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The continuous Anderson Hamiltonian
The Anderson Hamiltonian is the random Schrddinger operator

Hy = —-A+V, on L% RY), (1)
with
Vo(x) =) oru(x—7{), (2)
Cezd
where

» The single-site potential v > 0 is a bounded measurable
function on RY with compact support, u > CXns» C,0 >0, ie.
u uniformly bounded away from zero in a neighborhood of the
origin.
> 0 ={0¢}sczq is a family of independent, identically
distributed random variables with common probability
distribution p, such that
» U is non-degenerate with compact support C [0, o[
» 0 €supppu.
Without loss of generality we may just assume

{0,1} € suppu C [0, 1].



Basic properties

» H,, is a random nonnegative self-adjoint operator.

> Hy is Z%-ergodic: there exists an ergodic family {7,; y € Z9}
of measure preserving transformations on the underlying
probability space (Q2,P) such that

U(y)HoU(y)" = Hy(w) forall ye zd

where (U(y)f)(x) =f(x—y). It follows that

» The spectrum is nonrandom:

6(Hyp) =[0,00[ with probability one.

» The pure point, absolutely continuous, and singular continuous
components of o(H,) are also nonrandom (i.e., equal to fixed
sets) with probability one.



The continuous Poisson Hamiltonian

The Poisson Hamiltonian is the random Schrodinger operator

Hp):=—-A+Vy on L*(RY), (3)
with
Vo(x):= ), u(x=0), (4)
{eX(w)
where

» The single-site potential v > 0 is a bounded measurable
function on RY with compact support, u > CXns. €,0 > 0.

» ® — X(w) C R? is a Poisson process with density p > 0.
The family is R%-ergodic and o(Hy) = [0,c9[ a.s.



Related models and generalizations

One may replace —A by
» —A+ Ve [Kirsch Stolz Stolmann 98] or —A + W,
> —VP%V [Figotin, Klein "96]

> (—iV+A)2, d = 2, constant magnetic field, QHE [Combes
Hislop’95, Wang 97, G. Klein'03] [G. Klein Schenker'07]

> (—iV+Ay)? [Ghribi, Hislop, Klopp '07]
Other possibilities

» Replace u <0 or u non sign definite [Klopp'95]

v

Replace iid random variables w; by independant rv.

v

Locate the impurities on a Delone set.

v

Study the random displacement model [Klopp "93]

v

Consider several interacting particles in a random potential
[Chulaevski-Suhov 07, Kirsch '07]



Anderson Localization

Definition: The Anderson Hamiltonian H, exhibits Anderson
localization at the bottom of the spectrum if there exist Eg > 0 and
m > 0, such that the following holds with probability one:

» Hy, has pure point spectrum in [0, Eg].
> If ¢ is an eigenfunction of H, with eigenvalue E € [0, Eg],

[xx¢ | < Cop e~ for all xeRY

(xx is the characteristic function of a cube of side one
centered at x.)

» There exist 7 > 1 and s €]0,1[ such that for all eigenfunctions
v, ¢ (possibly equal) with the same eigenvalue E € [0, Eo],

Il 2,01 < Ol (191 e e " for x,y € 2 (5)

» The eigenvalues of Hy, in [0, Eg] have finite multiplicity.



Dynamical Localization

Definition:  The Anderson Hamiltonian H, exhibits strong
dynamical localization at the bottom of the spectrum if there exist
Eg > 0 and s > 0 such that

2s
E{SUPH‘X’geitHwX[O‘Eo](Hw)XO ¢ } <o forall p>1
teR ' 2



Existence of localization at the bottom of the spectrum:
Poisson

The following theorem is a joint work:
» Germinet, Hislop and Klein [J. Europ. Math. Soc. '07]

Theorem

Let Hy, be the Poisson Hamiltonian on L?(R9) with Poisson density
p > 0. Then there exists E(p) > 0 such that H, exhibits Anderson
localization as well as strong dynamical localization in [0, E(p)].

Related results:
» Lifshitz tails [Donsker-Varadhan '75]
» Localization in dimension d =1 [Stolz '95]

» Any d, u <0 (then 6(Hyp) =R) [G. Hislop Klein, CRM '07]



Existence of localization at the bottom of the spectrum:
Anderson

The following theorem is based on joint work in progress:
» Germinet and Klein

» Aizenman, G., Klein and Warzel [Preprint, available on Arxiv]

Theorem
Let Hy, be the Anderson Hamiltonian on L.?(R?) with single-site
probability distribution |1, where

{0,1} € suppu C [0,1],

but u is otherwise arbitrary. Then Hgy, exhibits Anderson
localization as well as strong dynamical localization at the bottom
of the spectrum.



W continuous with some regularity

Localization at the bottom of the spectrum in the
multi-dimensional case was known in the following cases:

> U absolutely continuous with a bounded density.

» Anderson localization: [Combes, Hislop 1994; Klopp 1995;
Kirsch, Stollmann, Stolz 1998; Germinet, Klein 2001; Klopp
2002; Germinet, Klein 2003; Aizenman, Elgart, Naboko,
Schenker, Stolz 2006, ...]

» Dynamical localization: [Germinet, De Biévre 1998; Damanik,
Stollmann 2001; Germinet, Klein 2001; Aizenman, Elgart,
Naboko, Schenker, Stolz 2006]

» 1 Holder continuous and some log-Holder continuous:
Improvements on the Wegner estimate [Stollmann 2000;
Combes, Hislop, Klopp 2007] allow the extension of the proof
of localization by a multiscale analysis as in [Germinet, Klein
2001].



The Bernoulli-Anderson Hamiltonian

The (og's are Bernoulli random variables:

u({0) = u({1)) = ;

» Anderson localization: [Bourgain, Kenig 2005]

» Dynamical localization: [Germinet, Klein]



How to prove localization

Localization can be proved by a multiscale analysis if we have

» A priori finite volume estimates: we can see the signature of
localization at large enough scales.

» A Wegner estimate: control of the size of the finite volume
resolvents with sufficient probability.
» [ regular: Wegner estimate known at all scales.

» 1 Bernoulli and general case: Wegner estimate proved in each
scale in the multiscale analysis.

The Theorem is proved by a multiscale analysis as in
[Bourgain-Kenig 2005], using free sites, a quantitative unique
continuation principle, classes of equivalence of configurations, and
a new concentration bound for functions of i.i.d.r.v.'s.



Finite volume operators and free sites

Given a box A = A;(x) in RY, Y c ANZ9, and
y = {tg}geye [0,1], let

Ho.(v ) A = —BA+ Vo (v.ey)ya on L2(A) (6)

Vovama = Y, oculx=C0)+ Y tru(x—=8) (7)
Lenn(z9\Y) fey

Ro(v.ty)A(2) = (Ho(v.epyn—2) " (8)

where Ap := Laplacian on A with Dirichlet boundary condition.
Definition: A box A, is said to be (o, Y, E, m)-good if for all
ty €[0,1]Y we have
1—
1Rw.(v.ty)a(E)ll < e (9)
1R (v ey (BNl e ™Y1 if x—y| > f5 (10)

In this case Y consists of (@, E)-free sites for the box A;.



“A priori" finite volume estimates

Proposition: Let Hg, be the u-Anderson Hamiltonian on L?(RY),
fix p> 0. Take g € N and let S, = AN gZ? for a box A. Then
there exists a finite scale Zu%d’p’q and a constant C, ;4 p.q >0,
such that for all scales L > L, 4.4, Setting

Ei=Cupdpq(logl)™ and my=3iE, (11)

we have
P{A; is (@, 5., E, my)-good} > 1— Lpd (12)

for all energies E € [0, E;]. In fact, for all energies £ € [0, £,
scales L > L, 4.pq, and boxes A, we have

IRo.ts, (Bl < EL? (13)
AL
and
12y Roves, A (E)xy |l < 2B e VEY Y fory y e AL, |y —y'| > 4Vd
' L
(14)

for all t5, €[0,1]°« with probability >1—L1 7.



The multiscale analysis

Proposition ]
Fix an energy Ey >0 . Pick
Pzgd*: Plzzfl and  py =0+,

more precisely, pick p,p1,p> = py* with ni € N such that
T<gb<p<ji and p<d(B—po)

Let E € [0, Ey], and suppose L is (E,mg)-localizing for all
L e [LgF?,L5"], where

mgy > LETO with 19=0+ < P2

and Ly is some sufficiently large scale.
Then L is (E,5>)-localizing for all L > L.



Quantitative Unique Continuation Principle

Lemma (Bourgain-Kenig)

Assume A@ = V¢ on B(0,L) C R with L > 1, such that
1200l =1 1@l < C, [[V]w < C. Let [xo] = R > 1.

Then

4
1 @|| > ce <R3 (1oeR)



What is needed for the Wegner estimate | y
To obtain the Wegner estimate from the Bourgain-Kenig's

quantitative UCP one needs to prove the following:

Consider a box A=A, let £ = LP with p = 3— (so L3P = L)
Let S ANZ with |S| = (9-, fix o € [0,1](MZ)\S | and set
H(ts) := Hypisn forall tsc[0,1]°. (18)

Consider an energy Eg, set | = (Eg —e~ ' Eg+e "), Let E(ts)
be a continuous eigenvalue parametrization of 6(H(ts)) such that
E-(0) € I (a finite family). Let E(ts) = Eg,(ts) for some 1.
Suppose

4

e @l logl < ;t-E(tS) <e @' forall jeS if E(ts)cl. (19)
J

Let s ={wj}, s be iid random variables with common probability

distribution . Then for all large L

C

4 4
P{E((Ds) e (EO o 672C3é3 Iogé7 EO +e*2C3f3 Iogf)} < (20)

(SN
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The concentration bound

Theorem (AGKW)

Let F be a real-valued Borel function on R" such that for some
o >0 we have

ot < F(t+tej)— F(t) (21)
forallt>0,teR",;=12,....n.
Given random a variable X with non-degenerate probability
distribution L, consider the random variable Z = F(X1,Xa,...,X;),
where {Xi};_, , are independent copies of X.
Then there exist constants ©u and sy >0 such that

©
supP{Z €[r,r+s]} < £ foralls<s,. 22
wpP{Z e [r.rtsl} < £ w22



Bernoulli decompositions

Let X be a real random variable with distribution .
Definition )
A representation X Z Y(t)+6(t)n , where
» 1 isa {0,1}-Bernoulli rv with p:=P(n=1) € (0,1),
» t an independent rv with the uniform distribution on (0,1),
» Y:(0,1) =R,
»  0:(0,1) — [0,00),
is called a Bernoulli decomposition of X.

Theorem (AGKW)

Any non-degenerate rv has a Bernoulli decomposition. One may
even choose infé > 0.



Application: |. Concentration inequalities
Let {n;} be independent copies of a {0,1}-Bernoulli rv.

Classical Littlewood-Offord inequality:
Let p= % and ai,...,ay € R with |a;| > 1. Then for any interval /
of length at most one

N ‘
IP’( am; € /) < MR Ergss 49
J; J \/N

Consequence of

Probabilistic Sperner/LYM inequalities:

Let o C {0,1}N be an antichain, i.e., any two 1,1’ € &/ are not
comparable in the sense of partial order on {0,1}".

Then | P(neo)< const , | where 6, :=+/p(1—p).

Op
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New concentration inequality

Theorem
Let Xi,...Xy independent rv's & pick x_ < x4 and py+ >0 s.t.

IP{XJ-SX,}Zp, and P{XJEXJF}ZpJF.

Let ®: RN — R be monotone s.t. for some €> 0
d(t+ve;)—d(t) > ¢
for all v> x,—x_, t e RN and j € {1,... N}. Then

4 |1 1
sup Pd(Xy,.... Xny) €luu+toa]} < —4 | —+—.
ueJPR { X wel ]} vN\ P+ P-

Remark: For ®(Xi,...,Xy) = ZJ-’Vlej such inequalities go
back to Doeblin/Lévy '36, Erdds '49, Kolmogorov '58, Rogozin '61,
Esseen '68, Kesten '69.



Application: Il. Singularity of random matrices

Theorem (Bruneau, G. '07)

Let My = (mj;) be a matrix, whose entries are independent rv'’s.
Suppose there is p € (0, %) s.t.

P(mj <x;)>p and P(mj>x[)>p

for all i,j € {1,...N} and some x; < x;. Then

const

P(Mp is singular) < .
( N g )— \/N

Based on results by Komlés '68.
Improves on a remark of Tao and Vu '06.



The continuous Delone Hamiltonian

Definition
Let 0 < r < R be given. A countable subset @ of RY is a
(r,R)-Delone set iff

» Card(QNA,) <1, for any A,;
» Card(QNAg) > 1, for any Ag.
We set 7, r to be the set of all (r, R)-Delone sets.
The Delone Hamiltonian is the random Schrddinger operator

Ho:=—-A+Vg on L?RY), (23)
with
Vo(x) =Y, u(x—=9), (24)
e
where

» The single-site potential L*(R9) > u > cya,, ¢,8 >0, is a
measurable function on RY with compact support.
» Qis a (r,R)-Delone set.
Note that inf{o(Hg),Q € Z, r} > 0.



Existence of loc. at the bottom of the spectrum: Delone
The topology in Z;  is generated by the set of neighborhoods:

N(Q,&e,L)={Q' Vg€ QNAL,dist(q, @ NAL) <&, and «—}.

Theorem (G., Miiller - in progress)

» Let Q be in 9, g. There exists (r,R)-Delone sets Q' arbitrarily
close to Q such that info(Hg) =info(Hg), and Hy' exhibits
Anderson localization as well as strong dynamical localization
at the bottom of its spectrum.

> There exists in 9, r a dense union of Gg, such that associated

Delone Hamiltonians exhibits Anderson localization as well as
strong dynamical localization at the bottom of their spectrum.

Related result:
> There is a dense G;s of (r, R)-Delone sets in &, g such that
the associated Delone Hamiltonian has a singular continuous
component in its spectrum [Lenz-Stollmann '06]
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