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In the units in which both the speed of light c and Planck’s constant ~ are equal to 1, the
Dirac operator in the presence of an external electrostatic potential V is given by

H0 + V with H0 := −i α · ∇ + β .

α1, α2, α3 and β are 4 × 4 complex matrices, whose standard form (in 2 × 2 blocks) is

β =

 
I 0

0 −I

!
, αk =

 
0 σk

σk 0

!
(k = 1, 2, 3) ,

where I =

 
1 0

0 1

!
and σk are the Pauli matrices:

σ1 =

 
0 1

1 0

!
, σ2 =

 
0 −i
i 0

!
, σ3 =

 
1 0

0 −1

!
.
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– If V is bounded, H0 + V with domain H1(R3,C4) is self-adjoint.

– What if V has singularities, as it is the case in atomic and molecular physics?

In this case one is interested in defining physically relevant self-adjoint extensions of
T := H0 + V|C∞

0 (R3,C4).

For ν ∈ (0, π/2] one can use the pseudo-Friedrich extension method to define an
extension which satisfies

D(H0 + V ) ⊂ D(|H0|1/2) = H1/2(R3,C4) .

This result is obtained by using Kato’s inequality :

|H0| ≥
2

π|x|
.

Actually one can prove that H0 − ν
|x|

defined on C∞
0 (R3,C4) is essentially self-adjoint iff

ν <
√

3/2 (Schmincke, 1972).
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Case ν < 1

– Various works of Schmincke and Wüst show “basically" (some other technical
assumptions made) that if

sup
x6=0

|x| |V (x)| < 1 ,

there is a distinguished self-adjoint extension of T characterized by the fact that the
domain is contained in D(T ∗) ∩D(r−1/2).

(semibounded and not semibounded potentials; cut-off method, 1972-1975)

– In 1976, G. Nenciu proved that under the same assumption, there is a distinguished
self-adjoint extension of T characterized by the fact that the domain is contained in
H1/2(R3,C4) .

– In 1978, Klaus and Wüst proved that the above extensions coincide.
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Our idea was to find a general method to link existence of a distinguished and physically
relevant self-adjoint extension of T with existence of a Hardy-like inequality for the
operator H0 + V .

In the case of the Schödinger operator, the Hardy-like inequality

−∆ ≥ (N − 2)2

4 |x|2 ,

marks the limit for self-adjointness : one can find a distinguished self-adjoint extension

for the operator −∆ − µ
|x|2 |C∞

0 (R3)
iff µ ≤ (N−2)2

4
.

This follows from the fact that the quadratic form associated with −∆ − µ
|x|2

is

nonnegative iff µ ≤ (N−2)2

4
.

But in the case of the Dirac operator, H0 + V is not bounded below for any potential V ,
even for V = 0. Hence the corresponding quadratic form is never semi-definite
nonnegative.
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Hardy inequality for Dirac operators I

BUT there is a Hardy-like inequality for the Dirac operator as follows : for all
ϕ ∈ C∞

c (R3,C2),

Z

R3

 
|σ · ∇ϕ|2
1 + 1

|x|

+ |ϕ|2
!
dx ≥

Z

R3

|ϕ|2
|x| dx .

There are two proofs for it :

(1) (Dolbeault-E.-Séré , 2000) : If

lim
|x|→+∞

V (x) = 0 and − ν

|x| − c1 ≤ V ≤ Γ = sup(V ) ,

with ν ∈ (0, 1), c1, Γ ≥ 0, c1 + Γ − 1 <
√

1 − ν2. Then,

Z

R3

„ |σ · ∇ϕ|2
1 + λ1(V ) − V

+
`
1 − λ1(V ) + V

´
|ϕ|2

«
dx ≥ 0 ,

where λ1(V ) denotes the smallest eigenvalue of H0 + V in the spectral gap (−1, 1).
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Hardy inequality for Dirac operators II

We apply the above to the potentials Vν := −ν/|x| , ν ∈ (0, 1). We get :

Z

R3

 
|σ · ∇ϕ|2

1 +
√

1 − ν2 + ν
|x|

+
`
1 −

p
1 − ν2

´
|ϕ|2

!
dx ≥ ν

Z

R3

|ϕ|2
|x| dx ,

for all ϕ ∈ C∞
c (R3,C2).

Now, we take limits ν ↗ 1 to get :

Z

R3

 
|σ · ∇ϕ|2
1 + 1

|x|

+ |ϕ|2
!
dx ≥

Z

R3

|ϕ|2
|x| dx .

(2) Analytical (not spectral) proof of the above inequality by Dolbeault, E., Loss and Vega
(2004).

CONSEQUENCE : nonnegativity of the quadratic form

Z

R3

 
|σ · ∇ϕ|2
1 + 1

|x|

+
“
1 − 1

|x|
”
|ϕ|2

!
dx .
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Hardy inequality for Dirac operators with magnetic fields

Note that the above type of inequalities also hold in the case on an external magnetic
field B with associated potential A : for all ϕ ∈ C∞

c (R3,C2), for
Vν := −ν/|x| , ν ∈ (0, 1),

Z

R3

 
|σ · (∇ − iA)ϕ|2
1 + λA

1 (Vν) − Vν
+
`
1 − λA

1 (Vν) + Vν
´
|ϕ|2

!
dx ≥ 0 ,

where λA
1 (Vν) denotes the smallest eigenvalue of the magnetic Dirac-Coulomb operator

HA
0 + Vν = −i α · (∇− iA) + β − ν/|x|

in the spectral gap (−1, 1).

(Dolbeault, E., Loss, 2007)

Remark. For very intense magnetic fields, and even if ν is very small, λA
1 (Vν) can leave

the gap (−1, 1) and then the inequality is not true anymore.
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Some definitions I

Assumption (A) : V ∈ L2
locR3, R) is a function such that for some constant

c(V ) ∈ (−1, 1), Γ := sup
R3 V < 1 + c(V ) and for every ϕ ∈ C∞

c (R3,C2) ,

Z

R3

„ |σ · ∇ϕ|2
1 + c(V ) − V

+
`
1 − c(V ) + V

´
|ϕ|2

«
dx ≥ 0 .

( The potentials Vν := −ν/|x| , ν ∈ (0, 1] satisfy the above assumption with
c(Vν) =

√
1 − ν2 )

For any γ in (Γ, 1 + c(V )), consider the quadratic form

bγ(ϕ, ϕ) :=

Z

R3

„ |σ · ∇ϕ|2
γ − V

+
`
2 − γ + V

´
|ϕ|2

«
dx

defined on C∞
c (R3,C2). Note that by assumption (A), this quadratic form is nonnegative

and symmetric on C∞
c (R3,C2). Therefore it is closable and we denote its closure by bbγ

and its form domain by Hγ
+1.

Definition : We denote by Sγ the unique selfadjoint operator associated with bbγ : for all
ϕ ∈ D(Sγ) ⊂ Hγ

+1,

bbγ(ϕ,ϕ) = (ϕ, Sγϕ) .
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Some definitions II

Sγ is an isometric isomorphism from Hγ
+1 to its dual Hγ

−1.

Moreover, Hγ
+1 is the operator domain of S1/2

γ , and for all ϕ ∈ Hγ
+1,

bbγ(ϕ,ϕ) = (S
1/2
γ ϕ, S

1/2
γ ϕ) .

Proposition : The espaces Hγ
±1 do not depend on γ. We denote them by H±1.

Definition : The domain D of the Dirac operator is the collection of all ψ =

 
ϕ

χ

!
such

that ϕ ∈ H+1, χ ∈ L2(R3,C2) and

(2 − γ + V )ϕ− iσ · ∇χ , −iσ · ∇ϕ+ (V − γ)χ ∈ L2(R3,C2) .

The meaning of these two expressions is in the weak sense, i.e., the linear functional
(η, (2 − γ + V )ϕ) + (−iσ · ∇η, χ) , which is defined for all test functions, extends
uniquely to a bounded linear on L2(R3,C2) : ∀η ∈ C∞

0 (R3,C2),

∃C > 0, |(η, (2 − γ + V )ϕ) + (−iσ · ∇η, χ)| ≤ C ||η||L2(R3,C2) .

Likewise the same for (η, (V − γ)χ) + (−iσ · ∇η, ϕ) . From this definition it is clear that
the domain does not depend on γ.
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±1 do not depend on γ. We denote them by H±1.

Definition : The domain D of the Dirac operator is the collection of all ψ =

 
ϕ

χ

!
such

that ϕ ∈ H+1, χ ∈ L2(R3,C2) and

(2 − γ + V )ϕ− iσ · ∇χ , −iσ · ∇ϕ+ (V − γ)χ ∈ L2(R3,C2) .

The meaning of these two expressions is in the weak sense, i.e., the linear functional
(η, (2 − γ + V )ϕ) + (−iσ · ∇η, χ) , which is defined for all test functions, extends
uniquely to a bounded linear on L2(R3,C2) : ∀η ∈ C∞

0 (R3,C2),

∃C > 0, |(η, (2 − γ + V )ϕ) + (−iσ · ∇η, χ)| ≤ C ||η||L2(R3,C2) .

Likewise the same for (η, (V − γ)χ) + (−iσ · ∇η, ϕ) . From this definition it is clear that
the domain does not depend on γ.
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Main theorem

Why the expressions (2 − γ + V )ϕ− iσ · ∇χ , −iσ · ∇ϕ+ (V − γ)χ ?

Because formally they are the two components of the operator H0 + V + (1 − γ) , since

H0 + V acts on smooth functions ψ =

 
ϕ

χ

!
as :

(H0 + V )

 
ϕ

χ

!
=

 
(V + 1)ϕ− iσ · ∇χ
−iσ · ∇ϕ+ (V − 1)χ

!

Theorem : If V satisfies Assumption (A), the operator H0 + V defined on D is
self-adjoint. And it is the unique self-adjoint extension of T := H0 + V|C∞

0 (R3,C4) such

that the domain is contained in H+1 × L2(R3,C2).

Corollary : The above theorem applies to the case of Coulomb potentials
Vν := −ν/|x| for ν ∈ (0, 1].

Proposition : When ν ∈ (0, 1), our extension coincides with those of Schmincke, Wüst
and Nenciu and in this case, D ⊂ H1/2(R3,C4).
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Intermediate results I

Proposition : Under assumption (A) on the potential V ,

H+1 ⊂
n
ϕ ∈ L2(R3,C2) :

−iσ · ∇ϕ
γ − V

∈ L2(R3,C2)
o
,

where ∇ϕ denotes the distributional gradient of ϕ. Therefore, we have the ‘scale of
spaces’ H+1 ⊂ L2(R3,C2) ⊂ H−1.

Idea of proof : If δ :=
(γ−Γ)(1+c(V )−γ)

1+c(V )−Γ
( > 0 ),

bγ(ϕ, ϕ) ≥ δ

Z

R3
|ϕ|2 dx+ δ

Z

R3

|σ · ∇ϕ|2
(γ − V )2

dx ,
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Intermediate results II

Proposition : For any F in L2(R3,C2) and for any γ ∈ (Γ, 1 + c(V )),

−iσ · ∇
„

F

γ − V

«
∈ H−1 ,

where, once again, the gradient is to be interpreted in the distributional sense.

Idea of proof : By the definition of the distributional derivative, for every
η ∈ C∞

c (R3,C2),

˛̨
˛̨
„
−iσ · ∇η, F

γ − V

«˛̨
˛̨ =

˛̨
˛̨
„−iσ · ∇η

γ − V
, F

«˛̨
˛̨ ≤ ‖η‖H+1

‖F‖2 . (1)

Hence, the linear functional

η →
„
−iσ · ∇η, F

γ − V

«
(2)

extends uniquely to a bounded linear functional on H+1.
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Proof of main theorem : symmetry

We have to prove that for both pairs (ϕ, χ), (ϕ̃, χ̃) in the domain,

 
(H0 + V + 1 − γ)

 
ϕ

χ

!
,

 
ϕ̃

χ̃

!!
= ( (V−γ)χ−iσ · ∇ϕ, χ̃ )+( (2−γ+V )ϕ−iσ · ∇χ, ϕ̃ )

equals

(χ, (V−γ)χ̃−iσ · ∇ϕ̃ )+(ϕ, (2−γ+V )ϕ̃−iσ · ∇χ̃ ) =

  
ϕ

χ

!
, (H0 + V + 1 − γ)

 
ϕ̃

χ̃

!!
.

We use the above propositions to show symmetry as follows : for ϕ, ϕ̃ smooth,

 
(H0 + V +1 − γ)

 
ϕ

χ

!
,

 
ϕ̃

χ̃

!!
= (Sγϕ, ϕ̃)+

„
(V − γ)

»
χ+

−iσ · ∇ϕ
V − γ

–
,

»
χ̃+

−iσ · ∇ϕ̃
V − γ

–«
.

and both expressions are continuous in ϕ, ϕ̃ with respect to the H+1-norm. So we can
pass to the limit and so prove symmetry.
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Proof of main theorem : surjectivity

For any F1, F2 in L2(R3,C2), there exists

 
ϕ

χ

!
∈ D such that

(H0 + V + 1 − γ)

 
ϕ

χ

!
=

 
(V + 2 − γ)ϕ− iσ · ∇χ
−iσ · ∇ϕ+ (V − γ)χ

!
=

 
F1

F2

!

Since Sγ is an isomorphism, there exists a unique ϕ in H+1 such that

Sγϕ = F1 − iσ · ∇
„

F2

γ − V

«
.

Indeed, F1 is in L2(R3,C2) and therefore in H−1. Moreover the second term is also in
H−1 by the above proposition. Next define χ by

χ =
−F2 − iσ · ∇ϕ

γ − V
⇐⇒ (V − γ)χ− iσ · ∇ϕ = F2

which by the above proposition is in L2(R3,C2). But then, we can write

F1 = Sγϕ− iσ · ∇
„
χ+

iσ · ∇ϕ
γ − V

«
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End of the proof of surjectivity

F1 = Sγϕ− iσ · ∇
„
χ+

iσ · ∇ϕ
γ − V

«

is equivalent to : for all smooth η,

(η, F1) = (η, Sγϕ) +
`
− iσ · ∇η, χ+

iσ · ∇ϕ
γ − V

´

= (Sγη, ϕ) +
`
− iσ · ∇η, iσ · ∇ϕ

γ − V

´
+ (−iσ · ∇η, χ)

=
`
Sγη − iσ · ∇

` iσ · ∇η
γ − V

´
, ϕ
´

+ (−iσ · ∇η, χ)

= ((V + 2 − γ)η, ϕ) + (−iσ · ∇η, χ)

and in the weak sense, this means that

F1 = (V + 2 − γ)ϕ− iσ · ∇χ
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Proof of main theorem : injectivity + uniqueness of the extension

Assuming that
`
H0 + V + 1 − γ

´
 
ϕ

χ

!
=

 
0

0

!
and since

χ = −F2−iσ·∇ϕ
γ−V

and Sγϕ = F1 − iσ · ∇
“

F2
γ−V

”
,

χ =
−iσ · ∇ϕ
γ − V

, Sγϕ = 0 .

Since Sγ is an isomorphism, this implies that ϕ = χ = 0.

It remains to show the uniqueness part in our theorem. Assume that C∞
c (R3,C4) ⊂ D̂ is

another selfadjoint extension such that whenever (ϕ, χ) ∈ D̂, ϕ ∈ H+1. Since H0 + V

is selfadjoint on this domain, for all (ϕ̃, χ̃) ∈ C∞
c (R3,C4)

  
ϕ̃

χ̃

!
, (H0 + V + 1 − γ )

 
ϕ

χ

!!
=

 
(H0 + V + 1 − γ )

 
ϕ̃

χ̃

!
,

 
ϕ

χ

!!

=

  
(V + 2 − γ)ϕ̃− iσ · ∇χ̃
−iσ · ∇ϕ̃+ (V − γ)χ̃

!
,

 
ϕ

χ

!!
=

* 
ϕ̃

χ̃

!
,

 
(V + 2 − γ)ϕ− iσ · ∇χ
−iσ · ∇ϕ+ (V − γ)χ

!+

C∞

0 ,(C∞

0 )′

Thus, D̂ ⊂ D and hence D̂ = D.
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Remark about the finiteness of the energy

In the limit case V (x) = − 1
|x|

, the domain D is not contained anymore in

H1/2(R3,C4), but the total energy is still finite :

Z

R3

 
|σ · ∇ϕ|2
1 + 1

|x|

+
`
1 − 1

|x|
´
|ϕ|2

!
dx < +∞

even if

Z

R3

|σ · ∇ϕ|2
1 + 1

|x|

dx ,

Z

R3

|ϕ|2
|x| dx = +∞
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THE END
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