Universal occurrence of localization in continuum random Schrödinger Hamiltonians

François Germinet

Université de Cergy-Pontoise, France

Moeciu, QMATH 10, September 2007

Special thank to A. Klein and S. Warzel for their slides!

The continuous Anderson Hamiltonian

The Anderson Hamiltonian is the random Schrödinger operator

$$H_{\omega} := -\Delta + V_{\omega} \quad \text{on} \quad L^{2}(\mathbb{R}^{d}), \tag{1}$$

with

$$V_{\omega}(x) := \sum_{\zeta \in \mathbb{Z}^d} \omega_{\zeta} u(x - \zeta), \qquad (2)$$

where

- ► The single-site potential $u \ge 0$ is a bounded measurable function on \mathbb{R}^d with compact support, $u \ge c \chi_{\Lambda_\delta}$, $c, \delta > 0$, i.e. u uniformly bounded away from zero in a neighborhood of the origin.
- $\omega = \{\omega_{\zeta}\}_{\zeta \in \mathbb{Z}^d}$ is a family of independent, identically distributed random variables with common probability distribution μ , such that
 - μ is non-degenerate with compact support $\subset [0,\infty[$.
 - ▶ $0 \in \operatorname{supp} \mu$.

Without loss of generality we may just assume

 $\{0,1\}\in \operatorname{supp}\mu\subset [0,1].$

Basic properties

- H_{ω} is a random nonnegative self-adjoint operator.
- ► H_{ω} is \mathbb{Z}^{d} -ergodic: there exists an ergodic family $\{\tau_{y}; y \in \mathbb{Z}^{d}\}$ of measure preserving transformations on the underlying probability space (Ω, \mathbb{P}) such that

 $U(y)H_\omega U(y)^* = H_{ au_y(\omega)}$ for all $y \in \mathbb{Z}^d$

where (U(y)f)(x) = f(x - y). It follows that

The spectrum is nonrandom:

 $\sigma(H_{\omega}) = [0, \infty[$ with probability one.

• The pure point, absolutely continuous, and singular continuous components of $\sigma(H_{\omega})$ are also nonrandom (i.e., equal to fixed sets) with probability one.

The continuous Poisson Hamiltonian

The Poisson Hamiltonian is the random Schrödinger operator

$$H_{\omega} := -\Delta + V_{\omega} \quad \text{on} \quad L^2(\mathbb{R}^d), \tag{3}$$

with

$$V_{\omega}(x) := \sum_{\zeta \in X(\omega)} u(x - \zeta), \tag{4}$$

where

► The single-site potential $u \ge 0$ is a bounded measurable function on \mathbb{R}^d with compact support, $u \ge c \chi_{\Lambda_\delta}$, $c, \delta > 0$.

• $\omega \to X(\omega) \subset \mathbb{R}^d$ is a Poisson process with density $\rho > 0$. The family is \mathbb{R}^d -ergodic and $\sigma(H_\omega) = [0, \infty]$ a.s.

Related models and generalizations

One may replace $-\Delta$ by

- $-\Delta + V_{per}$ [Kirsch Stolz Stolmann '98] or $-\Delta + V_{bg}$
- ► $-\nabla \frac{1}{\rho_{\omega}} \nabla$ [Figotin, Klein '96]
- ► (-i∇ + A)², d = 2, constant magnetic field, QHE [Combes Hislop'95, Wang '97, G. Klein'03] [G. Klein Schenker'07]
- $(-i\nabla + A_{\omega})^2$ [Ghribi, Hislop, Klopp '07]

Other possibilities

- Replace $u \leq 0$ or u non sign definite [Klopp'95]
- Replace iid random variables ω_i by independant rv.
- Locate the impurities on a Delone set.
- Study the random displacement model [Klopp '93]
- Consider several interacting particles in a random potential [Chulaevski-Suhov '07, Kirsch '07]

Anderson Localization

Definition: The Anderson Hamiltonian H_{ω} exhibits Anderson localization at the bottom of the spectrum if there exist $E_0 > 0$ and m > 0, such that the following holds with probability one:

- H_{ω} has pure point spectrum in $[0, E_0]$.
- ► If ϕ is an eigenfunction of H_{ω} with eigenvalue $E \in [0, E_0]$,

$$\|\chi_{\mathsf{x}}\phi\| \leq C_{\omega,\phi}\,e^{-m|\mathsf{x}|} \qquad ext{for all} \quad \mathsf{x}\in\mathbb{R}^d$$

 $(\chi_x$ is the characteristic function of a cube of side one centered at x.)

▶ There exist $\tau > 1$ and $s \in]0, 1[$ such that for all eigenfunctions ψ, ϕ (possibly equal) with the same eigenvalue $E \in [0, E_0]$,

 $\|\chi_{x}\psi\|\|\chi_{y}\phi\| \leq C_{\mathbf{X}}\|\psi\|_{-}\|\phi\|_{-}e^{|y|^{\tau}}e^{-|x-y|^{s}} \text{ for } x, y \in \mathbb{Z}^{d}$ (5)

• The eigenvalues of H_{ω} in $[0, E_0]$ have finite multiplicity.

Definition: The Anderson Hamiltonian H_{ω} exhibits strong dynamical localization at the bottom of the spectrum if there exist $E_0 > 0$ and s > 0 such that

$$\mathbb{E}\left\{\sup_{t\in\mathbb{R}}\left\||x|^{\frac{p}{2}}e^{-itH_{\omega}}\chi_{[0,E_{0}]}(H_{\omega})\chi_{0}\right\|_{2}^{\frac{2s}{p}}\right\}<\infty\quad\text{for all}\ p\geq1$$

Existence of localization at the bottom of the spectrum: Poisson

The following theorem is a joint work:

► Germinet, Hislop and Klein [J. Europ. Math. Soc. '07]

Theorem

Let H_{ω} be the Poisson Hamiltonian on $L^{2}(\mathbb{R}^{d})$ with Poisson density $\rho > 0$. Then there exists $E(\rho) > 0$ such that H_{ω} exhibits Anderson localization as well as strong dynamical localization in $[0, E(\rho)]$. Related results:

- Lifshitz tails [Donsker-Varadhan '75]
- Localization in dimension d = 1 [Stolz '95]
- ► Any d, $u \leq 0$ (then $\sigma(H_{\omega}) = \mathbb{R}$) [G. Hislop Klein, CRM '07]

Existence of localization at the bottom of the spectrum: Anderson

The following theorem is based on joint work in progress:

- Germinet and Klein
- Aizenman, G., Klein and Warzel [Preprint, available on Arxiv]

Theorem Let H_{ω} be the Anderson Hamiltonian on $L^{2}(\mathbb{R}^{d})$ with single-site probability distribution μ , where

 $\{0,1\}\in \operatorname{supp} \mu\subset [0,1],$

but μ is otherwise arbitrary. Then H_{ω} exhibits Anderson localization as well as strong dynamical localization at the bottom of the spectrum.

μ continuous with some regularity

Localization at the bottom of the spectrum in the multi-dimensional case was known in the following cases:

- μ absolutely continuous with a bounded density.
 - Anderson localization: [Combes, Hislop 1994; Klopp 1995; Kirsch, Stollmann, Stolz 1998; Germinet, Klein 2001; Klopp 2002; Germinet, Klein 2003; Aizenman, Elgart, Naboko, Schenker, Stolz 2006, ...]
 - Dynamical localization: [Germinet, De Bièvre 1998; Damanik, Stollmann 2001; Germinet, Klein 2001; Aizenman, Elgart, Naboko, Schenker, Stolz 2006]
- μ Hölder continuous and some log-Hölder continuous: Improvements on the Wegner estimate [Stollmann 2000; Combes, Hislop, Klopp 2007] allow the extension of the proof of localization by a multiscale analysis as in [Germinet, Klein 2001].

The Bernoulli-Anderson Hamiltonian

The ω_{ζ} 's are Bernoulli random variables:

 $\mu(\{0\}) = \mu(\{1\}) = \frac{1}{2}$

- Anderson localization: [Bourgain, Kenig 2005]
- Dynamical localization: [Germinet, Klein]

How to prove localization

Localization can be proved by a multiscale analysis if we have

- A priori finite volume estimates: we can see the signature of localization at large enough scales.
- A Wegner estimate: control of the size of the finite volume resolvents with sufficient probability.
 - μ regular: Wegner estimate known at all scales.
 - μ Bernoulli and general case: Wegner estimate proved in each scale in the multiscale analysis.

The Theorem is proved by a multiscale analysis as in [Bourgain-Kenig 2005], using free sites, a quantitative unique continuation principle, classes of equivalence of configurations, and a new concentration bound for functions of i.i.d.r.v.'s.

Finite volume operators and free sites

Given a box
$$\Lambda = \Lambda_L(x)$$
 in \mathbb{R}^d , $Y \subset \Lambda \cap \mathbb{Z}^d$, and $t_Y = \{t_{\zeta}\}_{\zeta \in Y} \in [0,1]^Y$, let

$$H_{\omega,(Y,t_Y),\Lambda} := -\Delta_{\Lambda} + V_{\omega,(Y,t_Y),\Lambda} \quad \text{on} \quad L^2(\Lambda) \tag{6}$$

$$V_{\omega,(Y,t_Y),\Lambda} := \sum_{\zeta \in \Lambda \cap (\mathbb{Z}^d \setminus Y)} \omega_{\zeta} u(x-\zeta) + \sum_{\zeta \in Y} t_{\zeta} u(x-\zeta)$$
(7)
$$R_{\omega,(Y,t_Y),\Lambda}(z) := (H_{\omega,(Y,t_Y),\Lambda} - z)^{-1}$$
(8)

where $\Delta_{\Lambda} :=$ Laplacian on Λ with Dirichlet boundary condition. Definition: A box Λ_L is said to be (ω, Y, E, m) -good if for all $t_Y \in [0, 1]^Y$ we have

$$\|R_{\omega,(Y,t_Y),\Lambda}(E)\| \le e^{L^{1-}}$$
(9)

 $\|\chi_{x}R_{\omega,(Y,t_{Y}),\Lambda}(E)\chi_{y}\| \leq e^{-m|x-y|} \text{ if } |x-y| \geq \frac{L}{10}$ (10)

In this case Y consists of (ω, E) -free sites for the box Λ_L .

"A priori" finite volume estimates

Proposition: Let H_{ω} be the μ -Anderson Hamiltonian on $L^{2}(\mathbb{R}^{d})$, fix p > 0. Take $q \in \mathbb{N}$ and let $S_{\Lambda} = \Lambda \cap q\mathbb{Z}^{d}$ for a box Λ . Then there exists a finite scale $\tilde{L}_{u,\mu,d,p,q}$ and a constant $C_{u,\mu,d,p,q} > 0$, such that for all scales $L \geq \tilde{L}_{u,\mu,d,p,q}$, setting

$$E_L = C_{u,\mu,d,p,q} (\log L)^{-2}$$
 and $m_L = \frac{1}{2}\sqrt{E_L}$, (11)

we have

$$\mathbb{P}\left\{\Lambda_L \text{ is } (\boldsymbol{\omega}, S_{\Lambda_L}, E, m_L) \text{-good}\right\} \ge 1 - L^{-pd}$$
(12)

for all energies $E \in [0, E_L]$. In fact, for all energies $E \in [0, E_0]$, scales $L \ge \tilde{L}_{u,\mu,d,p,q}$, and boxes Λ_L , we have

$$\|R_{\omega,t_{S_{\Lambda_L}},\Lambda_L}(E)\| \le E_L^{-1} \tag{13}$$

and

$$\|\chi_{y}R_{\omega,t_{S_{\Lambda_{L}}},\Lambda_{L}}(E)\chi_{y'}\| \leq 2E_{L}^{-1}e^{-\sqrt{E_{L}}|y-y'|} \text{ for } y,y'\in\Lambda_{L}, \ |y-y'|\geq 4\sqrt{d}$$
(14)

for all $t_{S_{\Lambda_{I}}} \in [0,1]^{S_{\Lambda_{L}}}$ with probability $\geq 1 - L^{-pd}$.

The multiscale analysis

Proposition Fix an energy $E_0 > 0$. Pick $\rho = \frac{3}{8}d - , \quad \rho_1 = \frac{3}{4} - , \quad and \quad \rho_2 = 0 + ,$ more precisely, pick $p, \rho_1, \rho_2 = \rho_1^{n_1}$ with $n_1 \in \mathbb{N}$ such that $\frac{8}{11} < \frac{d}{d+p} < \rho_1 < \frac{3}{4}$ and $p < d(\frac{\rho_1}{2} - \rho_2)$ (15)Let $E \in [0, E_0]$, and suppose L is (E, m_0) -localizing for all $L \in [L_{0}^{\rho_{1}\rho_{2}}, L_{0}^{\rho_{1}}], where$ $m_0 \geq L_0^{- au_0}$ with $au_0 = 0 + <
ho_2$ (16)and L_0 is some sufficiently large scale.

Then L is $(E, \frac{m_0}{2})$ -localizing for all $L \ge L_0$.

Quantitative Unique Continuation Principle

Lemma (Bourgain-Kenig) Assume $\Delta \varphi = V \varphi$ on $B(0,L) \subset \mathbb{R}^d$ with $L \gg 1$, such that $\|\chi_0 \varphi\| = 1$, $\|\chi_x \varphi\| \le C$, $\|V\|_{\infty} \le C$. Let $|x_0| = R > 1$. Then $\|\chi_{x_0} \varphi\| \ge c e^{-cR^{\frac{4}{3}}(\log R)}$ (17) What is needed for the Wegner estimate To obtain the Wegner estimate from the Bourgain-Kenig's quantitative UCP one needs to prove the following:

Consider a box $\Lambda = \Lambda_L$, let $\ell = L^{\rho}$ with $\rho = \frac{3}{4} - (\text{so } L^{\frac{4}{3}\rho} = L^{1-})$. Let $S \subset \Lambda \cap \mathbb{Z}^d$ with $|S| = \ell^{d-}$, fix $\omega \in [0,1]^{(\Lambda \cap \mathbb{Z}^d) \setminus S}$, and set

$$H(t_S) := H_{\omega, t_S, \Lambda} \quad \text{for all} \quad t_S \in [0, 1]^S. \tag{18}$$

Consider an energy E_0 , set $I = (E_0 - e^{-c_1 \ell}, E_0 + e^{-c_1 \ell})$. Let $E_{\tau}(t_S)$ be a continuous eigenvalue parametrization of $\sigma(H(t_S))$ such that $E_{\tau}(0) \in I$ (a finite family). Let $E(t_S) = E_{\tau_0}(t_S)$ for some τ_0 . Suppose

$$e^{-c_3\ell^{\frac{4}{3}}\log\ell} \leq \frac{\partial}{\partial t_j} E(t_S) \leq e^{-c_2\ell}$$
 for all $j \in S$ if $E(t_S) \in I$. (19)

Let $\omega_{S} = \{\omega_{j}\}_{j \in S}$ be iid random variables with common probability distribution μ . Then for all large L

$$\mathbb{P}\left\{E(\omega_{S})\in(E_{0}-e^{-2c_{3}\ell^{\frac{4}{3}}\log\ell},E_{0}+e^{-2c_{3}\ell^{\frac{4}{3}}\log\ell})\right\}\leq\frac{C}{\ell^{\frac{d}{2}-}}$$
 (20)

The concentration bound

Theorem (AGKW)

Let F be a real-valued Borel function on \mathbb{R}^n such that for some $\alpha>0$ we have

$$\alpha t \leq F(\mathbf{t} + t\mathbf{e}_j) - F(\mathbf{t}) \tag{21}$$

for all $t \ge 0$, $t \in \mathbb{R}^n$, j = 1, 2, ..., n. Given random a variable X with non-degenerate probability distribution μ , consider the random variable $Z = F(X_1, X_2, ..., X_n)$, where $\{X_i\}_{i=1,...,n}$ are independent copies of X. Then there exist constants Θ_{μ} and $s_{\mu} > 0$ such that

$$\sup_{r \in \mathbb{R}} \mathbb{P}\{Z \in [r, r+s]\} \le \frac{\Theta_{\mu}}{\sqrt{n}} \quad \text{for all } s < s_{\mu}.$$
(22)

Bernoulli decompositions

Let X be a real random variable with distribution μ .

Definition

A representation $X \stackrel{\mathscr{D}}{=} Y(t) + \delta(t) \eta$, where

- η is a $\{0,1\}$ -Bernoulli rv with $p:=\mathbb{P}(\eta=1)\in(0,1),$
- t an independent rv with the uniform distribution on (0,1),

•
$$Y:(0,1) \rightarrow \mathbb{R}$$
,

•
$$\delta:(0,1)
ightarrow [0,\infty),$$

is called a Bernoulli decomposition of X.

Theorem (AGKW)

Any non-degenerate rv has a Bernoulli decomposition. One may even choose $\inf \delta > 0$.

Application: I. Concentration inequalities

Let $\{\eta_i\}$ be independent copies of a $\{0,1\}$ -Bernoulli rv.

Classical Littlewood-Offord inequality: Let $p = \frac{1}{2}$ and $a_1, \ldots, a_N \in \mathbb{R}$ with $|a_j| > 1$. Then for any interval I of length at most one

$$\mathbb{P}\Big(\sum_{j=1}^{N} a_j \eta_j \in I\Big) \leq rac{\mathrm{const}}{\sqrt{N}}.$$
 Erdös '49

Consequence of

Probabilistic Sperner/LYM inequalities:

Let $\mathscr{A} \subset \{0,1\}^N$ be an **antichain**, i.e., any two $\eta, \eta' \in \mathscr{A}$ are not comparable in the sense of partial order on $\{0,1\}^N$.

Then

$$\mathbb{P}(\eta \in \mathscr{A}) \leq \frac{\mathrm{const}}{\sigma_p \sqrt{N}},$$

where
$$\sigma_p:=\sqrt{p(1-p)}.$$

New concentration inequality

Theorem Let $X_1, ..., X_N$ independent rv's & pick $x_- < x_+$ and $p_{\pm} > 0$ s.t. $\mathbb{P}\{X_j \le x_-\} \ge p_-$ and $\mathbb{P}\{X_j \ge x_+\} \ge p_+$. Let $\Phi : \mathbb{R}^N \to \mathbb{R}$ be monotone s.t. for some $\varepsilon > 0$ $\Phi(t + ve_j) - \Phi(t) \ge \varepsilon$ for all $v > x_+ - x_-$, $t \in \mathbb{R}^N$ and $j \in \{1, ..., N\}$. Then

$$\sup_{u\in\mathbb{R}}\mathbb{P}\big\{\Phi(X_1,\ldots,X_N)\in[u,u+\alpha]\big\}\leq\frac{4}{\sqrt{N}}\sqrt{\frac{1}{p_+}+\frac{1}{p_-}}.$$

Remark: For $\Phi(X_1, ..., X_N) = \sum_{j=1}^N X_j$ such inequalities go back to Doeblin/Lévy '36, Erdös '49, Kolmogorov '58, Rogozin '61, Esseen '68, Kesten '69. Application: II. Singularity of random matrices

Theorem (Bruneau, G. '07) Let $M_N = (m_{ij})$ be a matrix, whose entries are independent rv's. Suppose there is $p \in (0, \frac{1}{2})$ s.t.

 $\mathbb{P}(m_{ij} < x^-_{ij}) > p$ and $\mathbb{P}(m_{ij} > x^+_{ij}) > p$

for all $i,j \in \{1, \dots N\}$ and some $x_{ij}^- < x_{ij}^+.$ Then

Based on results by Komlós '68. Improves on a remark of Tao and Vu '06.

The continuous Delone Hamiltonian

Definition

Let 0 < r < R be given. A countable subset Q of \mathbb{R}^d is a (r, R)-Delone set iff

- $\operatorname{Card}(Q \cap \Lambda_r) \leq 1$, for any Λ_r ;
- $\operatorname{Card}(Q \cap \Lambda_R) \geq 1$, for any Λ_R .

We set $\mathscr{D}_{r,R}$ to be the set of all (r, R)-Delone sets.

The Delone Hamiltonian is the random Schrödinger operator

$$H_Q := -\Delta + V_Q \quad \text{on} \quad L^2(\mathbb{R}^d), \tag{23}$$

with

$$V_Q(x) := \sum_{\zeta \in Q} u(x - \zeta), \qquad (24)$$

where

- The single-site potential L[∞](ℝ^d) ∋ u ≥ cχ_{Λδ}, c,δ > 0, is a measurable function on ℝ^d with compact support.
- ► *Q* is a (*r*, *R*)-Delone set.

Note that $\inf \{ \sigma(H_Q), Q \in \mathscr{D}_{r,R} \} > 0.$

Existence of loc. at the bottom of the spectrum: Delone The topology in $\mathscr{D}_{r,R}$ is generated by the set of neighborhoods:

 $N(Q,\varepsilon,L)=\{Q',\forall q\in Q\cap\Lambda_L, {\rm dist}(q,Q'\cap\Lambda_L)\leq \varepsilon, \text{ and } \longleftrightarrow\}.$

Theorem (G., Müller - in progress)

- ► Let Q be in $\mathscr{D}_{r,R}$. There exists (r, R)-Delone sets Q' arbitrarily close to Q such that $\inf \sigma(H_Q) = \inf \sigma(H_{Q'})$, and $H_{Q'}$ exhibits Anderson localization as well as strong dynamical localization at the bottom of its spectrum.
- There exists in $\mathscr{D}_{r,R}$ a dense union of G_{δ} , such that associated Delone Hamiltonians exhibits Anderson localization as well as strong dynamical localization at the bottom of their spectrum.

Related result:

► There is a dense G_{δ} of (r, R)-Delone sets in $\mathscr{D}_{r,R}$ such that the associated Delone Hamiltonian has a singular continuous component in its spectrum [Lenz-Stollmann '06]