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The continuous Anderson Hamiltonian
The Anderson Hamiltonian is the random Schrödinger operator

Hω :=−∆ +Vω on L2(Rd ), (1)

with
Vω (x) := ∑

ζ∈Zd

ωζ u(x−ζ ), (2)

where
I The single-site potential u ≥ 0 is a bounded measurable

function on Rd with compact support, u ≥ cχΛδ
, c,δ > 0, i.e.

u uniformly bounded away from zero in a neighborhood of the
origin.

I ω = {ωζ}ζ∈Zd is a family of independent, identically
distributed random variables with common probability
distribution µ , such that

I µ is non-degenerate with compact support ⊂ [0,∞[.
I 0 ∈ suppµ.

Without loss of generality we may just assume

{0,1} ∈ suppµ ⊂ [0,1].



Basic properties

I Hω is a random nonnegative self-adjoint operator.

I Hω is Zd -ergodic: there exists an ergodic family {τy ; y ∈ Zd}
of measure preserving transformations on the underlying
probability space (Ω,P) such that

U(y)HωU(y)∗ = Hτy (ω) for all y ∈ Zd

where (U(y)f )(x) = f (x− y). It follows that
I The spectrum is nonrandom:

σ(Hω ) = [0,∞[ with probability one.

I The pure point, absolutely continuous, and singular continuous
components of σ(Hω ) are also nonrandom (i.e., equal to �xed
sets) with probability one.



The continuous Poisson Hamiltonian

The Poisson Hamiltonian is the random Schrödinger operator

Hω) :=−∆ +Vω on L2(Rd ), (3)

with
Vω (x) := ∑

ζ∈X (ω)

u(x−ζ ), (4)

where

I The single-site potential u ≥ 0 is a bounded measurable
function on Rd with compact support, u ≥ cχΛδ

, c,δ > 0.

I ω → X (ω)⊂ Rd is a Poisson process with density ρ > 0.

The family is Rd -ergodic and σ(Hω ) = [0,∞[ a.s.



Related models and generalizations

One may replace −∆ by

I −∆ +Vper [Kirsch Stolz Stolmann '98] or −∆ +Vbg

I −∇
1

ρω
∇ [Figotin, Klein '96]

I (−i∇ +A)2, d = 2, constant magnetic �eld, QHE [Combes
Hislop'95, Wang '97, G. Klein'03] [G. Klein Schenker'07]

I (−i∇ +Aω )2 [Ghribi, Hislop, Klopp '07]

Other possibilities

I Replace u ≤ 0 or u non sign de�nite [Klopp'95]

I Replace iid random variables ωi by independant rv.

I Locate the impurities on a Delone set.

I Study the random displacement model [Klopp '93]

I Consider several interacting particles in a random potential
[Chulaevski-Suhov '07, Kirsch '07]



Anderson Localization

De�nition: The Anderson Hamiltonian Hω exhibits Anderson
localization at the bottom of the spectrum if there exist E0 > 0 and
m > 0, such that the following holds with probability one:

I Hω has pure point spectrum in [0,E0].

I If φ is an eigenfunction of Hω with eigenvalue E ∈ [0,E0],

‖χxφ‖ ≤ Cω,φ e
−m|x | for all x ∈ Rd

(χx is the characteristic function of a cube of side one
centered at x .)

I There exist τ > 1 and s ∈]0,1[ such that for all eigenfunctions
ψ,φ (possibly equal) with the same eigenvalue E ∈ [0,E0],

‖χxψ‖‖χyφ‖ ≤ CX ‖ψ‖− ‖φ‖− e
|y |τ e−|x−y |

s

for x ,y ∈ Zd (5)

I The eigenvalues of Hω in [0,E0] have �nite multiplicity.



Dynamical Localization

De�nition: The Anderson Hamiltonian Hω exhibits strong
dynamical localization at the bottom of the spectrum if there exist
E0 > 0 and s > 0 such that

E
{
sup
t∈R

∥∥∥|x | p2 e−itHω χ[0,E0](Hω )χ0

∥∥∥ 2s
p

2

}
< ∞ for all p ≥ 1



Existence of localization at the bottom of the spectrum:

Poisson

The following theorem is a joint work:

I Germinet, Hislop and Klein [J. Europ. Math. Soc. '07]

Theorem
Let Hω be the Poisson Hamiltonian on L2(Rd ) with Poisson density

ρ > 0. Then there exists E (ρ) > 0 such that Hω exhibits Anderson

localization as well as strong dynamical localization in [0,E (ρ)].

Related results:

I Lifshitz tails [Donsker-Varadhan '75]

I Localization in dimension d = 1 [Stolz '95]

I Any d , u ≤ 0 (then σ(Hω ) = R) [G. Hislop Klein, CRM '07]



Existence of localization at the bottom of the spectrum:

Anderson

The following theorem is based on joint work in progress:

I Germinet and Klein

I Aizenman, G., Klein and Warzel [Preprint, available on Arxiv]

Theorem
Let Hω be the Anderson Hamiltonian on L2(Rd ) with single-site

probability distribution µ , where

{0,1} ∈ suppµ ⊂ [0,1],

but µ is otherwise arbitrary. Then Hω exhibits Anderson

localization as well as strong dynamical localization at the bottom

of the spectrum.



µ continuous with some regularity

Localization at the bottom of the spectrum in the
multi-dimensional case was known in the following cases:

I µ absolutely continuous with a bounded density.

I Anderson localization: [Combes, Hislop 1994; Klopp 1995;
Kirsch, Stollmann, Stolz 1998; Germinet, Klein 2001; Klopp
2002; Germinet, Klein 2003; Aizenman, Elgart, Naboko,
Schenker, Stolz 2006, . . . ]

I Dynamical localization: [Germinet, De Bièvre 1998; Damanik,
Stollmann 2001; Germinet, Klein 2001; Aizenman, Elgart,
Naboko, Schenker, Stolz 2006]

I µ Hölder continuous and some log-Hölder continuous:
Improvements on the Wegner estimate [Stollmann 2000;
Combes, Hislop, Klopp 2007] allow the extension of the proof
of localization by a multiscale analysis as in [Germinet, Klein
2001].



The Bernoulli-Anderson Hamiltonian

The ωζ 's are Bernoulli random variables:

µ({0}) = µ({1}) =
1

2

I Anderson localization: [Bourgain, Kenig 2005]

I Dynamical localization: [Germinet, Klein]



How to prove localization

Localization can be proved by a multiscale analysis if we have

I A priori �nite volume estimates: we can see the signature of
localization at large enough scales.

I A Wegner estimate: control of the size of the �nite volume
resolvents with su�cient probability.

I µ regular: Wegner estimate known at all scales.
I µ Bernoulli and general case: Wegner estimate proved in each

scale in the multiscale analysis.

The Theorem is proved by a multiscale analysis as in
[Bourgain-Kenig 2005], using free sites, a quantitative unique
continuation principle, classes of equivalence of con�gurations, and
a new concentration bound for functions of i.i.d.r.v.'s.



Finite volume operators and free sites

Given a box Λ = ΛL(x) in Rd , Y ⊂ Λ∩Zd , and
tY =

{
tζ
}

ζ∈Y ∈ [0,1]Y , let

Hω,(Y ,tY ),Λ :=−∆Λ +Vω,(Y ,tY ),Λ on L2(Λ) (6)

Vω,(Y ,tY ),Λ := ∑
ζ∈Λ∩(Zd\Y )

ωζ u(x−ζ ) + ∑
ζ∈Y

tζ u(x−ζ ) (7)

Rω,(Y ,tY ),Λ(z) := (Hω,(Y ,tY ),Λ− z)−1 (8)

where ∆Λ := Laplacian on Λ with Dirichlet boundary condition.
De�nition: A box ΛL is said to be (ω,Y ,E ,m)-good if for all
tY ∈ [0,1]Y we have

‖Rω,(Y ,tY ),Λ(E )‖ ≤ eL
1−

(9)

‖χxRω,(Y ,tY ),Λ(E )χy‖ ≤ e−m |x−y | if |x− y | ≥ L
10

(10)

In this case Y consists of (ω,E )-free sites for the box ΛL.



�A priori" �nite volume estimates
Proposition: Let Hω be the µ-Anderson Hamiltonian on L2(Rd ),
�x p > 0. Take q ∈ N and let SΛ = Λ∩qZd for a box Λ. Then
there exists a �nite scale L̃u,µ,d ,p,q and a constant Cu,µ,d ,p,q > 0,

such that for all scales L≥ L̃u,µ,d ,p,q, setting

EL = Cu,µ,d ,p,q (logL)−2 and mL = 1
2

√
EL, (11)

we have
P{ΛL is (ω,SΛL

,E ,mL)-good} ≥ 1−L−pd (12)

for all energies E ∈ [0,EL]. In fact, for all energies E ∈ [0,E0],
scales L≥ L̃u,µ,d ,p,q, and boxes ΛL, we have

‖Rω,tSΛL
,ΛL

(E )‖ ≤ E−1L (13)

and

‖χyRω,tSΛL
,ΛL

(E )χy ′‖ ≤ 2E−1L e−
√
EL|y−y ′| for y ,y ′ ∈ ΛL,

∣∣y − y ′
∣∣≥ 4

√
d

(14)

for all tSΛL
∈ [0,1]SΛL with probability ≥ 1−L−pd .



The multiscale analysis

Proposition
Fix an energy E0 > 0 . Pick

p =
3

8
d− , ρ1 =

3

4
− , and ρ2 = 0+ ,

more precisely, pick p,ρ1,ρ2 = ρ
n1
1 with n1 ∈ N such that

8
11

< d
d+p

< ρ1 < 3
4

and p < d( ρ1

2
−ρ2) (15)

Let E ∈ [0,E0], and suppose L is (E ,m0)-localizing for all

L ∈ [L
ρ1ρ2

0 ,L
ρ1

0 ], where

m0 ≥ L−τ0
0 with τ0 = 0+ < ρ2 (16)

and L0 is some su�ciently large scale.

Then L is (E , m0

2
)-localizing for all L≥ L0.



Quantitative Unique Continuation Principle

Lemma (Bourgain-Kenig)

Assume ∆ϕ = Vϕ on B(0,L)⊂ Rd with L� 1, such that

‖χ0ϕ‖= 1, ‖χxϕ‖ ≤ C, ‖V ‖∞ ≤ C. Let |x0|= R > 1.
Then

‖χx0ϕ‖ ≥ c e−c R
4
3 (logR) (17)



What is needed for the Wegner estimate
To obtain the Wegner estimate from the Bourgain-Kenig's
quantitative UCP one needs to prove the following:

Consider a box Λ = ΛL, let ` = Lρ with ρ = 3
4
− (so L

4
3ρ = L1−).

Let S ⊂ Λ∩Zd with |S |= `d−, �x ω ∈ [0,1](Λ∩Zd)\S , and set

H(tS) := Hω,tS ,Λ for all tS ∈ [0,1]S . (18)

Consider an energy E0, set I = (E0− e−c1`,E0 + e−c1`). Let Eτ (tS)
be a continuous eigenvalue parametrization of σ(H(tS)) such that

Eτ (0) ∈ I (a �nite family). Let E (tS) = Eτ0(tS) for some τ0.

Suppose

e−c3`
4
3 log `≤ ∂

∂ tj
E (tS)≤ e−c2` for all j ∈ S if E (tS)∈ I . (19)

Let ωS = {ω j}j∈S be iid random variables with common probability

distribution µ . Then for all large L

P
{
E (ωS) ∈ (E0− e−2c3`

4
3 log `,E0 + e−2c3`

4
3 log `)

}
≤ C

`
d
2−

(20)



The concentration bound

Theorem (AGKW)

Let F be a real-valued Borel function on Rn such that for some

α > 0 we have

αt ≤ F (t+ tej)−F (t) (21)

for all t ≥ 0, t ∈ Rn , j = 1,2, . . . ,n.
Given random a variable X with non-degenerate probability

distribution µ , consider the random variable Z = F (X1,X2, . . . ,Xn),
where {Xi}i=1,...,n are independent copies of X .

Then there exist constants Θµ and sµ > 0 such that

sup
r∈R

P{Z ∈ [r , r + s]} ≤
Θµ√
n

for all s < sµ . (22)



Bernoulli decompositions

Let X be a real random variable with distribution µ .

De�nition
A representation X

D
= Y (t) + δ (t) η , where

I η is a {0,1}-Bernoulli rv with p := P(η = 1) ∈ (0,1),

I t an independent rv with the uniform distribution on (0,1),

I Y : (0,1)→ R,

I δ : (0,1)→ [0,∞),

is called a Bernoulli decomposition of X .

Theorem (AGKW)

Any non-degenerate rv has a Bernoulli decomposition. One may

even choose inf δ > 0.



Application: I. Concentration inequalities

Let {ηj} be independent copies of a {0,1}-Bernoulli rv.

Classical Littlewood-O�ord inequality:

Let p = 1
2
and a1, . . . ,aN ∈ R with |aj |> 1. Then for any interval I

of length at most one

P
( N

∑
j=1

aj ηj ∈ I
)
≤ const√

N
. Erdös '49

Consequence of

Probabilistic Sperner/LYM inequalities:

Let A ⊂ {0,1}N be an antichain, i.e., any two η ,η ′ ∈A are not
comparable in the sense of partial order on {0,1}N .

Then P(η ∈A )≤ const
σp

√
N

, where σp :=
√
p(1−p).



New concentration inequality

Theorem
Let X1, . . .XN independent rv's & pick x−< x+ and p± > 0 s.t.

P
{
Xj ≤ x−

}
≥ p− and P

{
Xj ≥ x+

}
≥ p+ .

Let Φ : RN → R be monotone s.t. for some ε > 0

Φ(t + ve j)−Φ(t)≥ ε

for all v > x+−x−, t ∈ RN and j ∈ {1, . . . ,N}. Then

sup
u∈R

P
{

Φ(X1, . . . ,XN) ∈ [u,u+ α]
}
≤ 4√

N

√
1

p+
+

1

p−
.

Remark: For Φ(X1, . . . ,XN) = ∑
N
j=1Xj such inequalities go

back to Doeblin/Lévy '36, Erdös '49, Kolmogorov '58, Rogozin '61,

Esseen '68, Kesten '69.



Application: II. Singularity of random matrices

Theorem (Bruneau, G. '07)

Let MN = (mij) be a matrix, whose entries are independent rv's.

Suppose there is p ∈ (0, 1
2

) s.t.

P(mij < x−ij ) > p and P(mij > x+
ij ) > p

for all i , j ∈ {1, . . .N} and some x−ij < x+
ij . Then

P(MN is singular)≤ const√
N

.

Based on results by Komlós '68.
Improves on a remark of Tao and Vu '06.



The continuous Delone Hamiltonian

De�nition
Let 0 < r < R be given. A countable subset Q of Rd is a
(r ,R)-Delone set i�

I Card(Q ∩Λr )≤ 1, for any Λr ;

I Card(Q ∩ΛR)≥ 1, for any ΛR .

We set Dr ,R to be the set of all (r ,R)-Delone sets.

The Delone Hamiltonian is the random Schrödinger operator

HQ :=−∆ +VQ on L2(Rd ), (23)

with
VQ(x) := ∑

ζ∈Q
u(x−ζ ), (24)

where
I The single-site potential L∞(Rd ) 3 u ≥ cχΛδ

, c ,δ > 0, is a
measurable function on Rd with compact support.

I Q is a (r ,R)-Delone set.

Note that inf{σ(HQ),Q ∈Dr ,R}> 0.



Existence of loc. at the bottom of the spectrum: Delone
The topology in Dr ,R is generated by the set of neighborhoods:

N(Q,ε,L) = {Q ′,∀q ∈ Q ∩ΛL,dist(q,Q ′∩ΛL)≤ ε, and ←→}.

Theorem (G., Müller - in progress)

I Let Q be in Dr ,R . There exists (r ,R)-Delone sets Q ′ arbitrarily
close to Q such that infσ(HQ) = infσ(HQ ′), and HQ ′ exhibits

Anderson localization as well as strong dynamical localization

at the bottom of its spectrum.

I There exists in Dr ,R a dense union of Gδ , such that associated

Delone Hamiltonians exhibits Anderson localization as well as

strong dynamical localization at the bottom of their spectrum.

Related result:

I There is a dense Gδ of (r ,R)-Delone sets in Dr ,R such that
the associated Delone Hamiltonian has a singular continuous
component in its spectrum [Lenz-Stollmann '06]


	The Anderson Hamiltonian
	Localization at the bottom of the spectrum
	Ideas in the proof of the Theorem
	Bernoulli decompostion and applications

