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Abstract. In this paper we present some geometric objects as deriva-
tions, di¤erential forms, universal di¤erential forms, linear connections and
distributions with related objects on matrix algebra using the framework of
noncommutative geometry of �-algebras.
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1. Introduction

There are studied some di¤erential calculi on the matrix algebra Mn(C) (most of
them used the techniques from noncommutative geometry) which have been used
in some di¤erent areas from mathematics and physics, here we remember some of
them: quantum groups ([Coquereaux]), graded matrix algebra ([Grosse]), the non-
commutative di¤erential calculi of matrix algebras ([Dubois3], [Dubois1]) and linear
connections on them in [Dubois1], [Madore] and [Mourad], �nally the �-di¤erential
calculi and linear connections in [Ciup3].
In this paper we review some geometrical objects on matrix algebra, using tech-

niques of �-algebras, from the paper [Ciup3] such: the algebra of forms 
 (Mn(C)), the
algebra of universal di¤erential forms 
� (Mn(C)) ; linear connections on Mn(C):We
also introduce and study distributions and related objects on Mn(C) on the algebra
of forms 
 (Mn(C)) and on the algebra of universal di¤erential forms 
� (Mn(C)) :
The basic idea of noncommutative geometry is to replace an algebra of smooth

functions de�ned on a smooth manifold by an abstract associative algebra A which
is not necessarily commutative. In the context of noncommutative geometry the
basic role is the generalization of the notion of di¤erential forms (on a manifold).
With any associative algebra A over R or C one associates a di¤erential algebra
which is a Z-graded algebra 
(A) = �n�0
n(A) (where 
n(A) are A-bimodules
and 
0(A) = A) together with a linear operator d : 
n(A) ! 
n+1(A) satisfying
d2 = 0 and d(!!0) = (d!)!0 + (�1)n!d!0 where ! 2 
n(A): 
(A) is also called the
(noncommutative) di¤erential calculus on the algebra A:
A generalization of a di¤erential calculus 
(A) of an associative algebra A is

the �-di¤erential calculus associated with a �-(commutative ) algebra A (where A is
a G�graded algebra, G is a commutative group and � is a twisted cocycle). The
di¤erential calculus over a �-algebra A was introduced in [Bongaarts] and continued
in some recent papers [Ciup1],...,[Ciup7], [Ngakeu1] and [Ngakeu2].
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In the second section we review the basic geometrical objects about the �-algebras
as �-derivations, �-di¤erential calculi, distributions and linear connections. In the last
section we apply the remembered notions on the matrix algebra Mn(C).

2. �-algebras

In this section we present shortly the class of the noncommutative algebras, namely
the �-algebras, for more details see [Bongaarts].
Let G be an abelian group, additively written. A �-algebra A is a G-graded

algebra over that �eld k ( which is R or C ) which is endowed with a cyclic cocycle
� : G�G! k which ful�ls the properties

�(a; b) = �(b; a)�1 and �(a+ b; c) = �(a; c)�(b; c); for any a; b; c 2 G: (1)

Notation: From now on, if M is a graded set then Hg (M) will stand for the set
of homogeneous elements in M: The G-degree of a (nonzero) homogeneous element
f of M is denoted as jf j :
A G-graded algebra A with a given cocycle � will be called �-commutative (or

almost commutative algebra ) if fg = �(jf j ; jgj)gf for all f; g 2 Hg (A) :

Example 1. 1) Any usual (commutative) algebra is a �-algebra with the trivial
group G:
2) Let be the group G = Z (Z2) and the cocycle �(a; b) = (�1)ab; : for any a; b 2 G:

In this case any ��(commutative) algebra is a super(commutative) algebra.
3) TheN -dimensional quantum hyperplane ([Bongaarts], [Ciup1], [Ciup2], [Ciup7])

SqN ; is the algebra generated by the unit element and N linearly independent elements
x1; :::xN satisfying the relations:

xixj = qxjxi; i < j

for some �xed q 2 k; q 6= 0: SqN is a ZN�graded algebra

SqN =
1
�

n1;:::nN
(SqN)n1:::nN ;

with (SqN)n1:::nN the one-dimensional subspace spanned by products x
n1 � � � xnN : The

ZN�degree of these elements is denoted by

jxn1 � � � xnN j = n = (n1; :::nN):

De�ne the function � : ZN � ZN ! k as

�(n; n0) = q

NP
j;k=1

njn
0
k�jk

;
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with �jk = 1 for j < k, 0 for j = k and -1 for j > k: It is obvious that SqN is a
�-commutative algebra.
4) Quantum torus TNq is generated by 1,x1; :::; xN ; x�11 ; :::; x�1N and relations

xixj = qxjxi; i < j; xix
�1
i = 1:

The ZN graduation of TNq is the extension of that of the quantum hyperplane SqN and��x�1i �� = � jxij :
5) The algebra of matrix Mn (C) ([Ciup3]) is a ��commutative as follows:

Let p =

0BB@
1 0 ::: 0
0 " ::: 0
:::
0 0 ::: "n�1

1CCA and q =

0BBBB@
0 0 ::: 0 1
" 0 ::: 0 0
0 "2 ::: 0 0
:::
0 0 ::: "n�1 0

1CCCCA
p; q 2 Mn(C); where "n = 1; " 6= 1: Then pq = "qp and Mn(C) is generated by the
set B = fpaqbja; b = 0; 1; :::; n� 1g:
It is easy to see that paqb = "abqbpa and qbpa = "�abpaqb for any a; b = 0; 1; :::; n� 1:
Let G := Zn � Zn, � = (�1; �2) 2 G and x� := p�1q�2 2 Mn(C): Denoting by
�(�; �) = "�2�1��1�2 results that x�x� = �(�; �)x�x�; for any �; � 2 G; x�; x� 2 B:
It is obvious that the map � : G � G ! C; �(�; �) = "�2�i��1�2 is a cocycle and

that Mn (C) is a �-commutative algebra.

2.1. �-derivations.

De�nition 1. ([Ciup3]) Let �; � 2 G: A �-derivation of the order (�; �) is a
linear map X : A! A; which ful�ls the properties:
1) X : A� ! A�+�;
2) X(fg) = (Xf)g + �(�; jf j)f(Xg);for any f 2 Ajf j and g 2 A:

The left product between the element f 2 A and a derivationX of the order (�; �)
is de�ned in a natural way: fX : A! A by (fX)(g) = fX(g); for any g 2 A: Remark
that fX is a derivation of the order (jf j+ �; jf j+ �) if and only if the algebra A is
�-commutative.
Next we study the case when A is a �-commutative algebra.
Let X be a �-derivation of the order (�; �) and X 0 a �-derivation of the order

(�0; �0) : The �-bracket of X and X 0 is [X;X 0] = X �X 0� �(�; �0)X 0 �X and satis�es
the following property: [X;X 0] is a �-derivation of the order (�+ �0; � + �0) if and
only if �(�; �)�(�0; �0) = 1:

De�nition 2. ([Bongaarts]) We say that X : A! A is a �-derivation if it has the
order (jXj ; jXj) ; i.e. X : A� ! A�+jXj and X(fg) = (Xf)g + �(jXj ; jf j)f(Xg) for
any f 2 Ajf j and g 2 A:
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It is known ([Bongaarts]) that the �-commutator [X; Y ]� = XY � �(jXj ; jY j)Y X
of two �-derivations is again a �-derivation and the linear space of all �-derivations is
a �-Lie algebra, denoted by �-DerA:
One veri�es immediately that for such an algebra A; �-DerA is not only a �-

Lie algebra but also a left A-module with the action of A on �-DerA de�ned by
(fX)g = f(Xg); for f; g 2 A and X 2 �-DerA:
Let M be a G-graded left module over a �-commutative algebra A, with the

usual properties, in particular jf j =jf j + j j for f 2 A;  2 M: Then M is also a
right A-module with the right action on M de�ned by  f = �(j j ; jf j)f ; for any
 2 Hg (M) and f 2 Hg (A) : In fact M is a bimodule over A; i.e. f( g) = (f )g
for any f; g 2 A;  2M:

2.2. Di¤erential calculi on a �-algebra. Next we generalize the classical no-
tions of di¤erential graded algebra and the di¤erential graded superalgebras by de�n-
ing so called di¤erential graded ��algebras.
Denote by G0=Z�G and de�ne the cocycle �0 : G0 �G0 ! k as follow

�0 ((n; �) ; (m;�)) = (�1)nm � (�; �) :

It is obvious the function �0 is a satis�es the properties (1) and (??).

De�nition 3. We say that 
 = �
(n;�)2G0


n� is a �-di¤erential graded algebra (DG

��algebra) if there is an element � 2 G and a map d : 
n� ! 
n+1� of degree
(1; �) 2 G0 and the G0-degree jdj0 =(1,0) such that: d2 = 0 and

d(!�) = (d!) � + (�1)n � (�; j!j)!d� (2)

for any ! 2 
nj!j and � 2 
:

If we denote j!j0 = (n; j!j) the G0-degree of ! 2 
nj!j; then the last equality is:

d(!�) = (d!)� + �0(jdj0 ; j!j0)!d�:

Results that 
 is a �0-algebra.

Example 2. 1) In the case when the group G is trivial then 
 is the classical di¤er-
ential graded algebra.
2) In the case when the group G is Z2 and the map � is given by �(a; b) = (�1)ab

then 
 is a di¤erential graded superalgebra (see [Kastler1], [Kastler2]).
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De�nition 4. Let A be a �-algebra.
�

 (A) = �

(n;�)2G0

n� (A) ; d

�
is a �-di¤erential

calculus over A if 
 (A) is a �-di¤erential graded algebra, 
 (A) is an A-bimodule and

0 (A) = A:

The �rst example of a �-di¤erential calculus over the �-commutative algebra A is
the algebra of forms (
(A); d) of A from [Bongaarts].
The second example of a �-di¤erential calculus over a �-algebra is the universal

di¤erential calculus of A from the next paragraph.

The algebra of forms of a �-algebra. In this paragraph we construct the
algebra of forms 
(A) of an almost commutative algebra A (see [Bongaarts]).
The algebra of forms of an the �-algebra A is given in the classical manner:


0(A) := A; and 
p(A) for p = 1; 2; :::; as the G-graded space of p-linear maps
�p : �p�-DerA! A; p-linear in sense of left A-modules

�p(fX1; :::; Xp) = f�p(X1; :::; Xp); (3)

�p(X1; :::; Xjf;Xj+1;:::; Xp) = �p(X1; :::; Xj; fXj+1; :::Xp) (4)

and �-alternating

�p(X1; :::; ; Xj; Xj+1;:::; Xp) = ��(jXjj ; jXj+1j)�p(X1; :::; ; Xj+1; Xj;:::; Xp) (5)

for j = 1; :::; p � 1; Xk 2 �-Der(A), k = 1; :::; p; f 2 A and Xf is the right A-action
on �-DerA:

p(A) is in natural way a G-graded right A-module with

j�pj = j�p(X1; :::; Xp)j � (jX1j+ :::+ jXpj) (6)

and with the right action of A de�ned as

(�pf)(X1; :::; Xp) = �p(X1; :::; Xp)f: (7)

From the previous considerations, it follows that 
(A) = �1p=0
p(A) is again a G-
graded A-bimodule.
One de�nes exterior di¤erentiation as a linear map d : 
p(A) ! 
p+1(A); for all

p � 0; as
df(X) = X(f);

and for p = 1; 2; :::;
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d�p(X1; :::; Xp+1) : =

p+1X
j=1

(�1)j�1�(
j�1X
i=1

jXij ; jXjj)Xj�p(X1; :::; bXj; :::; Xp+1)

+
X

1�j<k�p+1

(�1)j+k�(
j�1X
i=1

jXij ; jXjj)�(
j�1X
i=1

jXij ; jXkj)�

��(
k�1P
i=j+1

jXij ; jXkj)�p([Xj; Xk]�; :::; X1; :::; bXj; :::; bXk; :::Xp+1):

One can show that d has degree 0, and that d2 = 0:
There is an exterior product 
p (A) � 
q (A) ! 
p+q (A) ;

�
�p ; �q

�
7! �p ^ �q ;

de�ned by the �-antisymmetrization formula:
�p ^ �q (X1 ; :::; Xp+q)=P

�

sign(�) (�-factor)�p
�
X�(1); :::; X�(p)

�
�q
�
X�(p+1); :::; X�(p+q)

�
The sum is over all permutations � of the cyclic group Sp+q so that � (1) < ::: <

� (p) and � (p+ 1) < ::: < � (p+ q) : The �-factor is the product of all �(
��X�(j)

�� ; j�pj)
for p+ 1 � j � p+ q and all �(

��X�(j)

�� ; ��X�(k)

��)�1 for j < k and �(j) > �(k):

(A) is a G0�graded algebra with the group G0 = Z � G. Denote the G0 degree

of �p as j�pj0 = (p; j�pj): It is easy to see that the map �0 : G0 � G0 ! k de�ned
by �0((p; a); (q; b)) = (�1)pq�(a; b) is a cocycle and that 
(A) is a �0-commutative
algebra. Moreover, the map d is a �0-derivation of 
(A) with G0-degree jdj0 = (+1; 0):
The algebra of universal di¤erential forms of a �-algebra. Next we

present our construction of algebra of universal di¤erential forms 
�A of the �-algebra
A ( not necessarily �-commutative) for a given element � 2 G.
Let � be an arbitrary element of G: By de�nition the algebra of universal di¤er-

ential forms (also called the algebra of noncommutative di¤erential forms)
of the �-algebra A is the algebra 
�A generated by the algebra A and the symbols
da; a 2 A which satis�es the following relations:
1. da is linear in a:
2. the ��Leibniz rule: d(ab) = d(a)b+ �(�; jaj)adb:
3. d(1) = 0:
Let 
n�A the space of n�forms a0da1 :::dan ; ai 2 A for any 0� i � n: 
n�A is an

A-bimodule with the left multiplication

a(a0da1:::dan) = aa0da1:::dan; (8)

and the right multiplication is given by:

(a0da1:::dan)an+1 = (9)



Geometrical Objects on Matrix Algebra 7

=
nP
i=1

(�1)n�i�(�;
nP

j=i+1

jajj)(a0da1:::d(aiai+1):::dan+1)+

+(�1)n�(�;
nP
i=1

jajj)a0a1da2:::dan+1

�A = �

n2Z

n�A is a Z-graded algebra with the multiplication 
n�A � 
m�A � 
n+m� A

given by:

(a0da1:::dan)(an+1dan+2:::dam+n) = (10)

= ((a0da1:::dan)an+1)dan+2:::dam+n):
for any ai 2 A; 0� i � n+m; n;m 2 N:
We de�ne the G�degree of the n-form a0da1 :::dan in the following way

ja0da1:::danj =
nX
i=0

jaij :

It is obvious that j!n � !mj = j!nj+ j!mj for any homogeneous forms !n 2 
n�A and
!m 2 
m�A:

�A is a G0 = Z�G-graded algebra with the G0 degree of the n-form a0da1:::dan

thus ja0da1:::danj0 = (n;
nP
i=0

jaij):

We may de�ne the cocycle �0 : G0 �G0 ! k on the algebra 
�A thus:

�0(j!nj0 ; j!mj0) = (�1)nm �(j!nj ; j!mj) (11)

for any !n 2 
n�A; !m 2 
m�A: It is obvious that 
�A is a �0-algebra. Remark that
G0-degree of the map d is (1; 0) i.e. d : 
nj!j ! 
n+1j!j ; and the G

0�degree of an element
x 2 A is jxj0 = (0; jxj) :

Theorem 1. ([Ciup3]) 1) d : 
��A! 
�+1� A satis�es:

d(!�) = (d!)� + (�1)n �(�; j!j)!d�

for any ! 2 
n�A; � 2 
m�A:
2) (
�A; d) is a �-di¤erential calculus over A:

Example 3. In the case when the group G is trivial then A is the usual associative
algebra and 
�A is the algebra of universal di¤erential forms of A:

Example 4. If the group G is Z2 and the cocycle is from example 2 then A is a
superalgebra. In the case when � = 1; 
�A is the superalgebra of universal di¤erential
forms of A from [Kastler2]:
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2.3. Connections on a �-bimodule over a �-algebra. Let A be a �-algebra
and M a �-bimodule on A:

De�nition 5. ([Ciup2]) A linear connection onM is a linear map of ��DerA into
the linear endomorphisms of M; r : ��DerA! End(M); so that one has:

rX :Mp !Mp+jXj; (12)

with
raX(m) = arX(m) and rX(ma) = �(jXj ; jmj)mX(a) +rX(m)a (13)

if we use the right structure of M or rX(am) = X(a)m+ �(jXj ; jaj)arX(m); ifM is
considered a left bimodule, for all p 2 G; a 2 A, X 2 Hg (�-DerA) and m 2 Hg (M) :

We say that the distribution D in the �-algebra A over the �-di¤erential calculus
(
 (A) = �n�0
n (A) ; d) is parallel with respect to the connection r : �-DerA !
End(
1 (A)) if

rX(m) = 0; for any X 2 �-DerA and for any m 2 D:

The curvature R of the connection r on M is de�ned in a natural way

R : (�-DerA)� (�-DerA)! End(M); (X; Y ) 7�! RX;Y

given by:
RX;Y (m) = rXrY � �(jXj ; jY j)rYrX(m)�r[X;Y ]�(m) (14)

for any X; Y 2 �-DerA; and m 2M; where [X; Y ]� = X � Y � �(jXj ; jY j)Y �X:

Theorem 2. If the algebra A is �-commutative, then the curvature of any connection
r has the following properties:

1) A-linearity: RaX;Y (m) = aRX;Y ;
2) RX;Y is right A-linear: RX;Y (ma) = RX;Y (m)a;
3) RX;Y is left A-linear: RX;Y (am) = �(jXj+ jY j ; jaj)RX;Y (m);
4) R is a �-symmetric map: RX;Y = ��(jXj ; jY j)RY;X

for any a 2 Ajaj; m 2M , X; Y 2 �-DerA:

In the case when the bimodule M is �-DerA then the torsion of the connection
r as the map

Tr : (�-DerA)� (�-DerA)! �-DerA

de�ned by
Tr(X; Y ) = [rXY;rYX]� � [X; Y ]�

for any homogeneous X; Y 2 �-DerA:
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Remark 1. If the group G is Z2 and the cocycle is from example 2 then A is a
superalgebra. In this case we obtain the same de�nition of linear connections as in
[?].

Remark 2. The noncommutative geometry of �-algebras may be view as a natural
generalization of fermionic di¤erential calculus.

2.4. Distributions. Let A be a �-algebra and (
 (A) ; d) a �-di¤erential calculus

over A:

De�nition 6. A distribution D in the �-algebra A over the �-di¤erential calculus
(
 (A) ; d) is an A-sub-bimodule D of 
 (A) :
The distribution D is globally integrable if there is a �-subalgebra B of A such

that D is the space generated by AdB and (dB)A:

Remark 3. Let us assume that A is generated as algebra by n homogeneous co-
ordinates x1; x2; :::; xn and the �-di¤erential calculus (
 (A) ; d) by the di¤erentials
dx1; dx2; :::; dxn with some relations between them. In this case any globally integrable
distribution D is generated by a subset of p elements, denoted by I of f1; :::; Ng; such
that D is generated by xjyi and yixj for any j 2 f1; :::; Ng and i 2 I: In this situation
we say that the distribution D has the dimension p: For other examples than Mn(C)
of these kind of spaces, see [Ciup2], [Ciup5], [Ciup6], [Ciup7].

De�nition 7. We say that the distributionD over the �-di¤erential calculus (
 (A) ; d)
is parallel with respect to the connection r : �-DerA!End(
A) if

rX(m) = 0; for any X 2 �-DerA and for any m 2 D:

3. Applications to the matrix algebra
In this section we apply the geometrical objects which are de�ned in the previous
section to the particular case of the matrix algebra Mn(C).

3.1. Derivations. We denote by �-DerMn(C) the set of �-derivations of the al-
gebra Mn(C) and it is generated by the elements @

@p�1
; @
@q�2

; with � = (�1; �2) 2 G;
which acts on the basis fp�1q�2j (�1; �2) 2 Gg like partial derivatives:

@

@pk
(p�1q�2) =

�1
k
p�1�kq�2 and

@

@pk
(q�2) = 0 of G� degree (�k; 0) (15)

and

@

@qk
(q�2p�1) =

�2
k
q�2�kp�1 and

@

@qk
(p�1) = 0; of G� degree (0;�k) ; (16)
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for any (�1; �2) 2 G: Remark that the �rst relation from (16) is equivalent with

@

@qk
(p�1q�2) =

�2
k
"�1kp�1q�2�k (17)

From an easy calculus we obtain that the applications from the equations (15)
and (16) are �-derivations. Results that �-DerMn(C) is aMn(C)-bimodule generated
by 2n� 1 elements and the �-bracket of the �-derivations is zero i.e. [ @

@pk1
; @
@qk2

] = 0:

Then any X 2 �-DerMn(C) is given by the following relation:

X =
X

�=(�1;�2)2G

(
@

@p�1
X�1 +

@

@q�2
X�2); (18)

where X�1 ; X�2 2 Mn(C): We denote the derivation from 18 using the following
compact form:

X =
X
�2G

@�X
�: (19)

3.2. The algebra of forms of Mn(C). In this section we use the construction
of the algebra of forms of a �-commutative algebra from [Bongaarts] for de�ning our
construction of the algebra of forms of the algebra Mn(C): Thus we obtain a new
di¤erential calculus on the matrix algebra.
We denote by 
p (Mn(C)) the space of p�forms and


 (Mn(C)) = �
p2Z

p (Mn(C))

the algebra of forms of Mn(C):
The bimodule 
1 (Mn(C)) is also free of rank 2n with the basis dual to the basis

f@�j � 2 Gg :=
n

@
@pi
; @
@qj
j i; j = 1; n

o
of the bimodule �-Der(Mn(C)) :The basis of


1(Mn(C)) is fd�j � 2 Gg :=
�
dpi ; dqj j i; j = 1; n

	
with the relations:

dpi(
@

@pj
) = 0 for i 6= j; dpi(

@

@pi
) = 1 and dpi(

@

@qj
) = 0, (20)

dqi(
@

@qj
) = 0 for i 6= j; dpi(

@

@pi
) = 1 and dqi(

@

@pj
) = 0: (21)

For an easier writing the relations (20) and (21) can be written in the following
compact form:

d�(@�) = 0 for � 6= �; and d�(@�) = 1: (22)

Remark that the G�degree of the 1-form dpk is
��dpk�� = (k; 0) and of dqk is ��dqk�� =

(0; k):
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An arbitrary 1-form �1 can be written in the following way:

�1 =
X
�2G

d�A� :=
nX
i=1

dpiApi +

nX
j=1

dqjAqj

where Api = �1(
@
@pi
) 2 Mn(C) and Aqj = �1(

@
@qj
) 2 Mn(C); for i; j = 1; n; or using

the compact form we have: A� = �1(@�) 2Mn(C); for � 2 G:
Because 
1 (Mn(C)) is of �nite rank 2n; 
p (Mn(C)) is the pth exterior power of


1 (Mn(C)) ; in the sense of Mn(C)�modules, and is again free of the rank (p; 2n) :
An arbitrary p�form �p can be written as

�p =
1

p!
(�1)

p(p�1)
2

pX
i1;:::;ip=1

d�i1 ^ ::: ^ d�ikpAi1:::ip ;

with
Ai1:::ip = �p(@�i1 ; :::; @�ip ) 2Mn(C):

From these considerations the algebra 
 (Mn(C)) is generated by the elements pi; qj
for i; j = 1; n and their di¤erentials dpi ; dqj ; for i; j = 1; n with the relations:

piqj = "ijqjpi; pipj = pjpi (23)

dpidqj = �"ijdqjdpi ; dpidpj = dpjdpi (24)

and

pidqj = "ijdqjp
i; qidpj = "�ijdpjq

i; dpip
j = pjdpi ; qidqj = dqjq

i (25)

3.3. The algebra of universal di¤erential forms ofMn(C). In this paragraph
we present our construction of the algebra of universal di¤erential forms of Mn(C);
using the construction from the paragraph 2.2.
Let � = (�1; �2) 2 G = Zn � Zn an arbitrary element. 
1�Mn(C) is the

Mn(C)�bimodule generated by the elements adb; with a; b 2 Mn(C) which satis-
�es the properties:
1) d(a+ b) = da+ db;
2) d(ab) = (da)b+ �(�; jaj)adb;
3) d1 = 0; for any a; b 2Mn(C); where 1 is the unit from Mn(C):

From an easy computation we obtain the following relations:
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Proposition 3. 1) pkdp = (dp)pk and qldq = (dq)ql

1) dpk =
�

0 if k=0
(1+"��2+"�2�2+:::+"(k�1)�2)pk�1dp if k2f1;:::;n�1g

2) dps =
�

0 if k=0
(1+"��1+"�2�1+:::+"(s�1)�1)ps�1dp if s2f1;:::;n�1g

For an easier writing we make the following notations:
"�(k;0) =

�
0 if k=0

1+"��2+"�2�2+:::+"�(k�1)�2 if k2f1;:::;n�1g
and

"�(0;s) =
�

0 if s=0
1+"��1+"�2�1+:::+"�(s�1)�1 if s2f1;:::;n�1g

From the properties of the derivation d and from the proposition 6 we obtain:

Proposition 4. d(pkqs) = "�(k;0)p
k�1(dp)qs + "��2"�(0;s)p

kqs�1dq;

for any k; s 2 f0; :::; n� 1g :

Putting together the propositions 6 and 7 we obtain the structure of the Mn(C)-
bimodule 
1�Mn(C) :

Theorem 5. 
1�Mn(C) is generated by the elements pi; qj; dpk; dqs; i; j; k; s 2 f0; :::; n� 1g
with the relations:
1) pkqs = "ksqspk;
2) pkdpl = (dpl)pk and qsdql = (dql)qs;
3) dpk = "�(k;0)p

k�1dp and dqs = "�(0;s)q
s�1dq

4) d(pkqs) = "�(k;0)"
spk�1qs(dp) + "��2"�(0;s)p

kqs�1dq;
for any k; l; s 2 G:

The Mn(C)�bimodule 
k�Mn(C) is again free and an arbitrary element !k 2

k�Mn(C) can be written

!k =
X
l+s=k

Al+s(dp)
l(dq)s; (26)

where Al;s 2Mn(C):
From these considerations we obtain the following theorem which gives the struc-

ture of the algebra 
�Mn(C):

Theorem 6. The algebra 
�Mn(C) is generated by the elements pi; qj; (dp)k :=
P k; (dq)s := Qs; i; j 2 f0; :::; n� 1g,k; s 2 Z with the relations:
1) piqj = "ijqjpi; P kQs = (�1)ks"ksQsP k;
2) pkP s = P spk; qkQs = Qsqk

3) pkQs = "ksQspk; qkP s = "�ksP sqk:
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3.4. Linear connections on Mn(C). Next we introduce linear connections on
the algebra Mn(C): A linear connection on Mn(C) is a linear map

r : ��DerMn(C)! End(��DerMn(C))

rX : (��DerMn(C))� ! (��DerMn(C))�+jXj (27)

satisfying the equations (13). Any linear connection is well de�ned if are given the
connections coe¢ cients on the basis f@�j� 2 Gg :

@��
�
�;� = r@�@� (28)

for any �; � 2 G:
The curvature R of the connection r is given by the curvature coe¢ cients:

R��;�;�
@�R

�
�;�;� = [r@� ;r@� ](@� )�r[@�;@� ](@� ): (29)

From an easy computation it follows that

R��;�;� = @�(�
�
�;� )� �(�;

�����;� ��)���;� � (30)

��(�; �)(@����;� � �(�;
�����;���)���;�)

for any �; �; � ; � 2 G:
The torsion of the connection r is well de�ned by the torsion coe¢ cients:

T (@�; @�) = @�T
�
�;� (31)

and the relations between connections coe¢ cients and the torsion coe¢ cients are:

T ��;� = �
�
�;� � �(�; �)���;�: (32)

Linear connections on 
1� (Mn(C)). Any linear connection r on the Mn(C)-
bimodule 
1�(Mn(C)) is given by the connection coe¢ cients thus (using the compact
formula):

r@�d�p = �
p;p
� d�p+ �

p;q
� d�q;

�p�; �
q
� 2Mn(C):

For example we have

r @

@pi
(d�p) = �

p;p
i d�p+ �

p;q
i d�q

and

r @

@pi

�
pkd�p

�
=

@

@pi
�
pk
�
d�p+ � ((�i; 0) ; (k; 0)) pkr @

@pi
(d�p) =

=
k

i
pk�id�p+ pk�p;pi d�p+ �

p;q
i d�q:
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3.5. Distributions. In this subsection we introduce distributions on the matrix
algebra Mn(C) over the di¤erential calculi 
 (Mn(C)) and 
� (Mn(C)) : In each of
these situation we give characterizations of globally integrable distributions and glob-
ally integrable distributions parallel with respect to a connection r on 
1 (Mn(C))
and 
1� (Mn(C)) :

Distributions on 
 (Mn(C)). From the de�nition 6 a distributionD on
 (Mn(C))
is aMn(C) �-sub-bimodule of 
 (Mn(C)) : The distribution D is globally integrable if
there is a subspace B of Mn(C) so that D is generated by Mn(C)d (B) ; so the deter-
mination of this kind of distributions is reduced to the determination of subalgebras
from Mn(C).
Let Dn = fk 2 N such that kjng be the set of all natural divisors of n: Then for

any subalgebra B of Mn(C) there are k; s 2 Dn such that B is generated by the set�
pk�iqs�j; i; j 2 Z

	
: Consequently we have the following result.

Proposition 7. For any globally integrable distribution D of 
 (Mn(C)) there are
k; s 2 Dn such that D is generated by the elements pi; qj for i; j = 1; n and the
di¤erentials dpi�k ; dqj�s ; for i; j = 1; n:

Remark 4. Without any confusion the previous proposition may be written using
the compact form (19 and 22): for any globally integrable distributionD of 
 (Mn(C))
there is a subgroup H of G such that D is generated by the elements a�db�; with a�;
b� 2Mn(C) with � 2 G and � 2 H:

Remark 5. If D is a globally integrable distribution of 
 (Mn(C)) of the dimension
p then p is a divisor of n2:

It is obvious that a linear connection r on the Mn(C)-bimodule 
1(Mn(C)) is
given by their connection coe¢ cients, again denoted by, ���;� 2 Mn(C) and they are
given by the following equation:

r@�d� = �
�
�;�d�; (33)

for any �; � 2 G:

Proposition 8. Any globally integrable and parallel distribution D with respect to
a connection r : �-DerMn(C) !End(
1 (Mn(C))) of dimension p is given by the
following equations:

���;� = 0 (34)

for a subgroup H of G and for any �; � 2 G; � 2 H:
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Distributions on 
� (Mn(C)). Let � 2 G: Any distribution D on 
� (Mn(C))
is a Mn(C) �-sub-bimodule of 
� (Mn(C)) :
Using the structure of 
� (Mn(C)) (theorem 6) we have that any globally inte-

grable distribution D on 
� (Mn(C)) is one of the following subalgebras: Mn(C);
Mn(C)d�p; Mn(C)d�q and 
� (Mn(C)) ; consequently any globally integrable distri-
bution on 
� (Mn(C)) has the dimension 0, 1 or 2.
Any globally integrable and parallel distribution D with respect to a connection

r : �-DerMn(C) !End(
1� (Mn(C))) of dimension 1 is given by the following equa-
tions:

�p;p� = �p;q� = 0 (35)

if D is Mn(C)d�p and
�q;p� = �q;q� = 0

if is Mn(C)d�q; for any � 2 G:
Conclusions and remarks. In this paper we present the principal notions from

the (noncommutative) geometry as di¤erential calculus and linear connections and
distributions no the matrix algebra Mn(C) using methods of �-algebras:
There are more geometrical objects to introduce on matrix algebra such as: ten-

sors, metrics, simpletic forms etc.
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