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In the units in which both the speed of light ¢ and Planck’s constant & are equal to 1, the
Dirac operator in the presence of an external electrostatic potential V' is given by

Hyo+V with Hy:=—ta-V+4+705.

a1, az, az and G are 4 x 4 complex matrices, whose standard form (in 2 x 2 blocks) is

(T 0 (0 og B
/B_<O _H>7 ak_(()'k O> (k_17273)7

1 . .
where I = <0 g) and o} are the Pauli matrices:

0 1 0 —i 1 0
o1 = , o2 = | , O3 = :
! 1 0 2 i 0 57\ o -1




—If V is bounded, Hy + V with domain H!(R3,C*%) is self-adjoint.

— What if V' has singularities, as it is the case in atomic and molecular physics?
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In this case one is interested in defining physically relevant self-adjoint extensions of
T := HO + ‘/|C'8° (]RB,(CAL).

For v € (0, /2] one can use the pseudo-Friedrich extension method to define an
extension which satisfies

D(Hop + V) C D(|Ho|*?) = HY2(R3,C*).

This result is obtained by using Kato’s inequality :
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— What if V' has singularities, as it is the case in atomic and molecular physics?

In this case one is interested in defining physically relevant self-adjoint extensions of
T := HO + ‘/|C(c)>o (]RB,(CAL).

For v € (0, /2] one can use the pseudo-Friedrich extension method to define an
extension which satisfies

D(Hop + V) C D(|Ho|*?) = HY2(R3,C*).

This result is obtained by using Kato’s inequality :
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Actually one can prove that Hog — ﬁ defined on C§° (R3, C*) is essentially self-adjoint iff
v < v/3/2 (Schmincke, 1972).




— Various works of Schmincke and Wst show “basically" (some other technical
assumptions made) that if

sup || [V(z)] <1,
x#0

there is a distinguished self-adjoint extension of T' characterized by the fact that the
domain is contained in D(T*) N D(r~1/2).

(semibounded and not semibounded potentials; cut-off method, 1972-1975)
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domain is contained in D(T*) N D(r~1/2).

(semibounded and not semibounded potentials; cut-off method, 1972-1975)

— 1In 1976, G. Nenciu proved that under the same assumption, there is a distinguished
self-adjoint extension of 1" characterized by the fact that the domain is contained in

H/2(R3,C%).

— In 1978, Klaus and Wust proved that the above extensions coincide.
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relevant self-adjoint extension of T with existence of a Hardy-like inequality for the
operator Hg + V.
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Our idea was to find a general method to link existence of a distinguished and physically
relevant self-adjoint extension of T' with existence of a Hardy-like inequality for the
operator Hg + V.

In the case of the Schédinger operator, the Hardy-like inequality

(N —2)
T 4zl?

Y

marks the limit for self-adjointness : one can find a distinguished self-adjoint extension
2
for the operator —A — £ iff u< N=2)7
=17 cge m3) !
This follows from the fact that the quadratic form associated with —A — # is

(N—2)°

nonnegative iff p < T

But in the case of the Dirac operator, Hy + V' is not bounded below for any potential V,
even for V' = 0. Hence the corresponding quadratic form is never semi-definite
nonnegative.




BUT there is a Hardy-like inequality for the Dirac operator as follows : for all

p € C°(R?,C?),
, 2 2
/ L Vf' + |e)? | dz > / ﬂd:I:.
R3 1+ = R3 |ZB|
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BUT there is a Hardy-like inequality for the Dirac operator as follows : for all

SOECSO(RzS?Cz)!
A v/ 2 2
/ 7 VO 4 P d:L'Z/ el 4,
R3 1+m R3 ||

There are two proofs for it :

(1) (Dolbeault-E.-Séré, 2000) : If

lim V(x)=0 and —i—clgngzsup(V),

|| — 400 |$‘

withv € (0,1), ¢1, ' >0,c1 +T'—1<vV1—v2. Then,

o - 2
/R3 <1JF|A1(Y/S;|_V + (I=M(V)+V) Isolz) de > 0,

where A1 (V') denotes the smallest eigenvalue of Ho 4+ V' in the spectral gap (—1,1).




We apply the above to the potentials V,, := —v/|x|, v € (0,1). We get :

o Vy|? o 5 / e
—|_ 1 — 1—1/2 d.fL' > v —d.CU,
/1533(14_«/1_,/2_'_% ( )|90| = .

for all p € C°(R3, C?).




We apply the above to the potentials V,, := —v/|x|, v € (0,1). We get :

o - V| ST 2 ol
+ (1 —=vV1—=02)|p|* | dz > I// —dx
/RS <1—|—\/1—1/2—|—ﬁ ( )| rR3 |z

for all p € C°(R3, C?).
Now, we take limits v ~ 1 to get:

- Vol? 2
/ 7 Vel L) de > / 17 g
R3 \ 14+ —= R3 |7
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(2) Analytical (not spectral) proof of the above inequality by Dolbeault, E., Loss and Vega
(2004).
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We apply the above to the potentials V,, := —v/|x|, v € (0,1). We get :

o Vol > [o]?
+ (1 —=+V1-=102)|p dr > 1// —— dx
/Rs <1—|—\/1—1/2—|—ﬁ ( ) 1¢] rR3 |z

for all p € C°(R3, C?).

Now, we take limits v 1 to get:

- Vo|? 2
/ o f' + |o* | dz > / ll” dx
R3 1+ T2 R3 |7

(2) Analytical (not spectral) proof of the above inequality by Dolbeault, E., Loss and Vega
(2004).

CONSEQUENCE : nonnegativity of the quadratic form

o V|? 1 2
+ (1——) | dr .

Ed




Note that the above type of inequalities also hold in the case on an external magnetic
field B with associated potential A : for all ¢ € CS°(R3, C?), for
V= —v/|x|, ve(,1),

o (V —iA)pl?
1 v) — Vv

where A{‘(Vy) denotes the smallest eigenvalue of the magnetic Dirac-Coulomb operator
H 4V, =—ia-(V—1iA)+ 6 —v/|z|

in the spectral gap (—1,1).
(Dolbeault, E., Loss, 2007)




_ operators with magnetic fields

Note that the above type of inequalities also hold in the case on an external magnetic
field B with associated potential A : for all ¢ € CS°(R3, C?), for
V= —v/|x|, ve(,1),

o (V —iA) ¢l
1 v) — Yv

where A{‘(Vy) denotes the smallest eigenvalue of the magnetic Dirac-Coulomb operator
H} +V, = —ia- (V—iA) + 8 —v/|z|

in the spectral gap (—1,1).
(Dolbeault, E., Loss, 2007)

Remark. For very intense magnetic fields, and even if v is very small, A{‘(V,,) can leave
the gap (—1, 1) and then the inequality is not true anymore.
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defined on CS°(R3, C?). Note that by assumption (A), this quadratic form is nonnegative

and symmetric on CS°(R3, C?). Therefore it is closable and we denote its closure by 37
and its form domain by 7 ;.
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Definition : We denote by S the unique selfadjoint operator associated with /57 : for all
p € D(Sy) C H] 4,

by (0,0) = (0, Syp) -
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S. is an isometric isomorphism from 7 ; to its dual ;.

Moreover, H 7 , is the operator domain of S2/2 andforall o € HY 4,

by (0, 0) = (5520, 85/ 0) .

Proposition : The espaces HL do not depend on ~. We denote them by H 4 ;.

Definition : The domain D of the Dirac operator is the collection of all ¢ = < r ) such
X

that o € H4+1, x € L?(R3,C?) and
2—~v+V)p—ioc-Vx, —io -V + (V—7)x € L?*[R3,C?).

The meaning of these two expressions is in the weak sense, i.e., the linear functional
(n,(2—~4+V)p)+ (—ioc - Vn,x), which is defined for all test functions, extends

uniquely to a bounded linear on L?(R3,C?) : Vn € C§°(R3, C?),
3C >0, |[(n,2=7v+V)p) + (—io-Vn,x)| < Clnllp2@s c2) -

Likewise the same for (n, (V —~v)x) + (—io - Vn, ). From this definition it is clear that

the domain does not deiend on i

Moeciu, QM10, September 2007 — p.10/19
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Why the expressions (2—~vy+V)p —ic-Vx, —ic-Vo+(V —~v)x ?

Because formally they are the two components of the operator Ho + V + (1 — «), since

Hy + V' acts on smooth functions ¢ = < SO) as :
X

e\ _ [ (V+1p—ioc-Vx
(HO+V)<X> B ( —ia-Vgo—i—(V—l)X>

Theorem : If V' satisfies Assumption (A), the operator Hy + V' defined on D is
self-adjoint. And it is the unique self-adjoint extension of T':= Ho + V| geo (g3 c4) SUCh

that the domain is contained in H .1 x L?(R3,C?).

Corollary : The above theorem applies to the case of Coulomb potentials
Vi, = —v/|z| for v € (0,1].

Proposition : When v € (0, 1), our extension coincides with those of Schmincke, Wist
and Nenciu and in this case, D C H/2(R3,C%).




Proposition : Under assumption (A) on the potential V,

—10 -V

HarC{pe PERCY) s ——

€ L*(R%,C?)},

where V¢ denotes the distributional gradient of . Therefore, we have the ‘scale of
spaces’ H.y1 C L?(R3,C?) C 'H_1.




Proposition : Under assumption (A) on the potential V,

—10 -V

€ L2(R3,C2)},
y—

Har C {o € 220,07

where V¢ denotes the distributional gradient of . Therefore, we have the ‘scale of
spaces’ H.y1 C L?(R3,C?) C 'H_1.

Idea of proof : If & := (7_2501(4{/6)(2/12_7) (>0),

|0 - V|?
b~ (@, 25/ go2dac—|—5/ ——dzx,
(o) 26 [ ol Rt




Proposition : For any F'in L2(R3,C?) and for any v € (I', 1 + ¢(V)),

F
—ia-V( )67‘(_1,
v—V

where, once again, the gradient is to be interpreted in the distributional sense.




Proposition : For any F'in L2(R3,C?) and for any v € (I', 1 + ¢(V)),

F
—10 -V eH_1,
7 <'7—V) !

where, once again, the gradient is to be interpreted in the distributional sense.

ldea of proof : By the definition of the distributional derivative, for every
n € C°(R3,C?),

- F —10 - V1
N -v, = —,F < F . 2
(=io- v )| = [ (S22 F) | < e 11 o

Hence, the linear functional

F
s [ —io - Vi, 2
n (za 77,y V) (2)

extends uniquely to a bounded linear functional on H .




We have to prove that for both pairs (¢, x), (¢, x) in the domain,

~

<(H0 +V+1—7) < i ) , < ;iz )) = ((V—=y)x—io - Vo, x)+((2—v+V)p—ic - Vx,$)

equals

=1

(x, V=y)Xx—ioc - V@ )+(p, 2—y+V)p—ioc - VX ) = (( i ) , (Ho+V +1—1) (

)




We have to prove that for both pairs (¢, x), (¢, x) in the domain,

X X

equals

(x, V=y)Xx—ioc - V@ )+(p, 2—y+V)p—ioc - VX ) = << i > C(Ho+V+1—17) (

=1
N——
N——

We use the above propositions to show symmetry as follows : for ¢, ¢ smooth,

<(H0+V+1—7) (i) , <§>) :(57¢,¢)+((v—7) [x+ _:f—_?o] , {m _:’/(’—_Z‘PD |




We have to prove that for both pairs (¢, x), (¢, x) in the domain,

((H0+V+1—7)< i ) : ( g )) = ((V—=y)x—io - Vo, x)+((2—v+V)p—ic - Vx,$)

equals

(x, V=y)Xx—ioc - V@ )+(p, 2—y+V)p—ioc - VX ) = << i ) C(Ho+V +1—7) <

=1

)

We use the above propositions to show symmetry as follows : for ¢, ¢ smooth,

((H0+V+1—”y) (i) : <§)> :(5790795)+<(V—’7) [x+ _:./O—;ZSO] : {)2+ fj—;:ﬂ) :

and both expressions are continuous in ¢, ¢ with respect to the H41-norm. So we can
pass to the limit and so prove symmetry.




For any F1, I in L?(R3,C?), there exists < ’ ) € D such that
X

B e\ _((V+2—7)p—i0c-Vx )\ _ [ F
(Ho +V +1 w(x)_( —io - Vo + (V —9)x >_<F2)




For any F1, I in L?(R3,C?), there exists < SD) € D such that
X

V+2-— — 10 -V F
X —i0 - Vo + (V —79)x £y
Since S~ is an isomorphism, there exists a unique ¢ in H41 such that

, F
SygozFl—za-V<7_2v) .

Indeed, Fy isin L2(R3,C?) and therefore in H_1. Moreover the second term is also in
H_1 by the above proposition.  Next define x by

—Fy—ic -V
X = 27_,&?/ L <— (V—-v)x—tio-Vp=IF

which by the above proposition is in L2 (R3, C?). But then, we can write




B e - ety

For any F1, I in L?(R3,C?), there exists <

V+2-— — 10 -V F
X —i0 - Vo + (V —79)x £y
Since S~ is an isomorphism, there exists a unique ¢ in H41 such that

, F
Sfygo=F1—za-V<7_2V) .

= €

) € D such that

Indeed, Fy isin L2(R3,C?) and therefore in H_1. Moreover the second term is also in
H_1 by the above proposition.  Next define x by

—Fy—ic -V
X = 27_2?/ L <— (V—-v)x—tio-Vp=IF

which by the above proposition is in L2 (R3, C?). But then, we can write

o
Flzsw—z'a-v(wrw w)
vy—V




Flzsygo—ia-V(X—l—zg.vgo)

vy—V

is equivalent to : for all smooth 7,

_
(n, F1) = (n,Sfyso)Jr(—w-meﬂLw <’0)
v—V
. Y
— (5’717,90)—#(—20 Vn,za_‘;o)-l-(—’w'vna)()
-V .
= (Syn—io - V(=) o) + (—io - Vi, x)

= (V+2—-9)n,¢) + (—ic-Vn,x)




Flzsygo—ia-V(X—l—zg.vgo)

vy—V

is equivalent to : for all smooth 7,

g
(1, F) = (0,849)+ (—io -V, x+ ——)
v—V
, oV .
= (Sw,so)Jr(—w-Vn,w_‘;O)ﬂL(—w'V"’X)
| oV .
= (Syn—io V(1)) + (—io - Vn,X)

vy—V
= (V4+2=7)n,¢) + (—ioc-Vn,x)

and in the weak sense, this means that

Fi=(V+2—~)p—io-Vx




Since S, is an isomorphism, this implies that ¢ = x = 0.

s of the extension

and since
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J( + uniqueness of the extension
©

) = <O> and since
X 0

y = —f2=9 Ve gpd Swgo:Fl—ia-V(vl?v),

Assuming that (Ho+V +1—7)

Since S5 is an isomorphism, this implies that o = x = 0.
It remains to show the uniqueness part in our theorem. Assume that C°(R3,C%) C D is

another selfadjoint extension such that whenever (p, x) € D, ¢ € H1. Since Hy + V
is selfadjoint on this domain, for all (@, ¥) € CS°(R3, C*)

(5) e (7)) = (v () (3)




_jectivity + uniqueness of the extension

Assuming that (Ho+V +1—7) ( L > = < 8 ) and since
X

_ —FQ—’I:O'-VQD _ . FQ
X = =V and S’YCIO_F]-_ZO-.V(»-Y_V) ’

—10 -V
=, S :O
X N —V 05 4

Since S5 is an isomorphism, this implies that o = x = 0.
It remains to show the uniqueness part in our theorem. Assume that C°(R3,C%) C D is

another selfadjoint extension such that whenever (¢, x) € D, ¢ € H41. Since Ho +V
is selfadjoint on this domain, for all (@, ¥) € CS°(R3, C*)

(5) e (§))= (v (3)- (7))

X X X X

_({ V+2=7)¢p—io VX ¥ :<(95> ((V+2—7)¢—i0-vx>>
—ic-Ve+V-mx |} \x X )\ —io-Ve+(V—)x Ceo (O30

Thus, D C D and hence D = D.




In the limit case V(z) = — 2, the domain D is not contained anymore in

RE

H'/2(R3,C*), but the total energy is still finite :

- Vop|? 1
/ o Vol + (1-—) 10| | dz < +o0
R3 |z

1
1—|—m

even if

- Vool? 2
RS 14 17 R3 ||




THE END
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