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Topics -

1. Two leads coupled through a quantum well: spectral analysis;

2. What is a NESS?

3. Time-dependent Liouville equation for density matrices;

4. Current formulas (Landau-Lifschitz, Landauer-Biittiker).




The model -

In § := L*(R) we consider the Schrédinger operator

1d 1 d

(HN@) = 5 5 iy ! @ T V@I @), weR M

with domain

Dom (H) := {f € W2(R) : W\z cWRR)Y. (@)

It is assumed that the effective mass M () and the real potential V' (x)
admit decompositions of the form

\
m, T € (—o0,al

m(x) x € (a,b)

LMy x € |b,00)




The model -

0 < mg,my < 00, m(z) >0,z € (a,b), m+ € L>((a,b)),

™Ma(b)

\@9 r € (—00,al

V(z):=<v(x) z¢€(a,b) Vg > Up, 4)

€ x € |b,00)

Ve, p € R, v € L*((a,b)). The quantum well is identified with the
interval (a, b), (or physically, with the three-dimensional region
(a,b) x R?). The regions (—oo, a) and (b, oo) (or physically
(—00,a) x R? and (b, 00) x R?), are the reservoirs.




The model -

Besides its mathematical beauty, the model is also interesting for:

1. quantum well lasers,
2. resonant tunneling diodes,
3. nanotransistors.

Kirkner, D.; Lent, C.: The quantum transmitting boundary method, J.
Appl. Phys. 67 (1990), 6353-63509.

Vinter, B.; Weisbuch, C.: Quantum Semiconductor Structures:
Fundamentals and Applications. Academic Press, Boston, 1991.




What is a NESS?

Definition 0.1. A bounded, self-adjoint, non-negative operator o in

L?(R) is called a density operator or a state if the product
oM (X (ap)) is a trace class operator, where M (X (q,p)) is the
multiplication operator induced in L*(R) by the characteristic
function X (q.p) of the interval (a,b).

Definition 0.2. A state o is called a steady state for H if p commutes
with H, i.e. o belongs to the commutant of the algebra generated by
the functional calculus associated to H. A steady state is an

equilibrium state if it belongs to the bicommutant of this algebra.




What is a NESS?

H 1s unitarily equivalent to the multiplication M induced by the
independent variable ) in the direct integral L (R, h(\), v),

C, Xe(—o0,v4]
C%, X € (vq,00)

Y

and (with the usual abuse of notation)

N
dv(A) =) 6(A = X)dA + X[y,00) (M)A, AER,  (6)

g=1

where it is assumed v, > vy, and {\;}7_; denote the finite number of

simple eigenvalues of I which are all situated below the threshold wvy.




What is a NESS?

If o 1s a steady state for H, then there exists a v-measurable function
RS> A= p(A) € B(h(A))

of non-negative bounded operators in () such that

v —supyer ||0(N)|[m(p(r)) < 00 and o is unitarily equivalent to the
multiplication operator M (p) induced by p via the generalized
Fourier transform ® which makes H diagonal:

0 =0 M(p)2. (7)

If o is an equilibrium state for H, then p(\) is proportional to the

identity matrix.




The decoupled system

We start with a completely decoupled system:

9o := L*((—00,a]), $7:= L*(T),

where 7 = (a, b). We note that

N =9Ha D HT D N

With $, we associate the Hamiltonian H

2
(Haf)@) = —5 o f(@) +uaf(@), (10

f €Dom (H,) := {fe€W??((~o00,a)): f(a)=0} (11)




The decoupled system

with 7 the Hamiltonian H7,

d

(Hzf)(w) 2dxr m(x) dx

f € Dom Am.\wv

and with $; the Hamiltonian Hy,

(Hf)w) = =gt (o) + uf(a),

f €Dom(H,) := {fecW?**(b o) :

10



The decoupled system

In $ we set
Hp:=H,® Hr ® H, (16)

The quantum subsystems {$),, H,} and {$s, Hp} are called left- and
right-hand reservoirs. The middle system {$7, H7} is identified with
a closed quantum well. We assume that all three subsystems are at
thermal equilibrium; according to Definition 0.2, the corresponding
sub-states must be functions of their corresponding sub-Hamiltonians.
The total state 1s the direct sum of the three sub-states.

11



The initial state

The equilibrium sub-states are o, o7 and g, where:

Oa ‘— %@Am@|t@vv 01T ‘— wNAmH|KNY Ob ‘— ?Am@|.§@v. (17)

A physical example from

Frensley, W. R.: Boundary conditions for open quantum systems
driven far from equilibrium, Rev. Modern Phys. 62 (1990), 745-791,
proposes

fi(A) :==c;In(14+e "), je{a,Z,b}

A € R, 8 :=1/T. The constants are given by ¢; := @ﬁsw. , where the

Sw ’s are one dimensional effective masses. The 1nitial state is:

0D ‘= 0q D 07 D 00-

12



Time-dependent coupling

The main question: can we construct a NESS for {$, H } starting
from op?

Let us assume that at £ = —oo the quantum system {$), Hp } is
described by the NESS pp. Then we connect in a time dependent
manner the left- and right-hand reservoirs to the closed quantum well
{97, Hz}. We assume that the connection process is described by the
time-dependent Hamiltonian

Ho(t) .= H+e *5(x—a)+e *6(xz—b), tcR, a>0.(18)

13



Time-dependent coupling

The operator H,, (%) is defined by

1d 1 d
2dx M(z) dx

flx)+V(x)f(x), f € Dom (Ha(t)),

where the domain Dom (H,(¢)) is given by

Dom (H (1)) :=

/

feWhH(R) :

14



Time-dependent coupling

One can prove the following operator norm convergence:

n— lim (Ha(t) —2)"' = (Hp — 2)"

t——0o0

n— lim (Hy(t) — NVL = (H — Nvlﬁ

t——4o0

ze C\ R

15



Time-dependent coupling

Our density matrix will be given by a mapping

R >t 0a(t) € BIWH(R)),

which is differentiable in the space B(W1#(R), W~12(R)) and
solves the (weak) quantum Liouville equation:

i 0a(1) = [Halt), 0a(1], tER,

for a fixed o > 0 satisfying the initial condition

s- lim g, (t

t——0o0

16



Time-dependent coupling

Having found a solution g, (t) we are interested in the ergodic limit

H MJ
@QH HWYHIHTHOO ﬂ \o @Q va&w. Ava

If we can verify that the limit g, exists and commutes with H, then g,
is regarded as the desired NESS of the fully coupled system {$), H }.

17



The unitary evolution

Let us consider a weakly differentiable map
R >t — u(t) € WH2(R). We are interested in the evolution equation

@mﬁg = H,(t)u(t), teR, a>0. (24)

where H,,(t) is regarded as a bounded operator acting from W1 2(RR)
into W~ 12(R).

18



The unitary evolution

There 1s a unique unitary solution operator or propagator

{U(t,s)}(t.s)erxr leaving invariant the Hilbert space W**(R) and:

WAQ@MV&US —i(H,()U(t, s)z,y), x,y € WH(R),

9 Ut s)2,y) = i(Ha(s)a, Uls, t)y), 2,y € W (R),

0s
Ul(s,s)=1.

Neidhardt, H.; Zagrebnov, V. A.: Linear non-autonomous Cauchy

problems and evolution semigroups. To appear.
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Quantum Liouville equation

We note that

0a(t) :=U(t,s)oa(s)U(s,t), t,s€R,

seen as a map from W12(R) into W~1%(R) is differentiable and
solves the quantum Liouville equation satistying the initial condition

0a(t)]t=s = 0a(8), provided o, (s) leaves W1%(R) invariant.

20



Time-dependent scattering

We set U(t) :== U(t,0),t € R and consider the wave operators

Q_:=s- lim U(t)*e D

t——00

Oy := s lim U(t)*e ",

t— 400

Both exist, and €2, 1is unitary.

21



The solution to the Liouville equation

...which also obeys the initial condition:

0a(t) =U1)Q_opQ U )", teR.
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Incoming, stationary wave operator

We need to introduce the incoming wave operator

= s- lim e "D pac(fyy)

t——0o0

where P%“(Hp) is the projection on the absolutely continuous
subspace H°“(Hp) of Hp. We note that

9% (Hp) = L*((—o0, a]) @ L*([b, o0)). The wave operator exists
and 1s complete, that 1s, W_ is an 1sometric operator acting from

H?(Hp) onto H*(H ) where $H?°( H ) is the absolutely continuous
subspace of H (the range of P*“(H)).
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The main result

Theorem 0.3. Let Er(-) and {\;};L, be the spectral measure and
the eigenvalues of H. If op is a steady state for the system {$), Hp}
such that the operator 0p := (Hp + 7)*0p is bounded, then the limit

1

MJ
@”H-_. | &Qﬂ
@ mﬂhyﬂ._ﬁooﬂ\o QAV

=W_opW*+ ) Eu({\DSaenSeEn({N})  @7)

j=1

exists and defines a steady state for the system {$), H} where
Se 1= Q3 0.
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A comment -

We stress once again that only the part corresponding to the pure point

spectrum P := MM/\HH Eng({A;})SaopSiEm({)\,}) of our NESS
depends on @ > 0, while the absolutely continuous part

0% = W_opW?* does not. Note that with respect to the
decomposition H = HP(H) & H*“(H ), one has g, = oF, @ 0°°.

25



The result is stronger on H°°(H)

Theorem 0.4. If op is a steady state for the system {$), Hp} such
that the operator 0p = (Hp + 7)*0p is bounded, then

s- lim o, (t)P*“(H) =W_opW™. (28)

t——4o0

26



A conjecture -

The case o \, 0 would correspond to the adiabatic limit. Inspired by
the physical literature which seems to claim that the adiabatic limit
would take care of the above mentioned oscillations, we conjecture

the following result for the transient current:

Conjecture 0.5.

lim lim sup Tr{0a(t)P(H)[H,x]}| = 0,
o t—o00

where x is any smoothed out characteristic function of one of the

reservoirs.

27



Spectral representation

Corollary 0.6. With respect to the spectral representation
{L?(R,H(N),v), M} of H the distribution function {pa(\)} xer of

the steady state o, is given by

0
?Ay — t@v

Y

28

AeER\o(H)
A=A, j=1,...,N
A € [Up, Vy)

A € [vg,00)




The stationary current

Let n > 0, and choose an integer N > 2. Denote by ; the
characteristic function of the interval (b, co) (the right reservoir).
Without loss of generality, let us assume that H > 0.

Definition 0.7. The trace class operator

j(n) == i[HQ+nH)™", x] (29)

is called the regularized current operator. The stationary current

coming out of the right reservoir is defined to be

Jo i= %ﬁmw Tr(0aj(n)). (30)

Aschbacher, W., Jaksic, V., Pautrat, Y., Pillet, C.-A.: "Transport
properties of quasi-free fermions”, J. Math. Phys. 48, 032101 (2007)
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The Landau-Lifschitz formula

Let ¢ > b+ 1. Choose any function ¢. € C*°(RR) such that

0<¢.<1, ¢clx)=1if z>c+1, supp(¢.) C (c—1,00).
(31)

Then the stationary current is given by:
g —
T {W_op(1+ Hp)’W*P*(H)(1+ H) *[H,¢. (1 + H)" "}
= iTr {W_opW* P*“(H)[H, ¢.]} .

Compute the trace!

30



The Landau-Lifschitz formula

We compute the integral kernel of

1
A = iW_opWZ*P*(H)—
MS@

in the spectral representation of /4 and get

AN, p; y\%

y Z@Q

@@U

s.@@uog
2my  JR

31



The Landau-Lifschitz formula

In order to compute the trace, we put A = X, p = p’, and

integrate/sum over the variables. We obtain:

n\%&

i(@) = \ Mé oSGy (0, V), (2, N JdA.

j(x) is a constant, only depending on invariant, scattering quantities.
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The Landauer-Biittiker formula

... was obtained from Landau-Lifschitz in

Baro, M.; Kaiser, H.-Chr.; Neidhardt, H.; Rehberg, J: A quantum

transmitting Schrodinger-Poisson system, Rev. Math. Phys. 16
(2004), no. 3, 281-330.
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Further questions

. the multidimensional case
’long-range” switching in time;
’long-range” samples/quantum wells;

extensions to geometric scattering in hyperbolic manifolds;
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