
  

Manipulating Entanglement

Nilanjana Datta
University of Cambridge,U.K.

joint work with:  Garry Bowen



In a classical system: complete information of a system implies 
a complete description of its individual parts and vice versa.

In quantum physics this is no longer true: If AB is a quantum 
system, then:

A and B are 
individually in pure 
states

⇒AB in a pure state ABΨ

A and B can be correlated in a way which has no classical 
analogue: 

    A and B are entangled.

A B
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Separable and Entangled States
A pure state           of a bipartite system AB is separable if it is 
expressible in the tensor product form:

Else it is entangled! 

Moreover,           is a maximally entangled state (MES) if its 
reduced density matrices are given by completely mixed states 

                                  : e.g. a Bell state  

A bipartite mixed state          is separable if it is of the form 
                                         
                                                         Else it is entangled.

ABΨ

ABΨ

AB A Bφ ψΨ = ⊗

A B

I

d
ρ ρ= = 1

00 11
2

Ψ =  +  

ABρ
( )A B

AB i i i
i

pρ σ ω= ⊗∑
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Entanglement plays a crucial role in Quantum Information 

Theory.

It is a novel resource which can be used to perform tasks 

which are impossible in the classical realm, e.g., 

teleportation, superdense coding, quantum cryptography etc.

a fundamental property of entanglement: it cannot be   

created by local operations and classical communications 

(LOCC) alone.

However, one can transform one entangled state to another by 

LOCC alone: this is called as entanglement manipulation
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      Alice               shared entangled state             Bob

                                         

If                  denotes entanglement of state          then :ABE ( )ρ

AB AB AB ABLOCC
E( ) E( )ρ σ σ ρ⇒ ≤→

ABρ

ABρ

classical communication (CC)
Local (LO)

ABσ

operations
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An essential property of any quantity that is used to 
characterise entanglement is that it cannot be increased by 
LOCC alone

For a bipartite pure state           , one such quantity is its 
Schmidt number:       

                      
                is entangled if and only if its Schmidt number > 1.

There is no such simple quantity characterising the 
entanglement of arbitrary bipartite states         .

     

However, one can establish asymptotic measures of 
entanglement for any arbitrary bipartite state          by 
considering suitable entanglement manipulations of it.

ABΨ

ABρ

ABΨ

ABρ

http://www.cam.ac.uk/


Why do we need entanglement manipulations?
to convert the entanglement of a state to a standard form 
or “currency”.
This also allows us to compare the entanglements of two 
different entangled states. 

To obtain “standard form” or “currency” for entanglement: 
define the entanglement of maximally entangled state (MES) 
of rank M                                               

                                      to be                             ……….(1) 

This yields a benchmark against which to measure the 
entanglement of  other states.

    [Note: take logarithm in (1) is taken to base 2]

+ A B
M

1

1 M

k k
k

e e
M =

Ψ = ∑ ( ) logME M+Ψ =
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Asymptotic measures of the entanglement of any arbitrary 
bipartite state        are then obtained by considering :

    entanglement manipulations which convert 
    
     multiple copies of                             multiple Bell pairs 

(or vice versa)

                      Bell pairs   (Entanglement Concentration)

      or equivalently,             a  MES of a rank 
                                                 
              

         Bell Pairs                 (Entanglement Dilution)

nρ ⊗

ρ

;(n N)∈

ρ

2 nm
nM =

nm

nρ ⊗
nm′

nρ ⊗

LOCC→
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Denoting a the density matrix of a Bell pair by        the above 
transformations can be denoted as follows:

                                 ……(i)                                     …….(ii)            
                                                                                                
                  

     with

Since entanglement cannot be increased by LOCC we have 

     
     Hence 

Note: transformations (i) and (ii) cannot be achieved 
perfectly for finite     . Hence one allows imperfections and 
requires instead that the fidelities of the transformations 
approach unity asymptotically in       .

nmn
LOCC

ρ ω⊗⊗ → nm n
LOCC

ω ρ′⊗ ⊗→
, ,n nm m n′ ∈¥

(i) (ii)( ) ( ); ( ) ( )n nm mn nE E E Eω ρ ρ ω ′⊗ ⊗⊗ ⊗⇒ ⇒≤ ≤

ω

n

n

( () )
n

n
n n m nm E m E mρ ω⊗≤ ≤ =′ Q
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If
    
    FIDELITY:

                 [final state]     [target state]
    
   and we require that                 as    

The asymptotic entanglement measure of the state

We have:

                                                 

1nF →

:n n nLOCC
τ ρ σ→

( ( ), ) : Tr( ( ) )n n n n n n nF F τ ρ σ τ ρ σ= =

ρ
( ) 1

: lim ( )n
n

E
n

ε ρ ρ⊗

→∞
=

( )liminf limsupn n

n n

m m

n n
ε ρ

→∞ →∞

′
≤ ≤ ( )nn nm E mρ ⊗ ′≤ ≤

n→ ∞

Q
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Thus the entanglement manipulation protocol yields two 
(different) asymptotic entanglement measures for a bipartite 
state 

(i) the entanglement cost  

    : the minimum number of Bell pairs needed to create  
(ii) the distillable entanglement

    : the maximum number of Bell pairs that can be extracted 
locally from the state     .  Hence,              gives the value of 
the entangled state         as a resource (for an entanglement-
based protocol).

( ) inf limsup n
C

n

m
E

n
ρ

→∞

′
=

nm n
LOCC

ω ρ′⊗ ⊗→
1n n

F →∞→

( ) sup liminf n
D

n

m
E

n
ρ

→∞
=

nmn
LOCC

ρ ω⊗⊗ →

ρ ( )DE ρ
ρ

1n n
F →∞→

ρ
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For a bipartite pure state          it is known that

Here       and        : reduced density matrices of the subsystems 
A and B resply., and               denotes the von Neumann 
entropy of         .

Hence, locally transforming 
    
    is an asymptotically reversible process.

Moreover               is the unique asymptotic entanglement 
measure for             since any other entanglement measure

         for           satisfies:                       
                                                                   [Donald et al.]

Aρ

ABΨ

( ) ( )( ) ( )AD B C BBA AE S S Eρ ρ=Ψ = = Ψ

Aρ Bρ
( )AS ρ

ABΨ
E

D CE E E≤ ≤

( )An nS
AB

ρω⊗ ⊗Ψ ↔

ABΨ

( )AS ρ
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The practical ability of transforming entanglement from one 
form to another is useful for many applications in Quantum 
Information Theory.

However, it is not always justified to assume that the 
entanglement resource available consists of states which are 
multiple copies (tensor products) of a given entangled state.

In other words, the entanglement resource need not be 
“memoryless” or “i.i.d.”.

More generally, an entanglement resource is characterized by 
an arbitrary sequence of bipartite states, which are not 
necessarily of the tensor product form.
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These sequences of bipartite states are considered to exist 
    in Hilbert spaces                            for          
             

Our Aim: to establish asymptotic entanglement measures
    
    for arbitrary sequences of bipartite states :
          

The only assumption that we make is that         and        are 
finite dimensional

If                        for some state         :
   
    then one retrieves the usual memoryless scenario discussed 

thus far.

n
nρ ρ ⊗= ρ

{ } 1
ˆ

n n
ρ ρ ∞

=
=

n n
A B
⊗ ⊗⊗H H { }1, 2,3,....n =

AH BH
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In order to establish             and             for such arbitrary 
sequences of bipartite states                 , we make use of the 
so-called Information Spectrum Approach.

This approach was developed in Classical Information Theory 
by Verdu and Han and was first extended into Quantum 
Information Theory by Hayashi, Nagaoka & Ogawa.

The Information Spectrum Approach is a powerful method for 
obtaining the optimal rates of various protocols. 

The power of the method lies in the fact that it does not rely 
on any specific nature of the sources, channels or 
entanglement resources involved in the protocol.

( )ˆ
CE ρ ( )ˆ

DE ρ
{ } 1

ˆ
n n

ρ ρ ∞

=
=
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Spectral Projections
The Quantum Information Spectrum (QIS) approach requires 
the extensive use of spectral projections.
For a self-adjoint operator A with spectral decomposition

    we define the spectral projection on A as 
 
                                                  
 

For 2 operators A and B we can then define

i
i

A i iλ= ∑

{ }
0

0
i

A i i
λ ≥

≥ = ∑

{ } { }0A B A B≥ = − ≥

:the projector onto the eigenspace 
of non-negative eigenvalues of A

http://www.cam.ac.uk/


For any given constant     , one can associate with each 

sequence of bipartite states                        , a sequence of 

   
     orthogonal projectors             with 

    
     i.e.,       projects onto

If                                     : spectral decomposition
   

                       

n n n
n i i i

i

e eρ λ= ∑

γ

{ }2 n
n n nP Iγ γ γρ −= ≥{ }

1n n
Pγ ∞

=

{ } 1
ˆ

n n
ρ ρ ∞

=
=

the eigenspace of       
corresponding to the eigenvalues 
which are 

nρ

2 nγ−≥

nP
γ

: 2n n
i

n n
n i i

i

P e e
γλ

γ

−≥

= ∑
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Using these projections, for any sequence                     one 
can define 2 real-valued quantities :

                                                        :inf-spectral entropy rate

                                                       :sup-spectral entropy rate
         

 

RESULTS:                    and            

For                        we have 
                           

( )ˆDE S ρ=

( )
1 1

ˆ ˆ( ) liminf limsup ) )( (n
n

nn
S S S

n
S
n

ρ ρρ ρ
→∞ →∞

≤ ≤ ≤

{ }nˆ( ) : inf : limsupTr 1n
n

S Pγρ γ ρ
→∞

 = = 

{ }n
ˆ( ) : sup : liminf Tr 0nn

S Pγρ γ ρ
→∞

 = = 

{ } 1
ˆ

n n
ρ ρ ∞

=
=

{ }
1

ˆ n

n
ρ ρ

∞⊗

=
= ˆ ˆ)( ) ( )(SS Sρρ ρ= =

( )ˆ
CE S ρ=
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Asymptotic Entanglement Dilution of Pure States

n

+ ( ) ( )
M

1

1 nM
n n
A B

kn

i i
M =

Ψ = ∑

{ }n

+
M

1n

∞

=
Ψ

{ }
1n n

∞

=
Φ

LOCC

Alice Bob

n n
A B
⊗ ⊗∈ ⊗H HnΦ

:  MES of rank nM

:  partially entangled target state

{ } { }
n

+
M 11

LOCC
n nn

∞ ∞

==
Ψ → ΦAim:
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Definitions: Achievable rate and Entanglement Cost

Achievable Rate:      is an achievable dilution rate if 

                       such that                an LOCC transformation        
exists that takes 

    
     with fidelity                        and       

The entanglement cost:

for the required class of transformations.      

0, Nε∀ > ∃ n N∀ ≥

nM nLOCC
+Ψ → Φ

1nF ε≥ − 1
log nMn

R≤

infCE R=

R
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    Theorem 1: The entanglement cost of a sequence of pure 

     bipartite target states               is given by

                              where                    with 

    is the sequence of subsystem states.

Here              

Hence                   ,    

i.e., the eigenspace corrs.to eigenvalues of        which are       

                                                

TrA
n B n nρ = Φ Φ

{ }
1n n

∞

=
Φ

( )ˆ
CE S ρ= { }

1
ˆ A

n n
ρ ρ

∞

=
=

( )ˆSγ ρ∀ > nTr 1n n
Pγ ρ →∞  → 

A
nρ

ˆ( )2 nS ρ−≥ is a high probability subspace

{ }nˆ( ) : inf : limsup Tr 1n
n

S Pγρ γ ρ
→∞

 = = 

{ }2 n
n n nP Iγ γ γρ −= ≥
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Proof :Let the target state         have        non-zero Schmidt 
coefficients. Let its Schmidt decomposition be given by

    where the Schmidt coefficients          are arranged in 
decreasing order:

Protocol: Alice has a bipartite system           and locally 
prepares the state

Then she teleports the state of the subsystem       to Bob, 
using her part of the MES    

 

AA′

nΦ nN

( ) ( )
,

1

n
n n

n n k B

N

A
k

k kλ
=

Φ = ∑
,n kλ

,1 ,2 ,....
nn n n Nλ λ λ≥ ≥

( ) ( )
,

1

nN
n n

n n k A AAA
k

k kλ ′′
=

Φ = ∑

nM
+Ψ

A′
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nM
+Ψ

Alice Bob

shared MES state

Alice locally prepares          in a state 

Alice teleports         to Bob using her part of    

A A′

AA′

A A′ B

A′
nM

+Ψ

( ) ( )
,

1

nN
n n

n n k A AAA
k

k kλ ′′
=

Φ = ∑
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Alice Bob

If                the teleportation can be done perfectly and 
the final shared state is the desired target state:

                                               

1nF =

A′

nM
Φ%

final shared state

n nM N≥

( ) ( )
,

1
n

n
n n

M n n k A BA

N

B
k

k kλ
=

Φ = Φ = ∑%

The subsystem      is now referred to as       since it is 
now in Bob’s possession.  

In this case the fidelity :       

B
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However, if               , then Alice can perfectly teleport only 
the (unnormalized) truncated state

Note : only the       largest Schmidt coefficients of the target 
state          are retained in the teleported state

This is the “quantum scissors effect”:  if the quantum state to 
be teleported lives in a space of a dimension higher than the 
rank of the MES shared between the 2 parties, then the higher 
dimensional terms in the expansion of the state are “cut-off”.

                                             
   

n nM N<

( ) ( )
,

1

n

n

M
n n

n k A B
k

M k kλ
=

=Φ ∑%

nΦ
nM
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Hence, for               the final shared state between Alice and 
Bob after the teleportation can be expressed as

     

    where         is an unnormalized error state.

                           Fidelity for 

Using Uhlmann’s Theorem we prove that

n nM N<

n n

AB
M M nσΦ Φ +% %

AB
nσ

n nM N<

( ),
n n

AB
M M nn nnF F σΦ Φ + Φ Φ= % %

(final state) (target state)

( )Tr
n n

A A
n M M nQ ρΦ≥ Φ =%

n

A
MQ              := orthogonal projection onto the        largest            

eigenvalues of  
nM

TrA
n B n nρ = Φ Φ
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Fidelity (for               )

( )nF Tr
n

A A
M nQ ρ≥

             := orthogonal projection onto the        largest       
   eigenvalues of the reduced state  

nMn

A
MQ

A
nρ

CLAIM: By choosing          appropriately we can ensure:nM

1n n
F →∞→

i.e., in spite of truncation of the state under teleportation, 
unit fidelity achieved asymptotically!!

n nM N<
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PROOF: Define a projection operator

Rank of           satisfies:

Why?  

Note that           is the projection used in defining the

Hence                       we have                                  

{ }: 2A n A
n n nP Iγ γρ −= ≥

nP
γ Tr 2nnP

γ γ≤

( )Tr 2 0

Tr 2

A n A
n n n

A n
n

P I

P

γ γ

γ

ρ − − ≥ 
⇒ ≤

nP
γ

{ }n
ˆ( ) : inf : limsup Tr 1n

n
S Pγρ γ ρ

→∞
 = = 

ˆ( )S ργ∀ > nTr 1n n
Pγ ρ →∞  → 

where A
n nρ ρ=
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We saw that

(Q1) How can we prove that

(A1) By proving that:

(Q2) Why? 

(A2) Because

                                                                   

( )Tr 1A
n n n
Pγ ρ →∞→

( )Tr
n

A A
Mn nF Q ρ≥

( )Tr Tr( )
n

A A A
M n n nQ Pγρ ρ≥

1?n n
F →∞→

ˆ( )Sγ ρ>

(Q3) How can we choose           such that  (a) holds ? nM

with ….(a)
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 Eigenvalues of             in decreasing order 

labels

values

If we choose                        then 

&                                                  
                                                                   

2 nγ−≥

nM1 2 . . . .
     projects onto first    

 eigenvalues
n

A
MQ

nM

2 nγ−
nP
γ     projects onto all 

eigenvalues

A
nρ

2n
nM γ≥ ( )Tr Tr( )

n

A A A
M n n nQ Pγρ ρ≥

( ) ( )Tr Tr 1
n

A A A
M n n nn n

F Q Pγρ ρ →∞≥ →≥ ˆ( )Sγ ρ>

|
(there are             such values                   )2Tr n

nP
γ γ≤2nγ≤

for
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If the rank             of the initial shared MES            is:

                         with                         , then

Hence, a rate                                             is achievable!

Weak converse: A rate                    is not achievable

Hence, entanglement cost:
 

  

2nnM
γ=   

n

+
MΨ

ˆ( )Sγ ρ>

nM

1n n
F →∞→

1
ˆlog ( )nR M S

n
ρ= >

ˆinf ( )CE R S ρ= =

ˆ( )R S ρ<
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Schematic summary of protocol for entanglement dilution
Aim:

where 

                    

(k) If                  then
(l) If                  then                                if we choose

{ } { }
n

+
M 11

LOCC
n nn

∞ ∞

==
Ψ → Φ

( ) ( )
,

1

n
n n

n n k B

N

A
k

k kλ
=

Φ = ∑

1
ˆlog ( )nM S

n
ρ>

n nM N≥

n nM N<

(1) Locally prepares          in state nΦ

(2) She teleports          to Bob

1n n
F →∞→

1nF =

AA′

A′

nM

such that
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Asymptotic Entanglement Concentration of Pure States

                      : partially entangled pure states 

AIM: 

                    

{ }
1n n

∞

=
Φ

{ } { }n

+
M1 1

LOCC
n n n

∞∞

= =
Φ → Ψ

{ }n

+
M

1n

∞

=
Ψ

{ }
1n n

∞

=
Φ

LOCC
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If the fidelity of this LOCC transformation:
    

then,  any                             is an achievable rate:

    

    Distillable entanglement:

THEOREM (Hayashi): For the entanglement concentration

     protocol

     

      where                            with 

1n n
F →∞→

1
log nn

R M≤

supDE R=

{ } { }n

+
M1 1

LOCC
n n n

∞∞

= =
Φ → Ψ

( )ˆDE S ρ=

{ }
1

ˆ
n

A

n
ρ ρ

∞

Φ =
= Tr

n

A
B n nρΦ = Φ Φ
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Proof: Let initial shared state:

Define projection operators

    and

Note :          is the operator used in defining           :

                                                                 for 

Hence for                      :  

( ) ( )
,

n n
n n k A B

k

k kλΦ = ∑

{ }: 2A n A
n n nP Iγ γρ −= ≥

{ }: 2A A n A
n n n n nP I P Iγ γ γρ −= − = <

nP
γ

{ }: sup : liminfˆ( ) Tr 0A
n nn
PS γρ γ ρ

→∞
 = = 

ˆ( )S ρ

ˆ( )Sγ ρ< Tr ( ) 0A
n n n
Pγ ρ →∞→

Tr ( ) 1A
n n n
P

γ
ρ →∞→

{ }
1

ˆ A
n n

ρ ρ
∞

=
=
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nΦ

initial shared state

PROTOCOL:

(1) Does a von Neumann measurement corrs. to      
        on her part of shared state,n nP Pγ γ

If outcome corrs. to 

Failure!

Protocol aborted! 

Probability=

nP
γ If outcome corrs. to

Success!

Probability=

nP
γ

nΦ

Tr ( )An nPγ ρ

Tr ( )An nP
γ
ρ
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If the outcome corrs. to        : post-measurement state:

    

Normalized 
    post-meas. state:

                 
              square root of eigenvalues of

nP
γ

{ }: 2A n A
n n nP Iγ γρ −= <

,

( ) ( )

2
,

: n
n k

n n
n k A B

k

k k
γλ

λ
−<

∝ ∑( )Bn n n nAB AB
P IγΦ ∝ ⊗ Φ

, 2

, ( ) ( )

: Tr( )n
n k

n k n n
n A B

Ak n n

k k
Pγλ

γ

λ

ρ−<

Ψ = ∑

( )Tr
n

A
B n nρΨ = Ψ Ψ

each eigenvalue of    
Tr(

2

)An n

n

P

γ

γ
ρ

−

≤

since

n

AρΨ
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                      Alice’s measurement (if successful) takes 

                                                       

      

           

  
                

?
nn LOCC M

+Ψ → Ψ

nnΦ → Ψ

n

+
M

LOCC
nΦ → ΨWe wanted:

(Q)    Is there an LOCC operation that will take:

(A) Yes! Use Nielsen’s majorization theorem.
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 By Nielsen’s Majorization Theorem

    iff              

                 : vectors of  Schmidt coefficients  of      

                                                          

                

                

nn MLOCC
+Ψ → Ψ

2

T
;

r( )

n

A
n nP

γ

γ ρ

−

≤

,
Mn

n

A Aρ ρ +ΨΨ

n2 Tr(P
2 1

Tr( )
)

n

A
n n n

n A
n nP M

M γ γ
γ

γ ρ
ρ

−

⇒≤ ≤

∴

n

AρΨ

...... (1).....
n Mn

λ λ +Ψ Ψ
p

,
n Mn

λ λ +Ψ Ψ
,

nn M
+Ψ Ψ

i.e., vectors of eigenvalues of 

1 1 1
, ,....., ,

Mn M M Mn n n
λ +

 
 
 Ψ  

= each eigenvalue 
of 

     (1) holds if we choose          such that :nM
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We need:                                  ; Let

If                  where                   then 

    Probability of failure:

    Probability of success: 

Achievable rate:

Weak Converse:  A rate                  is not achievable

Distillable Entanglement:             

Tr )2 ( A
n n

n
n PM γγ ρ =  

Tr ( ) 0A
n n n
Pγ ρ →∞→

Tr ( ) 1A
n n n
Pγ ρ →∞→

ˆ( )Sγ ρ<

1
ˆlog ( )nM S

n
R ρ<≤

ˆ( )R S ρ>

( )ˆDE S ρ=

{ }
1

ˆ A
n n

ρ ρ
∞

=
=

n2 Tr(P )n A
n nM γ γ ρ≤
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Schematic summary: protocol for entanglement concentration

nΦ

PROTOCOL:

(1) Does a von Neumann measurement corrs. to      
        on her part of shared state,n nP Pγ γ

If outcome corrs. to  

            Failure!

nP
γ If outcome corrs. to

Success!

nP
γ

{ } { }n

+
M1 1

LOCC
n AB n AB n

∞∞

= =
Φ → ΨAim :

nnΦ → Ψ
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Summary
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Any sequence of bipartite pure states                    for which 
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However,   sequences                 of bipartite pure states for     

                which the corrs. sequence of subsystem states are 

    not information stable: 

e.g. sequences for which the reduced states are:

     with                  and   

For such sequences
 

Hence, the asymptotic entanglement measure is unique only 
for information stable sequences !
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SUMMARY

For an arbitrary sequence of pure bipartite states

    entanglement cost                       ;

    distillable entanglement 

                     only for sequences of states which are 

    information stable, i.e., for which 

only such sequences have a unique asymptotic entanglement 

measure.               
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NOTE: The quantities              ,                 

    are obtainable from 2 fundamental quantities: the spectral 
divergence rates:
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From                    and                     we obtain
                                and 
    
    by substituting    

The spectral divergences rates can be viewed as 
generalizations of the quantum relative entropy:

     since
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The Quantum Information Spectrum Method provides a 
unifying mathematical framework for evaluating the optimal 
rates of various information theoretic tasks e.g. entanglement 
manipulation, data compression, data transmission, dense 
coding etc. 

                              OPEN PROBLEMS
    
    Use the Quantum Information Spectrum Method to:
 

Find the quantum capacity of an arbitrary quantum channel.

Find the optimal rates for various other informations theoretic 
protocols, such as, distributed quantum compression, quantum 
capacity in the presence of feedback,

    etc., using arbitrary sources, channels and entanglement 
resources. 
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