The effect of time-dependent coupling on non-equilibrium steady states

Horia Cornean

Department of Mathematical Sciences

Aalborg University, Denmark.

Joint with H. Neidhardt (Berlin) and V.A. Zagrebnov (Marseille).

QMATH10, September 9-15 2007, Moeciu, ROMÂNIA.

Topics

- 1. Two leads coupled through a quantum well: spectral analysis;
- 2. What is a NESS?
- 3. Time-dependent Liouville equation for density matrices;
- 4. Current formulas (Landau-Lifschitz, Landauer-Büttiker).

The model

In $\mathfrak{H} := L^2(\mathbb{R})$ we consider the Schrödinger operator

$$(Hf)(x) := -\frac{1}{2} \frac{d}{dx} \frac{1}{M(x)} \frac{d}{dx} f(x) + V(x)f(x), \quad x \in \mathbb{R},$$

with domain

$$Dom(H) := \{ f \in W^{1,2}(\mathbb{R}) : \frac{1}{M} f' \in W^{1,2}(\mathbb{R}) \}.$$

admit decompositions of the form It is assumed that the effective mass M(x) and the real potential V(x)

$$M(x) := \begin{cases} m_a & x \in (-\infty, a] \\ m(x) & x \in (a, b) \end{cases} , \qquad (3)$$

$$m_b & x \in [b, \infty)$$

The model

 $0 < m_a, m_b < \infty, m(x) > 0, x \in (a, b), m + \frac{1}{m_{a(b)}} \in L^{\infty}((a, b)),$

and

$$V(x) := \begin{cases} v_a & x \in (-\infty, a] \\ v(x) & x \in (a, b) \end{cases}, \quad v_a \ge v_b,$$
$$v_b \quad x \in [b, \infty)$$

4

interval (a, b), (or physically, with the three-dimensional region $(-\infty, a) \times \mathbb{R}^2$ and $(b, \infty) \times \mathbb{R}^2$), are the reservoirs. $v_a, v_b \in \mathbb{R}, v \in L^{\infty}((a,b))$. The quantum well is identified with the $(a,b)\times\mathbb{R}^2$). The regions $(-\infty,a)$ and (b,∞) (or physically

The model

Besides its mathematical beauty, the model is also interesting for:

- 1. quantum well lasers,
- 2. resonant tunneling diodes,
- 3. nanotransistors.

Appl. Phys. 67 (1990), 6353-6359. Kirkner, D.; Lent, C.: The quantum transmitting boundary method, J.

Fundamentals and Applications. Academic Press, Boston, 1991. Vinter, B.; Weisbuch, C.: Quantum Semiconductor Structures:

What is a NESS?

function $\chi_{(a,b)}$ of the interval (a,b). multiplication operator induced in $L^2(\mathbb{R})$ by the characteristic $\varrho M(\chi_{(a,b)})$ is a trace class operator, where $M(\chi_{(a,b)})$ is the **Definition 0.1.** A bounded, self-adjoint, non-negative operator ϱ in $L^2(\mathbb{R})$ is called a density operator or a state if the product

equilibrium state if it belongs to the bicommutant of this algebra. the functional calculus associated to H. A steady state is an with H, i.e. ϱ belongs to the commutant of the algebra generated by **Definition 0.2.** A state ϱ is called a steady state for H if ϱ commutes

What is a NESS?

independent variable λ in the direct integral $L^2(\mathbb{R}, \mathfrak{h}(\lambda), \nu)$, H is unitarily equivalent to the multiplication M induced by the

$$\mathfrak{h}(\lambda) := \left\{
otin \mathbb{C}, \quad \lambda \in (-\infty, v_a] \right.$$

$$otin \mathbb{C}^2, \quad \lambda \in (v_a, \infty) ,$$

and (with the usual abuse of notation)

$$d\nu(\lambda) = \sum_{j=1}^{N} \delta(\lambda - \lambda_j) d\lambda + \chi_{[v_b, \infty)}(\lambda) d\lambda, \quad \lambda \in \mathbb{R},$$

simple eigenvalues of H which are all situated below the threshold v_b . where it is assumed $v_a \ge v_b$, and $\{\lambda_j\}_{j=1}^N$ denote the finite number of

What is a NESS?

If ϱ is a steady state for H, then there exists a ν -measurable function

$$\mathbb{R} \ni \lambda \mapsto \tilde{\rho}(\lambda) \in B(\mathfrak{h}(\lambda))$$

Fourier transform Φ which makes H diagonal: multiplication operator $M(\tilde{\rho})$ induced by $\tilde{\rho}$ via the generalized $\nu - \sup_{\lambda \in \mathbb{R}} \|\tilde{\rho}(\lambda)\|_{\mathfrak{B}(\mathfrak{h}(\lambda))} < \infty$ and ϱ is unitarily equivalent to the of non-negative bounded operators in $\mathfrak{h}(\lambda)$ such that

$$\varrho = \Phi^{-1} M(\tilde{\rho}) \Phi. \tag{7}$$

identity matrix. If ϱ is an equilibrium state for H, then $\tilde{\rho}(\lambda)$ is proportional to the

The decoupled system

We start with a completely decoupled system:

$$\mathfrak{H}_a:=L^2((-\infty,a]),\quad \mathfrak{H}_{\mathcal{I}}:=L^2(\mathcal{I}),\quad \mathfrak{H}_b:=L^2([b,\infty))$$

(8)

where $\mathcal{I} = (a, b)$. We note that

$$\mathfrak{H}=\mathfrak{H}_a\oplus\mathfrak{H}_{\mathcal{I}}\oplus\mathfrak{H}_b.$$

With \mathfrak{H}_a we associate the Hamiltonian H_a

$$(H_a f)(x) := -\frac{1}{2m_a} \frac{d^2}{dx^2} f(x) + v_a f(x), \tag{10}$$

$$f \in \text{Dom}(H_a) := \{ f \in W^{2,2}((-\infty, a)) : f(a) = 0 \}$$
 (11)

The decoupled system

with $\mathfrak{H}_{\mathcal{I}}$ the Hamiltonian $H_{\mathcal{I}}$,

$$(H_{\mathcal{I}}f)(x) := -\frac{1}{2}\frac{d}{dx}\frac{1}{m(x)}\frac{d}{dx}f(x) + v(x)f(x),$$

(12)

$$f \in \text{Dom}(H_{\mathcal{I}}) := \begin{cases} f \in W^{1,2}(\mathcal{I}) : \frac{\frac{1}{m}f' \in W^{1,2}(\mathcal{I})}{f(a) = f(b) = 0} \end{cases} (13)$$

and with \mathfrak{H}_b the Hamiltonian H_b ,

$$(H_b f)(x) := -\frac{1}{2m_b} \frac{d^2}{dx^2} f(x) + v_b f(x),$$

(14)

$$f \in \text{Dom}(H_b) := \{ f \in W^{2,2}((b,\infty) : f(b) = 0 \}.$$
 (15)

The decoupled system

In 5 we set

$$H_D := H_a \oplus H_{\mathcal{I}} \oplus H_b$$

sub-states must be functions of their corresponding sub-Hamiltonians. thermal equilibrium; according to Definition 0.2, the corresponding a closed quantum well. We assume that all three subsystems are at right-hand reservoirs. The middle system $\{\mathfrak{H}_{\mathcal{I}}, H_{\mathcal{I}}\}$ is identified with The total state is the direct sum of the three sub-states The quantum subsystems $\{\mathfrak{H}_a, H_a\}$ and $\{\mathfrak{H}_b, H_b\}$ are called left- and

The initial state

The equilibrium sub-states are ϱ_a , $\varrho_{\mathcal{I}}$ and ϱ_b where:

$$\varrho_a := \mathfrak{f}_a(H_a - \mu_a), \quad \varrho_{\mathcal{I}} := \mathfrak{f}_{\mathcal{I}}(H_{\mathcal{I}} - \mu_{\mathcal{I}}), \quad \varrho_b := \mathfrak{f}_b(H_b - \mu_b). \tag{17}$$

A physical example from

driven far from equilibrium, Rev. Modern Phys. 62 (1990), 745-791, proposes Frensley, W. R.: Boundary conditions for open quantum systems

$$f_j(\lambda) := c_j \ln(1 + e^{-\beta \lambda}), \quad j \in \{a, \mathcal{I}, b\}$$

 m_j^* 's are one dimensional effective masses. The initial state is: $\lambda \in \mathbb{R}, \, \beta := 1/T$. The constants are given by $c_j := \frac{q \, m_j^*}{\pi \, \beta}$, where the

$$\varrho_D := \varrho_a \oplus \varrho_\mathcal{I} \oplus \varrho_b.$$

from ϱ_D ? The main question: can we construct a NESS for $\{\mathfrak{H}, H\}$ starting

described by the NESS ϱ_D . Then we connect in a time dependent time-dependent Hamiltonian $\{\mathfrak{H}_{\mathcal{I}}, H_{\mathcal{I}}\}$. We assume that the connection process is described by the manner the left- and right-hand reservoirs to the closed quantum well Let us assume that at $t = -\infty$ the quantum system $\{\mathfrak{H}, H_D\}$ is

$$H_{\alpha}(t) := H + e^{-\alpha t} \delta(x - a) + e^{-\alpha t} \delta(x - b), \quad t \in \mathbb{R}, \quad \alpha > 0.$$
 (18)

The operator $H_{\alpha}(t)$ is defined by

$$(H_{\alpha}(t)f)(x):=-\frac{1}{2}\frac{d}{dx}\frac{1}{M(x)}\frac{d}{dx}f(x)+V(x)f(x),f\in \mathrm{Dom}\,(H_{\alpha}(t)),$$

where the domain $\mathrm{Dom}\left(H_{\alpha}(t)\right)$ is given by

$$Dom (H_{\alpha}(t)) :=$$

$$\frac{\frac{1}{M}f' \in W^{1,2}(\mathbb{R})}{f \in W^{1,2}(\mathbb{R})} : \left(\frac{1}{2M}f'\right)(a+0) - \left(\frac{1}{2M}f'\right)(a-0) = e^{-\alpha t}f(a)$$
$$\left(\frac{1}{2M}f'\right)(b+0) - \left(\frac{1}{2M}f'\right)(b-0) = e^{-\alpha t}f(b)$$

One can prove the following operator norm convergence:

$$n - \lim_{t \to -\infty} (H_{\alpha}(t) - z)^{-1} = (H_D - z)^{-1}$$

(19)

and

$$n - \lim_{t \to +\infty} (H_{\alpha}(t) - z)^{-1} = (H - z)^{-1},$$

(20)

$$z \in \mathbb{C} \setminus \mathbb{R}$$
.

Our density matrix will be given by a mapping

$$\mathbb{R} \ni t \mapsto \varrho_{\alpha}(t) \in B(W^{1,2}(\mathbb{R})),$$

solves the (weak) quantum Liouville equation: which is differentiable in the space $B(W^{1,2}(\mathbb{R}),W^{-1,2}(\mathbb{R}))$ and

$$irac{\partial}{\partial t}arrho_{lpha}(t)=[H_{lpha}(t),arrho_{lpha}(t)],\quad t\in\mathbb{R},$$

for a fixed $\alpha > 0$ satisfying the initial condition

s-
$$\lim_{t \to -\infty} \varrho_{\alpha}(t) = \varrho_{D}.$$
 (22)

Having found a solution $\rho_{\alpha}(t)$ we are interested in the ergodic limit

$$\varrho_{\alpha} = \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \varrho_{\alpha}(t) dt.$$

(23)

is regarded as the desired NESS of the fully coupled system $\{\mathfrak{H},H\}$. If we can verify that the limit ϱ_{α} exists and commutes with H, then ϱ_{α}

The unitary evolution

Let us consider a weakly differentiable map

 $\mathbb{R} \ni t \mapsto u(t) \in W^{1,2}(\mathbb{R})$. We are interested in the evolution equation

$$i\frac{\partial}{\partial t}u(t) = H_{\alpha}(t)u(t), \quad t \in \mathbb{R}, \quad \alpha > 0.$$
 (24)

into $W^{-1,2}(\mathbb{R})$. where $H_{\alpha}(t)$ is regarded as a bounded operator acting from $W^{1,2}(\mathbb{R})$

The unitary evolution

 $\{U(t,s)\}_{(t,s)\in\mathbb{R}\times\mathbb{R}}$ leaving invariant the Hilbert space $W^{1,2}(\mathbb{R})$ and: There is a unique unitary solution operator or propagator

$$\frac{\partial}{\partial t} \langle U(t,s)x,y\rangle = -i\langle H_{\alpha}(t)U(t,s)x,y\rangle, \quad x,y \in W^{1,2}(\mathbb{R}),$$

$$\frac{\partial}{\partial s} \langle U(t,s)x,y\rangle = i\langle H_{\alpha}(s)x,U(s,t)y\rangle, \quad x,y \in W^{1,2}(\mathbb{R}),$$

$$U(s,s) = 1.$$

problems and evolution semigroups. To appear. Neidhardt, H.; Zagrebnov, V. A.: Linear non-autonomous Cauchy

Quantum Liouville equation

We note that

$$\varrho_{\alpha}(t) := U(t,s)\varrho_{\alpha}(s)U(s,t), \quad t,s \in \mathbb{R},$$

seen as a map from $W^{1,2}(\mathbb{R})$ into $W^{-1,2}(\mathbb{R})$ is differentiable and $\varrho_{\alpha}(t)|_{t=s}=\varrho_{\alpha}(s)$, provided $\varrho_{\alpha}(s)$ leaves $W^{1,2}(\mathbb{R})$ invariant. solves the quantum Liouville equation satisfying the initial condition

Time-dependent scattering

We set U(t) := U(t,0), $t \in \mathbb{R}$ and consider the wave operators

$$\Omega_{-} := \operatorname{s-}\lim_{t \to -\infty} U(t)^* e^{-itH_D}$$

and

$$\Omega_+ := \operatorname{s-}\lim_{t \to +\infty} U(t)^* e^{-itH}.$$

Both exist, and Ω_+ is unitary.

The solution to the Liouville equation

...which also obeys the initial condition: $\varrho_{\alpha}(t) = U(t)\Omega_{-}\varrho_{D}\Omega_{-}^{*}U(t)^{*}, \quad t \in \mathbb{R}.$

(25)

Incoming, stationary wave operator

We need to introduce the incoming wave operator

$$W_{-} := \operatorname{s-}\lim_{t \to -\infty} e^{itH} e^{-itH_D} P^{ac}(H_D)$$
 (26)

subspace of H (the range of $P^{ac}(H)$). $\mathfrak{H}^{ac}(H_D)$ onto $\mathfrak{H}^{ac}(H)$ where $\mathfrak{H}^{ac}(H)$ is the absolutely continuous and is complete, that is, W_{-} is an isometric operator acting from $\mathfrak{H}^{ac}(H_D) = L^2((-\infty, a]) \oplus L^2([b, \infty))$. The wave operator exists subspace $\mathfrak{H}^{ac}(H_D)$ of H_D . We note that where $P^{ac}(H_D)$ is the projection on the absolutely continuous

The main result

such that the operator $\widehat{\varrho}_D := (H_D + \tau)^4 \varrho_D$ is bounded, then the limit the eigenvalues of H. If ϱ_D is a steady state for the system $\{\mathfrak{H}, H_D\}$ **Theorem 0.3.** Let $E_H(\cdot)$ and $\{\lambda_j\}_{j=1}^N$ be the spectral measure and

$$egin{aligned} arrho_{lpha} &:= ext{s-}\lim_{T o +\infty} rac{1}{T} \int_{0}^{T} dt arrho_{lpha}(t) \ &= W_{-} arrho_{D} W_{-}^{*} + \sum_{i=1}^{N} E_{H}(\{\lambda_{j}\}) S_{lpha} arrho_{D} S_{lpha}^{*} E_{H}(\{\lambda_{j}\}) \end{aligned}$$

(27)

exists and defines a steady state for the system $\{\mathfrak{H}, H\}$ where

$$S_{\alpha} := \Omega_{+}^{*} \Omega_{-}.$$

A comment

spectrum $\varrho_{\alpha}^p := \sum_{j=1}^N E_H(\{\Lambda_j\}) S_{\alpha} \varrho_D S_{\alpha}^* E_H(\{\lambda_j\})$ of our NESS depends on $\alpha > 0$, while the absolutely continuous part decomposition $\mathfrak{H} = \mathfrak{H}^p(H) \oplus \mathfrak{H}^{ac}(H)$, one has $\varrho_{\alpha} = \varrho_{\alpha}^p \oplus \varrho_{\alpha}^{ac}$. $\varrho_{\alpha}^{ac} := W_{-\varrho_D}W_{-}^*$ does not. Note that with respect to the We stress once again that only the part corresponding to the pure point

The result is stronger on $\mathfrak{H}^{ac}(H)$

that the operator $\widehat{\varrho}_D := (H_D + \tau)^4 \varrho_D$ is bounded, then **Theorem 0.4.** If ϱ_D is a steady state for the system $\{\mathfrak{H}, H_D\}$ such

s-
$$\lim_{t \to +\infty} \varrho_{\alpha}(t) P^{ac}(H) = W_{-} \varrho_{D} W_{-}^{*}.$$
 (28)

A conjecture

the following result for the transient current: would take care of the above mentioned oscillations, we conjecture the physical literature which seems to claim that the adiabatic limit The case $\alpha \searrow 0$ would correspond to the adiabatic limit. Inspired by

Conjecture 0.5.

$$\lim_{\alpha \searrow 0} \limsup_{t \to \infty} \left| \operatorname{Tr} \{ \varrho_{\alpha}(t) P^{d}(H)[H, \chi] \} \right| = 0,$$

where χ is any smoothed out characteristic function of one of the reservoirs

Spectral representation

the steady state ϱ_{α} is given by Corollary 0.6. With respect to the spectral representation $\{L^2(\mathbb{R},\mathfrak{h}(\lambda),\nu),M\}$ of H the distribution function $\{\tilde{\rho}_{\alpha}(\lambda)\}_{\lambda\in\mathbb{R}}$ of

$$\tilde{\rho}_{\alpha}(\lambda) := \begin{cases} 0, & \lambda \in \mathbb{R} \setminus \sigma(H) \\ \rho_{\alpha,j}, & \lambda = \lambda_{j}, \quad j = 1, \dots, N \\ f_{b}(\lambda - \mu_{b}), & 0 \\ f_{b}(\lambda - \mu_{b}) & 0 \\ 0 & f_{a}(\lambda - \mu_{a}) \end{cases}, \quad \lambda \in [v_{b}, v_{a})$$

$$\text{where } \rho_{\alpha,j} := \langle S_{\alpha}\phi_{j}, \phi_{j} \rangle, \ j = 1, 2, \dots, N.$$

The stationary current

characteristic function of the interval (b, ∞) (the right reservoir). Without loss of generality, let us assume that H > 0. Let $\eta > 0$, and choose an integer $N \geq 2$. Denote by χ_b the

Definition 0.7. The trace class operator

$$j(\eta) := i[H(1 + \eta H)^{-N}, \chi_b]$$
 (29)

coming out of the right reservoir is defined to be is called the regularized current operator. The stationary current

$$\mathfrak{I}_{\alpha} := \lim_{\eta \searrow 0} \operatorname{Tr}(\varrho_{\alpha} j(\eta)). \tag{30}$$

properties of quasi-free fermions", J. Math. Phys. 48, 032101 (2007) Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: "Transport

The Landau-Lifschitz formula

Let c > b + 1. Choose any function $\phi_c \in C^{\infty}(\mathbb{R})$ such that

$$0 \le \phi_c \le 1$$
, $\phi_c(x) = 1$ if $x \ge c + 1$, $\operatorname{supp}(\phi_c) \subset (c - 1, \infty)$.

Then the stationary current is given by:

$$\mathfrak{I} = i \text{Tr} \left\{ W_{-\varrho_D} (1 + H_D)^3 W_{-}^* P^{ac} (H) (1 + H)^{-2} [H, \phi_c] (1 + H)^{-1} \right\}$$
$$= i \text{Tr} \left\{ W_{-\varrho_D} W_{-}^* P^{ac} (H) [H, \phi_c] \right\}.$$

Compute the trace!

The Landau-Lifschitz formula

We compute the integral kernel of

$$\mathcal{A} := iW_{-}\varrho_{D}W_{-}^{*}P^{ac}(H)\frac{1}{2m_{b}}\left(-\frac{d}{dx}\phi_{c}' - \phi_{c}'\frac{d}{dx}\right)$$

in the spectral representation of H and get

$$\mathcal{A}(\lambda, p; \lambda', p') = \frac{i\tilde{\varrho}_{D}^{ac}(\lambda)_{pp}}{2m_{b}} \int_{\mathbb{R}} \widetilde{\phi}_{p}(x, \lambda) \left(\frac{d}{dx}\phi'_{c}(x) + \phi'_{c}(x)\frac{d}{dx}\right) \widetilde{\phi}_{p'}(x, \lambda') dx$$

$$= -\frac{i\tilde{\varrho}_{D}^{ac}(\lambda)_{pp}}{2m_{b}} \int_{\mathbb{R}} \phi'_{c}(x) \{\widetilde{\phi}_{p}(x, \lambda) \widetilde{\phi}'_{p'}(x, \lambda') - \widetilde{\phi}'_{p}(x, \lambda) \widetilde{\phi}_{p'}(x, \lambda')\} dx.$$

The Landau-Lifschitz formula

integrate/sum over the variables. We obtain: In order to compute the trace, we put $\lambda = \lambda'$, p = p', and

$$\mathfrak{I} = \int_{\mathbb{R}} \phi_c'(x) j(x) dx,$$

where

$$j(x) := \frac{1}{m_b} \int_{v_b}^{\infty} \sum_{p} \tilde{\varrho}_D^{ac}(\lambda)_{pp} \Im\{\overline{\tilde{\phi}_p(x,\lambda)}\overline{\tilde{\phi}_p'(x,\lambda)}\} d\lambda.$$

j(x) is a constant, only depending on invariant, scattering quantities.

The Landauer-Büttiker formula

... was obtained from Landau-Lifschitz in

Baro, M.; Kaiser, H.-Chr.; Neidhardt, H.; Rehberg, J: A quantum transmitting Schrödinger-Poisson system, Rev. Math. Phys. 16 (2004), no. 3, 281–330.

Further questions

- 1. the multidimensional case
- 2. "long-range" switching in time;
- 3. "long-range" samples/quantum wells;

4. extensions to geometric scattering in hyperbolic manifolds;