponding spectral projector, then for all $u \in \text{Ran}(1 - \Pi_B)$,

$$\left\| e^{-tP/h} u \right\| = \mathcal{O}(1) e^{-t/C}, \quad C = C(B)$$

difficulties :

- Π_B not selfadjoint,
- $\operatorname{R}e(Pu, u) \geq Ch \|u\|^2$ not true
- $\operatorname{Re}(Pu, u)_{\varepsilon} \geq Ch \|u\|_{\varepsilon}^{2}$ true with a modified norm !

Problem and models A coercive estimate Sketch of proof KFP type Operators Examples of KFP type operators Return to equilibrium in double well case

Exists Global FIO A_{ε} exploiting the hypoelliptic properties of P such that $\|u\|_{\varepsilon} \stackrel{\text{def}}{=} \|A_{\varepsilon}u\| \sim \|u\|$.

Study of $P_{\varepsilon} = A_{\varepsilon}^{-1} P_{\varepsilon} A_{\varepsilon}$ in L^2 :

We already know [HHS07] that for all u

 $\operatorname{Re}\left((P_{\varepsilon}+K_{\varepsilon})u,u\right)\geq ch\|u\|^{2}$

where K_{ε} is (micro-)localized near the critical points. Sufficient to prove $||K_{\varepsilon}u|| \ll h ||u||$.

- Building a selfadjoint operator *Q* (an harmonic oscillator) adapted to the evs ≤ *B*.
- Posing $K_{\varepsilon} = \chi(Q/B)$.
- This gives the semi-group property.

ヘロン 人間 とくほとく ほとう

Problem and models A coercive estimate Sketch of proof KFP type Operators Examples of KFP type operators Return to equilibrium in double well case

Exists Global FIO A_{ε} exploiting the hypoelliptic properties of P such that $\|u\|_{\varepsilon} \stackrel{\text{def}}{=} \|A_{\varepsilon}u\| \sim \|u\|$.

Study of $P_{\varepsilon} = A_{\varepsilon}^{-1} P_{\varepsilon} A_{\varepsilon}$ in L^2 :

We already know [HHS07] that for all u

$$\operatorname{Re}\left((P_{\varepsilon}+K_{\varepsilon})u,u\right)\geq ch\|u\|^{2}$$

where K_{ε} is (micro-)localized near the critical points. Sufficient to prove $\|K_{\varepsilon}u\| \ll h \|u\|$.

- Building a selfadjoint operator *Q* (an harmonic oscillator) adapted to the evs ≤ *B*.
- Posing $K_{\varepsilon} = \chi(Q/B)$.
- This gives the semi-group property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Problem and models Sketch of proof Examples of KFP type operators Return to equilibrium in double well case

Exists Global FIO A_{ε} exploiting the hypoelliptic properties of P such that $\|u\|_{\varepsilon} \stackrel{\text{def}}{=} \|A_{\varepsilon}u\| \sim \|u\|$.

Study of
$$P_{\varepsilon} = A_{\varepsilon}^{-1} P_{\varepsilon} A_{\varepsilon}$$
 in L^2 :

We already know [HHS07] that for all u

$$\operatorname{Re}\left((P_{\varepsilon}+K_{\varepsilon})u,u\right)\geq ch\|u\|^{2}$$

where K_{ε} is (micro-)localized near the critical points. Sufficient to prove $||K_{\varepsilon}u|| \ll h ||u||$.

- Building a selfadjoint operator *Q* (an harmonic oscillator) adapted to the evs ≤ *B*.
- Posing $K_{\varepsilon} = \chi(Q/B)$.
- This gives the semi-group property.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロト ヘワト ヘビト ヘビト

General form

Previous results valid for a large class of 2nd order differential operators :

$$\rho=\rho_2+i\rho_1+\rho_0$$

where

$$p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x) \xi_j, \quad p_0 = p_0(x)$$

with the following assumptions :

• positivity p_2 and $p_0 \ge 0$,

• growth $|\partial^{\alpha}b| + |\partial^{\alpha+1}c| + |\partial^{\alpha+2}p_0| = \mathcal{O}(1), |\alpha| \ge 0,$

• finite critical set $\{(x_l, 0) \text{ with } p_0(x_l) = 0, \ c(x_l) = 0\},\$

and if $= \frac{1}{T} \int_{[-T,T]} (p_0 + p_2 / <\xi >^2) dt$,

- local dynamic $\sim |\rho \rho_j|^2$ near ρ_j
- global dynamic $\geq C$ away.

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロン ヘアン ヘビン ヘビン

General form

Previous results valid for a large class of 2nd order differential operators :

$$\rho=\rho_2+i\rho_1+\rho_0$$

where

$$p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x) \xi_j, \quad p_0 = p_0(x)$$

with the following assumptions :

- positivity p_2 and $p_0 \ge 0$,
- growth $|\partial^{\alpha}b| + |\partial^{\alpha+1}c| + |\partial^{\alpha+2}p_0| = \mathcal{O}(1), |\alpha| \ge 0,$
- finite critical set $\{(x_l, 0) \text{ with } p_0(x_l) = 0, \ c(x_l) = 0\}$,

and if $= \frac{1}{T} \int_{[-T,T]} (p_0 + p_2 / <\xi >^2) dt$,

- local dynamic $\sim |\rho \rho_j|^2$ near ρ_j
- global dynamic $\geq C$ away.

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロン 人間 とくほ とくほ とう

General form

Previous results valid for a large class of 2nd order differential operators :

$$\rho=\rho_2+i\rho_1+\rho_0$$

where

$$p_2 = \sum b_{j,k} \xi_j \xi_k, \quad p_1 = \sum c_j(x) \xi_j, \quad p_0 = p_0(x)$$

with the following assumptions :

- positivity p_2 and $p_0 \ge 0$,
- growth $|\partial^{\alpha}b| + |\partial^{\alpha+1}c| + |\partial^{\alpha+2}p_0| = \mathcal{O}(1), |\alpha| \ge 0,$
- finite critical set { $(x_l, 0)$ with $p_0(x_l) = 0$, $c(x_l) = 0$ }, and if $= \frac{1}{T} \int_{[-T,T]} (p_0 + p_2/<\xi >^2) dt$,
 - local dynamic $\sim |\rho \rho_j|^2$ near ρ_j
 - global dynamic $\ge C$ away.

A coercive estimate KFP type Operators Return to equilibrium in double well case

ヘロン 人間 とくほとく ほとう

Supersymetry

They are defined through

- An invertible real $d \times d$ matrix A = B + C, B sym., C skew.
- A morse function ϕ where $\partial^{\alpha}\phi$ and $\partial^{\alpha} < B\nabla\phi, \nabla\phi >$ are $\mathcal{O}(1)$.

The Witten Hodge Laplacian is

$$\sum -h^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - htr(B\phi'') + \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi$$

Principal symbol : $p = \langle B\xi, \xi \rangle + 2i \langle C \nabla \phi, \xi \rangle + \langle B \nabla \phi, \nabla \phi \rangle$, Of Witten Hodge Laplacian type : $-\Delta_A = d_{\phi}^{A,*} d_{\phi}$ on *k*-forms.

A coercive estimate KFP type Operators Return to equilibrium in double well case

イロト イポト イヨト イヨト

Supersymetry

They are defined through

- An invertible real $d \times d$ matrix A = B + C, B sym., C skew.
- A morse function φ where ∂^αφ and ∂^α < B∇φ, ∇φ > are O(1).

The Witten Hodge Laplacian is

$$\sum -h^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - htr(B\phi'') + \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi$$

Principal symbol : $p = \langle B\xi, \xi \rangle + 2i \langle C\nabla \phi, \xi \rangle + \langle B\nabla \phi, \nabla \phi \rangle$, Of Witten Hodge Laplacian type : $-\Delta_A = d_{\phi}^{A,*} d_{\phi}$ on *k*-forms.

イロト イポト イヨト イヨト

Supersymetry

They are defined through

- An invertible real $d \times d$ matrix A = B + C, B sym., C skew.
- A morse function φ where ∂^αφ and ∂^α < B∇φ, ∇φ > are O(1).

The Witten Hodge Laplacian is

$$\sum -h^2 \sum \partial_j B_{j,k} \partial_k + \sum \partial_j \phi B_{j,k} \partial_k \phi - htr(B\phi'') + \sum \partial_j \phi C_{j,k} \partial_k + \sum \partial_j C_{j,k} \partial_k \phi$$

Principal symbol : $p = \langle B\xi, \xi \rangle + 2i \langle C \nabla \phi, \xi \rangle + \langle B \nabla \phi, \nabla \phi \rangle$, Of Witten Hodge Laplacian type : $-\Delta_A = d_{\phi}^{A,*} d_{\phi}$ on *k*-forms.

Return to equilibrium

With the supersymetric structure : reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80'].

e.g.
$$e_i(x) = h^{-n/4} c_i(h) e^{\frac{1}{h}(\phi(x) - \phi(x_i))}$$

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).

Return to equilibrium

With the supersymetric structure : reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80'].

e.g.
$$e_j(x) = h^{-n/4}c_j(h)e^{\frac{1}{h}(\phi(x)-\phi(x_j))}$$

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).

Return to equilibrium

With the supersymetric structure : reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80'].

e.g.
$$e_j(x) = h^{-n/4}c_j(h)e^{\frac{1}{h}(\phi(x)-\phi(x_j))}$$

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).

Return to equilibrium

With the supersymetric structure : reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80'].

e.g.
$$e_j(x) = h^{-n/4}c_j(h)e^{\frac{1}{h}(\phi(x)-\phi(x_j))}$$

Back to the double well case : 2 minima, therefore 2 exp. small evs (0 and μ_1).

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 \Pi_B))$

• Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).

Return to equilibrium

With the supersymetric structure : reduce the problem of exp. small evs to a finite dimensional problem.

In particular build the corresponding eigenfunctions for $-\Delta_A^{(0)}$ and $-\Delta_A^{(1)}$, as in the treatment by Helffer-Sjostrand [HS80'].

e.g.
$$e_j(x) = h^{-n/4}c_j(h)e^{\frac{1}{h}(\phi(x)-\phi(x_j))}$$

- Express explicitly the projectors Π_k for each exp. small eigenvalue.
- Write $e^{-tP/h} = e^{-tP/h}(\Pi_0 + \Pi_1 + \Pi_{(2-B)} + (1 \Pi_B))$
- Use the former result for the last term, and the 2 first (the third one is easy with resolvent estimates from [HHS07]).

Problem and models Probabilistic description Sketch of proof Witten and Fokker-Planck Examples of KFP type operators Anharmonic chains of operators

Examples of KFP type operators

Hérau, Hitrik, Sjöstrand Tunnel effect for KFP

イロト 不得 とくほ とくほとう

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

ヘロト ヘアト ヘヨト

Probability

Some problem may come from Probability. Let

 $dx(t) = b(x(t))dt + \sigma dw$

where *w* is a *d*-dimentionnal process, σ a constant matrix and $\partial^{\alpha}b = \mathcal{O}(1)$. Then there exists a unique solution (in an L^2 adapted space) for $x_0 \coprod w$.

Define the associated semi group by

$$\mathbb{E}\left(\phi(\boldsymbol{x}(t))\right) = T^t \phi(\boldsymbol{x}_0)$$

This is a strongly semi-group (on C_{∞} , we can work also on L^2) whose infinitesimal generator is

$$L = \nabla . D \nabla + b(x) . \nabla$$
 with $D = \frac{1}{2} \sigma \sigma^{t}$

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

・ロン ・雪 と ・ ヨ と

Probability

Some problem may come from Probability. Let

 $dx(t) = b(x(t))dt + \sigma dw$

where *w* is a *d*-dimentionnal process, σ a constant matrix and $\partial^{\alpha}b = \mathcal{O}(1)$. Then there exists a unique solution (in an L^2 adapted space) for $x_0 \coprod w$. Define the associated semi group by

 $\mathbb{E}\left(\phi(\boldsymbol{x}(t))\right) = T^t \phi(\boldsymbol{x}_0)$

This is a strongly semi-group (on C_{∞} , we can work also on L^2) whose infinitesimal generator is

$$L = \nabla . D \nabla + b(x) . \nabla$$
 with $D = \frac{1}{2} \sigma \sigma^{t}$

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

イロト イポト イヨト イヨト

Probability

Some problem may come from Probability. Let

 $dx(t) = b(x(t))dt + \sigma dw$

where *w* is a *d*-dimentionnal process, σ a constant matrix and $\partial^{\alpha}b = \mathcal{O}(1)$. Then there exists a unique solution (in an L^2 adapted space) for $x_0 \coprod w$. Define the associated semi group by

$$\mathbb{E}\left(\phi(\boldsymbol{x}(t))\right) = T^t \phi(\boldsymbol{x}_0)$$

This is a strongly semi-group (on C_{∞} , we can work also on L^2) whose infinitesimal generator is

$$L = \nabla . D \nabla + b(x) . \nabla$$
 with $D = \frac{1}{2} \sigma \sigma^{t}$

$$L^* = \nabla . D\nabla - \nabla . b(x)$$

and is the infinitesimal generator of $(T^t)^*$) (at least its closure in an L^2 setting).

This means that if $\mu_0 = f_0 dx$ is the a.c. measure of probability of x_0 , then $\mu_t = f(t, .) dx$ is the one of x(t) and $\partial_t f - L^* f = 0$, ie

$$\begin{cases} \partial_t f + (-\nabla . D . \nabla + \nabla . b) f = 0\\ f|_{t=0} = f_0 \end{cases}$$

An invariant measure will be associated to a time-independant function \mathcal{M} . What remains in particular cases is

- exhibit the Maxwellian \mathcal{M} ,
- do a conjugation, a 1/2 classical scaling
- recognize a supersymetric structure

$$L^* = \nabla . D\nabla - \nabla . b(x)$$

and is the infinitesimal generator of $(T^t)^*$) (at least its closure in an L^2 setting).

This means that if $\mu_0 = f_0 dx$ is the a.c. measure of probability of x_0 , then $\mu_t = f(t, .) dx$ is the one of x(t) and $\partial_t f - L^* f = 0$, ie

$$\begin{cases} \partial_t f + (-\nabla . D . \nabla + \nabla . b) f = 0\\ f|_{t=0} = f_0 \end{cases}$$

An invariant measure will be associated to a time-independant function $\mathcal{M}.$ What remains in particular cases is

- exhibit the Maxwellian \mathcal{M} ,
- do a conjugation, a 1/2 classical scaling
- recognize a supersymetric structure

$$L^* = \nabla . D\nabla - \nabla . b(x)$$

and is the infinitesimal generator of $(T^t)^*$) (at least its closure in an L^2 setting).

This means that if $\mu_0 = f_0 dx$ is the a.c. measure of probability of x_0 , then $\mu_t = f(t, .)dx$ is the one of x(t) and $\partial_t f - L^* f = 0$, ie

$$\begin{cases} \partial_t f + (-\nabla . D . \nabla + \nabla . b) f = 0\\ f|_{t=0} = f_0 \end{cases}$$

An invariant measure will be associated to a time-independant function \mathcal{M} . What remains in particular cases is

- exhibit the Maxwellian \mathcal{M} ,
- do a conjugation, a 1/2 classical scaling
- recognize a supersymetric structure

• • • • • • • •

$$L^* = \nabla . D\nabla - \nabla . b(x)$$

and is the infinitesimal generator of $(T^t)^*$) (at least its closure in an L^2 setting).

This means that if $\mu_0 = f_0 dx$ is the a.c. measure of probability of x_0 , then $\mu_t = f(t, .)dx$ is the one of x(t) and $\partial_t f - L^* f = 0$, ie

$$\begin{cases} \partial_t f + (-\nabla . D . \nabla + \nabla . b) f = 0\\ f|_{t=0} = f_0 \end{cases}$$

An invariant measure will be associated to a time-independant function \mathcal{M} . What remains in particular cases is

- exhibit the Maxwellian \mathcal{M} ,
- do a conjugation, a 1/2 classical scaling
- recognize a supersymetric structure

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Witten case

$\mathsf{W}: d\mathbf{x} = -\gamma \partial_{\mathbf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathbf{w}$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h$: $h\partial_t f \gamma h\partial_x (h\partial_x + \partial_x V)f = 0$.
- Maxwellian : $\mathcal{M} = e^{-V/h}$.
- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h$: $h\partial_t f \gamma h\partial_x (h\partial_x + \partial_x V)f = 0$.
- Maxwellian : $\mathcal{M} = e^{-V/h}$.
- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h$: $h\partial_t f \gamma h\partial_x (h\partial_x + \partial_x V)f = 0$.
- Maxwellian : $\mathcal{M} = e^{-V/h}$.
- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Witten case

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h : h\partial_t f \gamma h\partial_x . (h\partial_x + \partial_x V)f = 0$.

• Maxwellian : $\mathcal{M} = e^{-V/h}$.

- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h : h\partial_t f \gamma h\partial_x . (h\partial_x + \partial_x V)f = 0$.

• Maxwellian :
$$\mathcal{M} = e^{-V/h}$$

- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h : h\partial_t f \gamma h\partial_x . (h\partial_x + \partial_x V)f = 0$.
- Maxwellian : $\mathcal{M} = e^{-V/h}$.
- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$\mathsf{W}: d\mathsf{x} = -\gamma \partial_{\mathsf{x}} \mathsf{V} dt + \sqrt{2\gamma \mathsf{T}} d\mathsf{w}$$

- Parameters : $D = \sigma^* \sigma / 2 = \gamma T$ and $b(x) = -\gamma \partial_x V$.
- Density : $\partial_t f \gamma \partial_x (T \partial_x + \partial_x V) f = 0.$
- Let t = h and $\times h : h\partial_t f \gamma h\partial_x . (h\partial_x + \partial_x V)f = 0$.
- Maxwellian : $\mathcal{M} = e^{-V/h}$.
- Conjugation $f = \mathcal{M}^{1/2}h$: $h\partial_t u + \gamma(-h\partial_x + \partial_x V/2).(h\partial_x + \partial_x V/2)u = 0.$
- Supersymetry : $A = \gamma I$, $\phi(x) = V(x)/2$.
- Potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$ when $|\alpha| = 2$ and $\mathcal{O}(\langle x \rangle^{-1})$ when $|\alpha| \ge 3$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

イロト イポト イヨト イヨト

$$\mathsf{KFP}: \begin{cases} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{cases}$$

- Parameters : $D = \begin{vmatrix} 0 & 0 \\ 0 & \gamma T \end{vmatrix}$ and $b(x) = \begin{vmatrix} y \\ -\gamma y \partial_x V \end{vmatrix}$.
- Density, scaling : $h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$
- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$
- Conjugation : $h\partial_t u + \gamma(-h\partial_y + y/2).(h\partial_y + y/2)u + \gamma yh\partial_x u - \partial_x Vh\partial_y u = 0.$
- Supersymetry : $A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}$ and $\phi(x, v) = V(x)/2 + y^2/4$.
- potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KFP :
$$\begin{cases} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{cases}$$

• Parameters : $D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix}$.

• Density, scaling :

$$h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$$

- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$
- Conjugation : $h\partial_t u + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2) u + \gamma y h\partial_x u - \partial_x V h\partial_y u = 0.$
- Supersymetry : $A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}$ and $\phi(x, v) = V(x)/2 + y^2/4$.
- potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

$$\begin{array}{l} \mathsf{KFP} : \left\{ \begin{array}{l} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{array} \right.^{*} \\ \bullet \text{ Parameters} : D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \text{ and } b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} . \end{array}$$

- Density, scaling : $h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$
- Maxwellian : $\mathcal{M} = C^{-1} e^{(-V(x) + y^2/2)/h}$.
- Conjugation : $h\partial_t u + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2) u + \gamma y h\partial_x u - \partial_x V h\partial_y u = 0.$
- Supersymetry : $A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}$ and $\phi(x, v) = V(x)/2 + y^2/4$.
- potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

KFP:
$$\begin{cases} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{cases}$$

• Parameters: $D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix}$.

- Density, scaling : $h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$
- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$.
- potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

KFP :
$$\begin{cases} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{cases}$$

• Parameters : $D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix}$.

• Density, scaling :

$$h\partial_t f - \gamma h\partial_y . (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$$

- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$.
- Conjugation : $h\partial_t u + \gamma(-h\partial_y + y/2) \cdot (h\partial_y + y/2) u + \gamma y h\partial_x u - \partial_x V h\partial_y u = 0.$
- Supersymetry : $A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}$ and $\phi(x, v) = V(x)/2 + y^2/4$.
- potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Fokker-Planck case

$$\begin{array}{l} \mathsf{KFP} : \left\{ \begin{array}{l} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{array} \right.^{\prime} \\ \bullet \text{ Parameters} : D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix} \text{ and } b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix} . \end{array}$$

- Density, scaling : $h\partial_t f - \gamma h\partial_y . (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$
- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$.
- Conjugation : $h\partial_t u + \gamma (-h\partial_y + y/2) \cdot (h\partial_y + y/2) u + \gamma y h\partial_x u - \partial_x V h\partial_y u = 0.$
- Supersymetry : $A = \begin{bmatrix} 0 & -I \\ I & \gamma \end{bmatrix}$ and $\phi(x, v) = V(x)/2 + y^2/4$.

• potential : *V* Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

Probabilistic description Witten and Fokker-Planck Anharmonic chains of operators

ヘロン 人間 とくほ とくほとう

3

KFP:
$$\begin{cases} dx = ydt \\ dy = -\gamma ydt - \partial_x Vdt + \sqrt{2\gamma T} dw \end{cases}$$

• Parameters: $D = \begin{bmatrix} 0 & 0 \\ 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\gamma y - \partial_x V \end{bmatrix}$.

- Density, scaling : $h\partial_t f - \gamma h\partial_y (h\partial_y + y)f + yh\partial_x f - \partial_x Vh\partial_y f = 0.$
- Maxwellian : $M = C^{-1} e^{(-V(x)+y^2/2)/h}$.
- Conjugation : h∂_tu+γ(-h∂_y+y/2).(h∂_y+y/2)u+γyh∂_xu-∂_xVh∂_yu = 0.
 Supersymetry : A = [0 -I] I γ and φ(x, v) = V(x)/2 + y²/4.
- potential : V Morse and $\partial^{\alpha} V(x) = \mathcal{O}(1)$.

$$\begin{cases} dx_{1} = y_{1}dt \\ dy_{1} = -\partial_{x_{1}}Vdt + z_{1}dt \\ dz_{1} = -\gamma z_{1}dt + \gamma x_{1}dt - \sqrt{2\gamma T_{1}}dw_{1} \\ dz_{2} = -\gamma z_{1}dt + \gamma x_{2}dt - \sqrt{2\gamma T_{2}}dw_{2} \\ dy_{2} = -\partial_{x_{2}}Vdt + z_{2}dt \\ dx_{2} = y_{2}dt. \end{cases}$$

where $V(x_{1}, x_{2}) = V_{p}(x_{1}) + V_{p}(x_{2}) + V_{c}(x_{1} - x_{2}).$
• Parameters : $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\partial_{x}V + z \\ \gamma(x - z) \end{bmatrix}.$
• Scaling $T_{1} = \alpha_{1}h, T_{2} = \alpha_{2}h, \text{ and } \times h:$
 $h\partial_{t}f + \gamma\alpha_{1}(-h\partial_{z_{1}}).(h\partial_{z_{1}} + (z_{1} - x_{1})/\alpha_{1})f + \gamma\alpha_{2}(-h\partial_{z_{2}}).(h\partial_{z_{2}} + (z_{2} - x_{2})/\alpha_{2})f + (y\partial_{x}f - (\partial_{x}V - z)\partial_{y})f = 0. \end{cases}$

$$\begin{cases} dx_{1} = y_{1}dt \\ dy_{1} = -\partial_{x_{1}}Vdt + z_{1}dt \\ dz_{1} = -\gamma z_{1}dt + \gamma x_{1}dt - \sqrt{2\gamma T_{1}}dw_{1} \\ dz_{2} = -\gamma z_{1}dt + \gamma x_{2}dt - \sqrt{2\gamma T_{2}}dw_{2} \\ dy_{2} = -\partial_{x_{2}}Vdt + z_{2}dt \\ dx_{2} = y_{2}dt. \end{cases}$$

where $V(x_{1}, x_{2}) = V_{p}(x_{1}) + V_{p}(x_{2}) + V_{c}(x_{1} - x_{2}).$
• Parameters : $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\partial_{x}V + z \\ \gamma(x - z) \end{bmatrix}$.
• Scaling $T_{1} = \alpha_{1}h, T_{2} = \alpha_{2}h, \text{ and } \times h$:
 $h\partial_{t}f + \gamma\alpha_{1}(-h\partial_{z_{1}}).(h\partial_{z_{1}} + (z_{1} - x_{1})/\alpha_{1})f + \gamma\alpha_{2}(-h\partial_{z_{2}}).(h\partial_{z_{2}} + (z_{2} - x_{2})/\alpha_{2})f + (y\partial_{x}f - (\partial_{x}V - z)\partial_{y})f = 0. \end{cases}$

$$\begin{cases} dx_{1} = y_{1}dt \\ dy_{1} = -\partial_{x_{1}}Vdt + z_{1}dt \\ dz_{1} = -\gamma z_{1}dt + \gamma x_{1}dt - \sqrt{2\gamma T_{1}}dw_{1} \\ dz_{2} = -\gamma z_{1}dt + \gamma x_{2}dt - \sqrt{2\gamma T_{2}}dw_{2} \\ dy_{2} = -\partial_{x_{2}}Vdt + z_{2}dt \\ dx_{2} = y_{2}dt. \end{cases}$$

where $V(x_{1}, x_{2}) = V_{p}(x_{1}) + V_{p}(x_{2}) + V_{c}(x_{1} - x_{2}).$
• Parameters : $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\partial_{x}V + z \\ \gamma(x - z) \end{bmatrix}.$
• Scaling $T_{1} = \alpha_{1}h, T_{2} = \alpha_{2}h, \text{ and } \times h:$
 $h\partial_{t}f + \gamma\alpha_{1}(-h\partial_{z_{1}}).(h\partial_{z_{1}} + (z_{1} - x_{1})/\alpha_{1})f + \gamma\alpha_{2}(-h\partial_{z_{2}}).(h\partial_{z_{2}} + (z_{2} - x_{2})/\alpha_{2})f + (y\partial_{x}f - (\partial_{x}V - z)\partial_{y})f = 0. \end{cases}$

$$\begin{cases} dx_1 = y_1 dt \\ dy_1 = -\partial_{x_1} V dt + z_1 dt \\ dz_1 = -\gamma z_1 dt + \gamma x_1 dt - \sqrt{2\gamma T_1} dw_1 \\ dz_2 = -\gamma z_1 dt + \gamma x_2 dt - \sqrt{2\gamma T_2} dw_2 \\ dy_2 = -\partial_{x_2} V dt + z_2 dt \\ dx_2 = y_2 dt. \end{cases}$$
where $V(x_1, x_2) = V_p(x_1) + V_p(x_2) + V_c(x_1 - x_2).$

• Parameters : $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \gamma T \end{bmatrix}$ and $b(x) = \begin{bmatrix} y \\ -\partial_x V + z \\ \gamma(x - z) \end{bmatrix}.$

• Scaling $T_1 = \alpha_1 h, T_2 = \alpha_2 h, \text{ and } \times h:$

$$h\partial_t f + \gamma \alpha_1 (-h\partial_{z_1}).(h\partial_{z_1} + (z_1 - x_1)/\alpha_1)f + \gamma \alpha_2 (-h\partial_{z_2}).(h\partial_{z_2} + (z_2 - x_2)/\alpha_2)f + (y\partial_x f - (\partial_x V - z)\partial_y)f = 0. \end{cases}$$

Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the bathes

- Maxwellian : $\mathcal{M}_{\alpha} = C^{-1} e^{-(V(x)+y^2/2+z^2/2-zx)/\alpha h}$.
- Conjugation :

$$h\partial_t u + \gamma \alpha_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) \\+ \gamma \alpha_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) \\+ (yh\partial_x f - (\partial_x V - z) h\partial_y) u = 0.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Problem and models Sketch of proof Examples of KFP type operators Anharmonic chains of operators

Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the bathes.

- Maxwellian : $\mathcal{M}_{\alpha} = C^{-1} e^{-(V(x)+y^2/2+z^2/2-zx)/\alpha h}$.
- Conjugation :

$$\begin{aligned} h\partial_t u \\ &+ \gamma \alpha_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) \\ &+ \gamma \alpha_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) \\ &+ (yh\partial_x f - (\partial_x V - z) h\partial_y) u = 0. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the bathes.

• Maxwellian : $\mathcal{M}_{\alpha} = C^{-1} e^{-(V(x)+y^2/2+z^2/2-zx)/\alpha h}$.

Conjugation :

$$\begin{aligned} h\partial_t u \\ &+ \gamma \alpha_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) \\ &+ \gamma \alpha_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) \\ &+ (yh\partial_x f - (\partial_x V - z) h\partial_y) u = 0. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Difficult to exhibit a Maxwellian (although existence OK under additional conditions [EPR99]) Restriction to the case of same temperature for the bathes.

- Maxwellian : $\mathcal{M}_{\alpha} = C^{-1} e^{-(V(x)+y^2/2+z^2/2-zx)/\alpha h}$.
- Conjugation :

$$\begin{aligned} h\partial_t u \\ &+ \gamma \alpha_1 \left(-h\partial_{z_1} + \frac{1}{2\alpha} (z_1 - x_1) \right) \cdot \left(h\partial_{z_1} + \left(\frac{1}{\alpha_1} - \frac{1}{2\alpha} \right) (z_1 - x_1) \right) \\ &+ \gamma \alpha_2 \left(-h\partial_{z_2} + \frac{1}{2\alpha} (z_2 - x_2) \right) \cdot \left(h\partial_{z_2} + \left(\frac{1}{\alpha_2} - \frac{1}{2\alpha} \right) (z_2 - x_2) \right) \\ &+ (yh\partial_x f - (\partial_x V - z) h\partial_y) u = 0. \end{aligned}$$

ヘロン 人間 とくほ とくほ とう

• Supersymetry :
$$A = \alpha \begin{bmatrix} 0 & ld & 0 \\ -ld & 0 & 0 \\ 0 & 0 & \gamma ld \end{bmatrix}$$
 and $\phi_{\alpha} = (V(x) + y^2/2 + z^2/2 - zx)/2/\alpha$.

• Potential : *V* Morse, $\partial^{\alpha} V(x) = O(1)$ and for example, V_p of double well type and V_c of simple well type.

イロト 不得 とくほと くほとう

• Supersymetry :
$$A = \alpha \begin{bmatrix} 0 & Id & 0 \\ -Id & 0 & 0 \\ 0 & 0 & \gamma Id \end{bmatrix}$$
 and $\phi_{\alpha} = (V(x) + y^2/2 + z^2/2 - zx)/2/\alpha$.

Potential : V Morse, ∂^αV(x) = O(1) and for example, V_p of double well type and V_c of simple well type.

イロン イボン イヨン イヨン