Universal occurrence of localization in continuum random Schrödinger Hamiltonians

François Germinet
Université de Cergy-Pontoise, France

Moeciu, QMATH 10, September 2007

Special thank to A. Klein and S. Warzel for their slides!

The continuous Anderson Hamiltonian

The Anderson Hamiltonian is the random Schrödinger operator

$$
\begin{equation*}
H_{\omega}:=-\Delta+V_{\omega} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{d}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{\omega}(x):=\sum_{\zeta \in \mathbb{Z}^{d}} \omega_{\zeta} u(x-\zeta) \tag{2}
\end{equation*}
$$

where

- The single-site potential $u \geq 0$ is a bounded measurable function on \mathbb{R}^{d} with compact support, $u \geq c \chi_{\Lambda_{\delta}}, c, \delta>0$, i.e. u uniformly bounded away from zero in a neighborhood of the origin.
- $\omega=\left\{\omega_{\zeta}\right\}_{\zeta \in \mathbb{Z}^{d}}$ is a family of independent, identically distributed random variables with common probability distribution μ, such that
- μ is non-degenerate with compact support $\subset[0, \infty[$.
- $0 \in \operatorname{supp} \mu$.

Without loss of generality we may just assume

$$
\{0,1\} \in \operatorname{supp} \mu \subset[0,1] .
$$

Basic properties

- H_{ω} is a random nonnegative self-adjoint operator.
- H_{ω} is \mathbb{Z}^{d}-ergodic: there exists an ergodic family $\left\{\tau_{y} ; y \in \mathbb{Z}^{d}\right\}$ of measure preserving transformations on the underlying probability space (Ω, \mathbb{P}) such that

$$
U(y) H_{\omega} U(y)^{*}=H_{\tau_{y}(\omega)} \quad \text { for all } \quad y \in \mathbb{Z}^{d}
$$

where $(U(y) f)(x)=f(x-y)$. It follows that

- The spectrum is nonrandom:

$$
\sigma\left(H_{\omega}\right)=[0, \infty[\text { with probability one. }
$$

- The pure point, absolutely continuous, and singular continuous components of $\sigma\left(H_{\omega}\right)$ are also nonrandom (i.e., equal to fixed sets) with probability one.

The continuous Poisson Hamiltonian

The Poisson Hamiltonian is the random Schrödinger operator

$$
\begin{equation*}
H_{\omega)}:=-\Delta+V_{\omega} \quad \text { on } \quad \mathrm{L}^{2}\left(\mathbb{R}^{d}\right) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{\omega}(x):=\sum_{\zeta \in X(\omega)} u(x-\zeta) \tag{4}
\end{equation*}
$$

where

- The single-site potential $u \geq 0$ is a bounded measurable function on \mathbb{R}^{d} with compact support, $u \geq c \chi_{\Lambda_{\delta}}, c, \delta>0$.
- $\omega \rightarrow X(\omega) \subset \mathbb{R}^{d}$ is a Poisson process with density $\rho>0$.

The family is \mathbb{R}^{d}-ergodic and $\sigma\left(H_{\omega}\right)=[0, \infty[$ a.s.

Related models and generalizations

One may replace $-\Delta$ by
$-\Delta+V_{\text {per }}\left[\right.$ Kirsch Stolz Stolmann '98] or $-\Delta+V_{\text {bg }}$

- $-\nabla \frac{1}{\rho_{\omega}} \nabla$ [Figotin, Klein '96]
- $(-i \nabla+A)^{2}, d=2$, constant magnetic field, QHE [Combes Hislop'95, Wang '97, G. Klein'03] [G. Klein Schenker'07]
- $\left(-i \nabla+A_{\omega}\right)^{2}$ [Ghribi, Hislop, Klopp '07]

Other possibilities

- Replace $u \leq 0$ or u non sign definite [Klopp'95]
- Replace iid random variables ω_{i} by independant rv.
- Locate the impurities on a Delone set.
- Study the random displacement model [Klopp '93]
- Consider several interacting particles in a random potential [Chulaevski-Suhov '07, Kirsch '07]

Anderson Localization

Definition: The Anderson Hamiltonian H_{ω} exhibits Anderson localization at the bottom of the spectrum if there exist $E_{0}>0$ and $m>0$, such that the following holds with probability one:

- H_{ω} has pure point spectrum in $\left[0, E_{0}\right]$.
- If ϕ is an eigenfunction of H_{ω} with eigenvalue $E \in\left[0, E_{0}\right]$,

$$
\left\|\chi_{x} \phi\right\| \leq C_{\omega, \phi} e^{-m|x|} \quad \text { for all } \quad \mathrm{x} \in \mathbb{R}^{d}
$$

(χ_{x} is the characteristic function of a cube of side one centered at x.)

- There exist $\tau>1$ and $s \in] 0,1$ [such that for all eigenfunctions ψ, ϕ (possibly equal) with the same eigenvalue $E \in\left[0, E_{0}\right]$,

$$
\begin{equation*}
\left\|\chi_{x} \psi\right\|\left\|\chi_{y} \phi\right\| \leq C_{\mathbf{X}}\|\psi\|_{-}\|\phi\|_{-} e^{|y|^{\tau}} e^{-|x-y|^{s}} \text { for } x, y \in \mathbb{Z}^{d} \tag{5}
\end{equation*}
$$

- The eigenvalues of H_{ω} in $\left[0, E_{0}\right]$ have finite multiplicity.

Dynamical Localization

Definition: The Anderson Hamiltonian H_{ω} exhibits strong dynamical localization at the bottom of the spectrum if there exist $E_{0}>0$ and $s>0$ such that

$$
\mathbb{E}\left\{\sup _{t \in \mathbb{R}}\left\||x|^{\frac{p}{2}} e^{-i t H_{\omega}} \chi_{\left[0, E_{0}\right]}\left(H_{\omega}\right) \chi_{0}\right\|_{2}^{\frac{2 s}{p}}\right\}<\infty \quad \text { for all } p \geq 1
$$

Existence of localization at the bottom of the spectrum:

Poisson

The following theorem is a joint work:

- Germinet, Hislop and Klein [J. Europ. Math. Soc. '07]

Theorem
Let H_{ω} be the Poisson Hamiltonian on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ with Poisson density $\rho>0$. Then there exists $E(\rho)>0$ such that H_{ω} exhibits Anderson localization as well as strong dynamical localization in $[0, E(\rho)]$.
Related results:

- Lifshitz tails [Donsker-Varadhan '75]
- Localization in dimension $d=1$ [Stolz '95]
- Any $d, u \leq 0$ (then $\sigma\left(H_{\omega}\right)=\mathbb{R}$) [G. Hislop Klein, CRM '07]

Existence of localization at the bottom of the spectrum:

Anderson

The following theorem is based on joint work in progress:

- Germinet and Klein
- Aizenman, G., Klein and Warzel [Preprint, available on Arxiv]

Theorem
Let H_{ω} be the Anderson Hamiltonian on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ with single-site probability distribution μ, where

$$
\{0,1\} \in \operatorname{supp} \mu \subset[0,1]
$$

but μ is otherwise arbitrary. Then H_{ω} exhibits Anderson localization as well as strong dynamical localization at the bottom of the spectrum.

μ continuous with some regularity

Localization at the bottom of the spectrum in the multi-dimensional case was known in the following cases:

- μ absolutely continuous with a bounded density.
- Anderson localization: [Combes, Hislop 1994; Klopp 1995; Kirsch, Stollmann, Stolz 1998; Germinet, Klein 2001; Klopp 2002; Germinet, Klein 2003; Aizenman, Elgart, Naboko, Schenker, Stolz 2006, ...]
- Dynamical localization: [Germinet, De Bièvre 1998; Damanik, Stollmann 2001; Germinet, Klein 2001; Aizenman, Elgart, Naboko, Schenker, Stolz 2006]
- μ Hölder continuous and some log-Hölder continuous: Improvements on the Wegner estimate [Stollmann 2000; Combes, Hislop, Klopp 2007] allow the extension of the proof of localization by a multiscale analysis as in [Germinet, Klein 2001].

The Bernoulli-Anderson Hamiltonian

The ω_{ζ} 's are Bernoulli random variables:

$$
\mu(\{0\})=\mu(\{1\})=\frac{1}{2}
$$

- Anderson localization: [Bourgain, Kenig 2005]
- Dynamical localization: [Germinet, Klein]

How to prove localization

Localization can be proved by a multiscale analysis if we have

- A priori finite volume estimates: we can see the signature of localization at large enough scales.
- A Wegner estimate: control of the size of the finite volume resolvents with sufficient probability.
- μ regular: Wegner estimate known at all scales.
- μ Bernoulli and general case: Wegner estimate proved in each scale in the multiscale analysis.

The Theorem is proved by a multiscale analysis as in [Bourgain-Kenig 2005], using free sites, a quantitative unique continuation principle, classes of equivalence of configurations, and a new concentration bound for functions of i.i.d.r.v.'s.

Finite volume operators and free sites

Given a box $\Lambda=\Lambda_{L}(x)$ in $\mathbb{R}^{d}, Y \subset \Lambda \cap \mathbb{Z}^{d}$, and $t_{Y}=\left\{t_{\zeta}\right\}_{\zeta \in Y} \in[0,1]^{Y}$, let

$$
\begin{align*}
H_{\omega,\left(Y, t_{\gamma}\right), \Lambda} & :=-\Delta_{\Lambda}+V_{\omega,\left(Y, t_{\gamma}\right), \Lambda} \text { on } \mathrm{L}^{2}(\Lambda) \tag{6}\\
V_{\omega,\left(Y, t_{\gamma}\right), \Lambda}: & =\sum_{\zeta \in \Lambda \cap\left(\mathbb{Z}^{d} \backslash Y\right)} \omega_{\zeta} u(x-\zeta)+\sum_{\zeta \in Y} t_{\zeta} u(x-\zeta) \tag{7}\\
R_{\omega,\left(Y, t_{\gamma}\right), \Lambda}(z) & :=\left(H_{\omega,\left(Y, t_{\gamma}\right), \Lambda}-z\right)^{-1} \tag{8}
\end{align*}
$$

where $\Delta_{\Lambda}:=$ Laplacian on Λ with Dirichlet boundary condition. Definition: A box Λ_{L} is said to be (ω, Y, E, m)-good if for all $t_{Y} \in[0,1]^{Y}$ we have

$$
\begin{align*}
\left\|R_{\omega,\left(Y, t_{Y}\right), \Lambda}(E)\right\| & \leq \mathrm{e}^{L^{1-}} \tag{9}\\
\left\|\chi_{x} R_{\omega,\left(Y, t_{Y}\right), \Lambda}(E) \chi_{y}\right\| & \leq \mathrm{e}^{-m|x-y|} \text { if }|x-y| \geq \frac{L}{10} \tag{10}
\end{align*}
$$

In this case Y consists of (ω, E)-free sites for the box Λ_{L}.

"A priori" finite volume estimates

Proposition: Let H_{ω} be the μ-Anderson Hamiltonian on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$, fix $p>0$. Take $q \in \mathbb{N}$ and let $S_{\Lambda}=\Lambda \cap q \mathbb{Z}^{d}$ for a box Λ. Then there exists a finite scale $\tilde{L}_{\mu, \mu, d, p, q}$ and a constant $C_{\mu, \mu, d, p, q}>0$, such that for all scales $L \geq \tilde{L}_{\mu, \mu, d, p, q}$, setting

$$
\begin{equation*}
E_{L}=C_{\mu, \mu, d, p, q}(\log L)^{-2} \quad \text { and } \quad m_{L}=\frac{1}{2} \sqrt{E_{L}}, \tag{11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbb{P}\left\{\Lambda_{L} \text { is }\left(\omega, S_{\Lambda_{L}}, E, m_{L}\right)-\operatorname{good}\right\} \geq 1-L^{-p d} \tag{12}
\end{equation*}
$$

for all energies $E \in\left[0, E_{L}\right]$. In fact, for all energies $E \in\left[0, E_{0}\right]$, scales $L \geq \tilde{L}_{u, \mu, d, p, q}$, and boxes Λ_{L}, we have

$$
\begin{equation*}
\left\|R_{\omega, t_{S_{\Lambda_{L}}}, \wedge_{L}}(E)\right\| \leq E_{L}^{-1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\chi_{y} R_{\omega, t_{\Lambda_{\Lambda}}, \Lambda_{L}}(E) \chi_{y^{\prime}}\right\| \leq 2 E_{L}^{-1} \mathrm{e}^{-\sqrt{E_{L}}\left|y-y^{\prime}\right|} \text { for } y, y^{\prime} \in \Lambda_{L},\left|y-y^{\prime}\right| \geq 4 \sqrt{d} \tag{14}
\end{equation*}
$$

for all $t_{S_{\Lambda_{L}}} \in[0,1]^{S_{\Lambda_{L}}}$ with probability $\geq 1-L^{-p d}$.

The multiscale analysis

Proposition
Fix an energy $E_{0}>0$. Pick

$$
p=\frac{3}{8} d-, \quad \rho_{1}=\frac{3}{4}-, \quad \text { and } \quad \rho_{2}=0+,
$$

more precisely, pick p, $\rho_{1}, \rho_{2}=\rho_{1}^{n_{1}}$ with $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{8}{11}<\frac{d}{d+p}<\rho_{1}<\frac{3}{4} \quad \text { and } \quad p<d\left(\frac{\rho_{1}}{2}-\rho_{2}\right) \tag{15}
\end{equation*}
$$

Let $E \in\left[0, E_{0}\right]$, and suppose L is $\left(E, m_{0}\right)$-localizing for all $L \in\left[L_{0}^{\rho_{1} \rho_{2}}, L_{0}^{\rho_{1}}\right]$, where

$$
\begin{equation*}
m_{0} \geq L_{0}^{-\tau_{0}} \quad \text { with } \quad \tau_{0}=0+<\rho_{2} \tag{16}
\end{equation*}
$$

and L_{0} is some sufficiently large scale.
Then L is $\left(E, \frac{m_{0}}{2}\right)$-localizing for all $L \geq L_{0}$.

Quantitative Unique Continuation Principle

Lemma (Bourgain-Kenig)

Assume $\Delta \varphi=V \varphi$ on $B(0, L) \subset \mathbb{R}^{d}$ with $L \gg 1$, such that $\left\|\chi_{0} \varphi\right\|=1,\left\|\chi_{x} \varphi\right\| \leq C,\|V\|_{\infty} \leq C$. Let $\left|x_{0}\right|=R>1$.
Then

$$
\begin{equation*}
\left\|\chi_{x_{0}} \varphi\right\| \geq c \mathrm{e}^{-c R^{\frac{4}{3}}(\log R)} \tag{17}
\end{equation*}
$$

What is needed for the Wegner estimate

To obtain the Wegner estimate from the Bourgain-Kenig's quantitative UCP one needs to prove the following:
Consider a box $\Lambda=\Lambda_{L}$, let $\ell=L^{\rho}$ with $\rho=\frac{3}{4}-$ (so $L^{\frac{4}{3} \rho}=L^{1-}$). Let $S \subset \wedge \cap \mathbb{Z}^{d}$ with $|S|=\ell^{d-}$, fix $\omega \in[0,1]^{\left(\wedge \cap \mathbb{Z}^{d}\right) \backslash S}$, and set

$$
\begin{equation*}
H\left(t_{S}\right):=H_{\omega, t_{s}, \Lambda} \quad \text { for all } \quad t_{S} \in[0,1]^{S} . \tag{18}
\end{equation*}
$$

Consider an energy E_{0}, set $I=\left(E_{0}-\mathrm{e}^{-c_{1} \ell}, E_{0}+\mathrm{e}^{-c_{1} \ell}\right)$. Let $E_{\tau}\left(t_{s}\right)$ be a continuous eigenvalue parametrization of $\sigma\left(H\left(t_{s}\right)\right)$ such that $E_{\tau}(0) \in I$ (a finite family). Let $E\left(t_{s}\right)=E_{\tau_{0}}\left(t_{s}\right)$ for some τ_{0}.
Suppose

$$
\begin{equation*}
\mathrm{e}^{-c_{3} 3 \frac{4}{3} \log \ell} \leq \frac{\partial}{\partial t_{j}} E\left(t_{S}\right) \leq \mathrm{e}^{-c_{2} \ell} \quad \text { for all } \quad j \in S \quad \text { if } \quad E\left(t_{S}\right) \in l . \tag{19}
\end{equation*}
$$

Let $\omega_{S}=\left\{\omega_{j}\right\}_{j \in S}$ be iid random variables with common probability distribution μ. Then for all large L

$$
\begin{equation*}
\mathbb{P}\left\{E\left(\omega_{S}\right) \in\left(E_{0}-\mathrm{e}^{-2 c_{3} \ell^{\frac{4}{3}} \log \ell}, E_{0}+\mathrm{e}^{-2 c_{3} \ell^{\frac{4}{3}} \log \ell}\right)\right\} \leq \frac{C}{\ell^{\frac{d}{2}}-} \tag{20}
\end{equation*}
$$

The concentration bound

Theorem (AGKW)

Let F be a real-valued Borel function on \mathbb{R}^{n} such that for some $\alpha>0$ we have

$$
\begin{equation*}
\alpha t \leq F\left(\mathbf{t}+t \mathrm{e}_{j}\right)-F(\mathbf{t}) \tag{21}
\end{equation*}
$$

for all $t \geq 0, \mathbf{t} \in \mathbb{R}^{n}, j=1,2, \ldots, n$.
Given random a variable X with non-degenerate probability distribution μ, consider the random variable $Z=F\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where $\left\{X_{i}\right\}_{i=1, \ldots, n}$ are independent copies of X.
Then there exist constants Θ_{μ} and $s_{\mu}>0$ such that

$$
\begin{equation*}
\sup _{r \in \mathbb{R}} \mathbb{P}\{Z \in[r, r+s]\} \leq \frac{\Theta_{\mu}}{\sqrt{n}} \quad \text { for all } s<s_{\mu} \tag{22}
\end{equation*}
$$

Bernoulli decompositions

Let X be a real random variable with distribution μ.

Definition

A representation $\quad X \stackrel{\mathscr{O}}{=} Y(t)+\delta(t) \eta \quad$, where

- $\quad \eta$ is a $\{0,1\}$-Bernoulli rv with $p:=\mathbb{P}(\eta=1) \in(0,1)$,
- $\quad t$ an independent $r v$ with the uniform distribution on $(0,1)$,
- $Y:(0,1) \rightarrow \mathbb{R}$,
- $\delta:(0,1) \rightarrow[0, \infty)$,
is called a Bernoulli decomposition of X.

Theorem (AGKW)
Any non-degenerate rv has a Bernoulli decomposition. One may even choose $\inf \delta>0$.

Application: I. Concentration inequalities

Let $\left\{\eta_{j}\right\}$ be independent copies of a $\{0,1\}$-Bernoulli rv.
Classical Littlewood-Offord inequality:
Let $p=\frac{1}{2}$ and $a_{1}, \ldots, a_{N} \in \mathbb{R}$ with $\left|a_{j}\right|>1$. Then for any interval $/$ of length at most one

$$
\mathbb{P}\left(\sum_{j=1}^{N} a_{j} \eta_{j} \in l\right) \leq \frac{\text { const }}{\sqrt{N}} . \quad \text { Erdös '49 }
$$

Consequence of
Probabilistic Sperner/LYM inequalities:
Let $\mathscr{A} \subset\{0,1\}^{N}$ be an antichain, i.e., any two $\eta, \eta^{\prime} \in \mathscr{A}$ are not comparable in the sense of partial order on $\{0,1\}^{N}$.
Then $\quad \mathbb{P}(\eta \in \mathscr{A}) \leq \frac{\text { const }}{\sigma_{p} \sqrt{N}}$, where $\sigma_{p}:=\sqrt{p(1-p)}$.

New concentration inequality

Theorem
Let $X_{1}, \ldots X_{N}$ independent rv's \& pick $x_{-}<x_{+}$and $p_{ \pm}>0$ s.t.

$$
\mathbb{P}\left\{X_{j} \leq x_{-}\right\} \geq p_{-} \quad \text { and } \quad \mathbb{P}\left\{X_{j} \geq x_{+}\right\} \geq p_{+}
$$

Let $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be monotone s.t. for some $\varepsilon>0$

$$
\Phi\left(t+v \boldsymbol{e}_{j}\right)-\Phi(\boldsymbol{t}) \geq \varepsilon
$$

for all $v>x_{+}-x_{-}, t \in \mathbb{R}^{N}$ and $j \in\{1, \ldots, N\}$. Then

$$
\sup _{u \in \mathbb{R}} \mathbb{P}\left\{\Phi\left(X_{1}, \ldots, X_{N}\right) \in[u, u+\alpha]\right\} \leq \frac{4}{\sqrt{N}} \sqrt{\frac{1}{p_{+}}+\frac{1}{p_{-}}} .
$$

Remark: For $\Phi\left(X_{1}, \ldots, X_{N}\right)=\sum_{j=1}^{N} X_{j}$ such inequalities go back to Doeblin/Lévy '36, Erdös '49, Kolmogorov '58, Rogozin '61, Esseen '68, Kesten '69.

Application: II. Singularity of random matrices

Theorem (Bruneau, G. '07)
Let $M_{N}=\left(m_{i j}\right)$ be a matrix, whose entries are independent rv's.
Suppose there is $p \in\left(0, \frac{1}{2}\right)$ s.t.

$$
\mathbb{P}\left(m_{i j}<x_{i j}^{-}\right)>p \quad \text { and } \quad \mathbb{P}\left(m_{i j}>x_{i j}^{+}\right)>p
$$

for all $i, j \in\{1, \ldots N\}$ and some $x_{i j}^{-}<x_{i j}^{+}$. Then

$$
\mathbb{P}\left(M_{N} \text { is singular }\right) \leq \frac{\text { const }}{\sqrt{N}}
$$

Based on results by Komlós '68. Improves on a remark of Tao and Vu '06.

The continuous Delone Hamiltonian

Definition

Let $0<r<R$ be given. A countable subset Q of \mathbb{R}^{d} is a (r, R)-Delone set iff

- $\operatorname{Card}\left(Q \cap \Lambda_{r}\right) \leq 1$, for any Λ_{r};
- $\quad \operatorname{Card}\left(Q \cap \Lambda_{R}\right) \geq 1$, for any Λ_{R}.

We set $\mathscr{D}_{r, R}$ to be the set of all (r, R)-Delone sets.
The Delone Hamiltonian is the random Schrödinger operator

$$
\begin{equation*}
H_{Q}:=-\Delta+V_{Q} \quad \text { on } \quad L^{2}\left(\mathbb{R}^{d}\right) \tag{23}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{Q}(x):=\sum_{\zeta \in Q} u(x-\zeta) \tag{24}
\end{equation*}
$$

where

- The single-site potential $\mathrm{L}^{\infty}\left(\mathbb{R}^{d}\right) \ni u \geq c \chi_{\wedge_{\delta}}, c, \delta>0$, is a measurable function on \mathbb{R}^{d} with compact support.
- Q is a (r, R)-Delone set.

Note that $\inf \left\{\sigma\left(H_{Q}\right), Q \in \mathscr{D}_{r, R}\right\}>0$.

Existence of loc. at the bottom of the spectrum: Delone

 The topology in $\mathscr{D}_{r, R}$ is generated by the set of neighborhoods:$$
N(Q, \varepsilon, L)=\left\{Q^{\prime}, \forall q \in Q \cap \Lambda_{L}, \operatorname{dist}\left(q, Q^{\prime} \cap \Lambda_{L}\right) \leq \varepsilon, \text { and } \longleftrightarrow\right\}
$$

Theorem (G., Müller - in progress)

- Let Q be in $\mathscr{D}_{r, R}$. There exists (r, R)-Delone sets Q^{\prime} arbitrarily close to Q such that $\inf \sigma\left(H_{Q}\right)=\inf \sigma\left(H_{Q^{\prime}}\right)$, and $H_{Q^{\prime}}$ exhibits Anderson localization as well as strong dynamical localization at the bottom of its spectrum.
- There exists in $\mathscr{D}_{r, R}$ a dense union of G_{δ}, such that associated Delone Hamiltonians exhibits Anderson localization as well as strong dynamical localization at the bottom of their spectrum.

Related result:

- There is a dense G_{δ} of (r, R)-Delone sets in $\mathscr{D}_{r, R}$ such that the associated Delone Hamiltonian has a singular continuous component in its spectrum [Lenz-Stollmann '06]

