Geometrical Objects on Matrix Algebra
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ABSTRACT. In this paper we present some geometric objects as deriva-
tions, differential forms, universal differential forms, linear connections and
distributions with related objects on matrix algebra using the framework of
noncommutative geometry of p-algebras.
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1. INTRODUCTION

There are studied some differential calculi on the matrix algebra M, (C) (most of
them used the techniques from noncommutative geometry) which have been used
in some different areas from mathematics and physics, here we remember some of
them: quantum groups ([Coquereaux]), graded matrix algebra ([Grosse]), the non-
commutative differential calculi of matrix algebras ([Dubois3], [Duboisl]) and linear
connections on them in [Duboisl], [Madore] and [Mourad], finally the p-differential
calculi and linear connections in [Ciup3].

In this paper we review some geometrical objects on matrix algebra, using tech-
niques of p-algebras, from the paper [Ciup3| such: the algebra of forms Q2 (M, (C)), the
algebra of universal differential forms 0, (M,,(C)), linear connections on M, (C). We
also introduce and study distributions and related objects on M,,(C) on the algebra
of forms Q (M,,(C)) and on the algebra of universal differential forms Q,, (M, (C)).

The basic idea of noncommutative geometry is to replace an algebra of smooth
functions defined on a smooth manifold by an abstract associative algebra A which
is not necessarily commutative. In the context of noncommutative geometry the
basic role is the generalization of the notion of differential forms (on a manifold).
With any associative algebra A over R or C one associates a differential algebra
which is a Z-graded algebra Q(A) = @,5002"(A) (where Q"(A) are A-bimodules
and Q°(A) = A) together with a linear operator d : Q"(A) — Q"™ (A) satisfying
d? = 0 and d(ww') = (dw)w’ + (—1)"wdw’ where w € Q(A). Q(A) is also called the
(noncommutative) differential calculus on the algebra A.

A generalization of a differential calculus €2(A) of an associative algebra A is
the p-differential calculus associated with a p-(commutative ) algebra A (where A is
a G—graded algebra, G is a commutative group and p is a twisted cocycle). The
differential calculus over a p-algebra A was introduced in [Bongaarts| and continued
in some recent papers [Ciupl],...,[Ciup7], [Ngakeul] and [Ngakeu2].
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In the second section we review the basic geometrical objects about the p-algebras
as p-derivations, p-differential calculi, distributions and linear connections. In the last
section we apply the remembered notions on the matrix algebra M, (C).

2. p-ALGEBRAS

In this section we present shortly the class of the noncommutative algebras, namely
the p-algebras, for more details see [Bongaarts].

Let G be an abelian group, additively written. A p-algebra A is a G-graded
algebra over that field k& ( which is R or C ) which is endowed with a cyclic cocycle
p: G x G — k which fulfils the properties

p(a,b) = p(b,a)™ and p(a + b, c) = p(a,c)p(b,c), for any a,b,c € G. (1)

Notation: From now on, if M is a graded set then Hg (M) will stand for the set
of homogeneous elements in M. The G-degree of a (nonzero) homogeneous element
f of M is denoted as |f].

A G-graded algebra A with a given cocycle p will be called p-commutative (or
almost commutative algebra ) if fg = p(|f],|g|)gf for all f,g € Hg(A).

Example 1. 1) Any usual (commutative) algebra is a p-algebra with the trivial
group G.

2) Let be the group G = Z (Z3) and the cocycle p(a,b) = (—=1)%, . for any a,b € G.
In this case any p—(commutative) algebra is a super(commutative) algebra.

3) The N-dimensional quantum hyperplane ([Bongaarts], [Ciupl], [Ciup2], [Ciup7])
S%, is the algebra generated by the unit element and N linearly independent elements
x1,...vy satisfying the relations:

TiTj = qT;T;, 1<

for some fixed q € k, ¢ # 0. S%, is a Z"N —graded algebra

S;]V = & (S?V)nl---an
ni,...nN
with (S%)n,..ny the one-dimensional subspace spanned by products ™ - - - x™N. The
ZN —degree of these elements is denoted by

nl--

| ™| =n=(n,..ny).

Define the function p : Z" x ZN — k as

N
NI
2o myngajk

p(nv n/) = ¢+ )
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with aj, = 1 for j < k, 0 for j = k and -1 for j > k. It is obvious that S}, is a
p-commutative algebra.
4) Quantum torus TqN is generated by 1,x1,...,xn, 27", ..., x;,l and relations

s -1 _
rr; = qrir;, 1<j; xr; =L

The Z~ graduation of T, is the extension of that of the quantum hyperplane S3, and
—1
‘xi | = —|zyl.
5) The algebra of matrix M, (C) ([Ciup3]) is a p—commutative as follows:

0O 0 .. 0 1

Lo R

Let p = andg=] 0 & ... 0 0
n—1

00 ¢ 0 0 ..o

p,q € M,(C), where e" = 1, € # 1. Then pq = eqp and M, (C) is generated by the

set B = {p*¢®|la,b=0,1,....n — 1}.

It is easy to see that p?q® = ®¢’p® and ¢°p® = e~ pq® for any a,b=0,1,....n — 1.

Let G := Zy, ® Zyp, o = (a1,2) € G and z, = p*q¢** € M,(C). Denoting by

p(a, B) = e*2Pr=1P2 results that roxs = p(, B)xs2,, for any a, 8 € G, x,,15 € B.
It is obvious that the map p : G x G — C, p(a, B) = e~z js a cocycle and

that M, (C) is a p-commutative algebra.

2.1. p-derivations.

Definition 1. ([Ciup3]) Let o, € G. A p-derivation of the order (o, () is a
linear map X : A — A, which fulfils the properties:

1) X: A, — Acip,

2) X(fg) = (X[)g + pla, |f)f(Xg) for any [ € Ay and g € A.

The left product between the element f € A and a derivation X of the order (o, ()
is defined in a natural way: fX : A — Aby (fX)(9) = fX(g), for any g € A. Remark
that fX is a derivation of the order (|f| + «,|f| + /) if and only if the algebra A is
p-commutative.

Next we study the case when A is a p-commutative algebra.

Let X be a p-derivation of the order («,3) and X’ a p-derivation of the order
(o, B") . The p-bracket of X and X' is [X, X'] = X o X’ — p(a, 3') X’ 0 X and satisfies
the following property: [X, X’] is a p-derivation of the order (o + o/, 3+ ') if and
only if p(a, B)p(a’, 5') = 1.

Definition 2. ([Bongaarts]) We say that X : A — A is a p-derivation if it has the
order (|X|,|X]), Le. X : A, — A,y and X(fg) = (Xf)g + p(1X], |f)f(Xg) for
any f € Ajy and g € A.
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It is known ([Bongaarts]) that the p-commutator [X,Y], = XY — p(|X|, Y)Y X
of two p-derivations is again a p-derivation and the linear space of all p-derivations is
a p-Lie algebra, denoted by p-DerA.

One verifies immediately that for such an algebra A, p-DerA is not only a p-
Lie algebra but also a left A-module with the action of A on p-DerA defined by
(fX)g=f(Xg), for f,g € Aand X € p-DerA.

Let M be a G-graded left module over a p-commutative algebra A, with the
usual properties, in particular |fiy| =|f| + || for f € A, » € M. Then M is also a
right A-module with the right action on M defined by ¥ f = p(|¢]|, |f|)fv, for any
€ Hg(M) and f € Hg(A). In fact M is a bimodule over A, i.e. f(vg) = (f1)g
for any f,g € A, ¢ € M.

2.2. Differential calculi on a p-algebra. Next we generalize the classical no-
tions of differential graded algebra and the differential graded superalgebras by defin-
ing so called differential graded p—algebras.

Denote by G'=7 x G and define the cocycle p' : G’ x G' — k as follow

P ((n, ), (m, B)) = (=1)"" p(a, B) .
It is obvious the function ' is a satisfies the properties (1) and (77).

Definition 3. Wesay that Q= & Qf is a p-differential graded algebra (DG
(n,B)eG"

p—algebra) if there is an element a € G and a map d : 0} — Qg“ of degree
(1,a) € G and the G'-degree |d|' =(1,0) such that: d*> = 0 and

A(e8) = (du) 6+ (—1)" p (@, w]) @)
for any w € Qﬁj‘ and 0 € Q.

If we denote |w| = (n, |w|) the G’-degree of w € |, then the last equality is:
d(wh) = (dw)d + p'(|d|", |w|)wdb.
Results that 2 is a p’-algebra.

Example 2. 1) In the case when the group G is trivial then S is the classical differ-
ential graded algebra.

2) In the case when the group G is Z, and the map p is given by p(a,b) = (—1)ab
then () is a differential graded superalgebra (see [Kastlerl], [Kastler2)).
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Definition 4. Let A be a p-algebra. (Q (A)= @ Q" (A ,d> is a p-differential

(n,0)eqG’
calculus over A if Q) (A) is a p-differential graded algebra, 2 (A) is an A-bimodule and
00 (A) = A.

The first example of a p-differential calculus over the p-commutative algebra A is
the algebra of forms (£2(A),d) of A from [Bongaarts].

The second example of a p-differential calculus over a p-algebra is the universal
differential calculus of A from the next paragraph.

The algebra of forms of a p-algebra. In this paragraph we construct the
algebra of forms Q(A) of an almost commutative algebra A (see [Bongaarts]).

The algebra of forms of an the p-algebra A is given in the classical manner:
O%A) := A, and QF(A) for p = 1,2, ..., as the G-graded space of p-linear maps
a, : XPp-DerA — A, p-linear in sense of left A-modules

Oép(le,...,Xp) :fOZp(Xl,...,Xp), (3)
ozp(Xl, ceey Xjf, Xj+17...,Xp) = O./p(Xl, ceey Xj, fXj-i—lv Xp) (4)

and p-alternating
O(p(Xl, ceeyy Xj,Xj+17...,Xp) = —p(|X]‘ y ‘Xj+1|)0(p(X1, ceryy Xj+1,Xj7..., Xp) (5)

for j=1,...p—1; Xy € p-Der(A), k=1,....p; f € A and X f is the right A-action
on p-DerA.
P(A) is in natural way a G-graded right A-module with

|| = fop (X, o, Xp)| = (X[ 4+ [XG]) (6)
and with the right action of A defined as
(ap f)( X1y ooy Xp) = (X1, .o, Xp) £ (7)

From the previous considerations, it follows that Q(A) = ©52,QP(A) is again a G-
graded A-bimodule.

One defines exterior differentiation as a linear map d : QP(A) — QPF1(A), for all
p >0, as

and for p=1,2, ...,
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p+1 Jj—1
doy(X1, ., Xpn) 0 =D (=17 pO XL IX )Xo (X, o, Xy, X1
j=1 i=1
j—1 j—1
oy WXL XD Xl [ Xkl
1<j<k<p+1 i=1 i=1

k—1 ~ ~
><p(' Z‘+1 12X ] 1 XD ([ X5, Xl ooos Xy ooy Xy ooy Xy . Xpp)-
One can show that d] has degree 0, and that d? = 0.
There is an exterior product Q7 (A) x Q4 (A) — QP9 (A), (o, 8,) — o A By,
defined by the p-antisymmetrization formula:
ap A B, (X1, oy Xpig)=
;sign(a) (p—factor) Qp (Xg(l), . Xg(p)) ﬁq (Xa(p+1), ey Xg(p+q))

The sum is over all permutations o of the cyclic group S,4, so that o (1) < ... <
o(p)and o (p+1) < ... < o (p+q). The p-factor is the product of all p(|Xs(;)| , [e|)
forp+1<j<p+qandall p(‘XU(j)} , Xa(k)})*l for j < k and o(j) > o(k).

Q(A) is a G'—graded algebra with the group G’ = Z x GG. Denote the G’ degree
of a, as |a,|" = (p,|ayp|). Tt is easy to see that the map p' : G’ x G' — k defined
by o' ((p,a),(q,b)) = (—=1)*p(a,b) is a cocycle and that Q(A) is a p’-commutative
algebra. Moreover, the map d is a p/-derivation of Q(A) with G'-degree |d|' = (+1,0).

The algebra of universal differential forms of a p-algebra. Next we
present our construction of algebra of universal differential forms €2, A of the p-algebra
A ( not necessarily p-commutative) for a given element a € G.

Let a be an arbitrary element of G. By definition the algebra of universal differ-
ential forms (also called the algebra of noncommutative differential forms)
of the p-algebra A is the algebra 2,A generated by the algebra A and the symbols
da, a € A which satisfies the following relations:

1. da is linear in a.

2. the p—Leibniz rule: d(ab) = d(a)b+ p(«, |a|)adb.

3. d(1)=0.

Let Q2 A the space of n—forms agda;...da,, a; € A for any 0< 7 < n. QFA is an
A-bimodule with the left multiplication

a(apday...day,) = aagday...day, (8)

and the right multiplication is given by:

(apday...day)a, 1 = (9)
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n

S (=D, S Jay)) (aoday...d(asais)...dans)+

i=1 j=i+1
F(=1)"pler, - [a;])apardas...daysy
QA= & QLA is a Z-graded algélz)llra with the multiplication Q"A - QA C QA
given b;:eZ

(apday...day)(ans1dano...day ) = (10)

= ((apday...day)an1)dayo...day ).
for any a; € A, 0<i<n+m, n,m € N.
We define the G—degree of the n-form agda; ...da,, in the following way

n
lapday...day,| = Z |la;] -
i=0

It is obvious that |wy, - Wy | = |wn| + |w.,| for any homogeneous forms w,, € QA and
wm € QA.
Q.A is a G’ = Z x G-graded algebra with the G’ degree of the n-form aqda,...da,
n

thus |agdas...da,| = (n, > |ail).
i=0
We may define the cocycle p' : G' x G’ — k on the algebra Q,A thus:
P (|wal lwml) = (=1)"" p(lwal s lwiml) (11)

for any w,, € QI A, w,, € QT A. It is obvious that 2, A is a p'-algebra. Remark that
G’-degree of the map d is (1,0) i.e. d: Q, — Q"Zj‘rl, and the G'—degree of an element

|l
e Ais |z = (0,]x]).
Theorem 1. ([Ciup3]) 1) d: QA — QXA satisfies:
() = (d)d + (—1)" plor, o

for any w € QL A, 6 € QU A.
2) (Q,A,d) is a p-differential calculus over A.

Example 3. In the case when the group G is trivial then A is the usual associative
algebra and €2, A is the algebra of universal differential forms of A.

Example 4. If the group G is Zy and the cocycle is from example 2 then A is a
superalgebra. In the case when o = 1, ), A is the superalgebra of universal differential
forms of A from [Kastler2)].
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2.3. Connections on a p-bimodule over a p-algebra. Let A be a p-algebra
and M a p-bimodule on A.

Definition 5. ([Ciup2]) A linear connection on M is a linear map of p—DerA into
the linear endomorphisms of M, V : p—DerA — End(M), so that one has:

Vx : My — My x|, (12)
with
Vux(m) =aVx(m) and Vx(ma) = p(|X|, |m|)mX(a) + Vx(m)a (13)

if we use the right structure of M or Vx(am) = X(a)m+ p(|X|, |a|)aV x(m),ifM is
considered a left bimodule, for allp € G, a € A, X € Hg (p-DerA) andm € Hg (M) .

We say that the distribution D in the p-algebra A over the p-differential calculus
(Q2(A) = Bp>00" (A) ,d) is parallel with respect to the connection V : p-DerA —
End(Q! (A)) if

Vx(m) =0, for any X € p-DerA and for any m € D.

The curvature R of the connection V on M is defined in a natural way
R : (p-DerA) x (p-DerA) — End(M); (X,Y)+— Rxy

given by:
Rxy(m) = VxVy — p(|X|,|Y])VyVx(m) — Vixy],(m) (14)

for any X,Y € p-DerA, and m € M, where [X,Y], =X oY — p(|X],|Y|)Y o X.

Theorem 2. Ifthe algebra A is p-commutative, then the curvature of any connection
V has the following properties:
1) A-linearity: R,xy(m) = aRx.y,
2) Ryy is right A-linear: Rxy(ma) = Rxy(m)a,
3) Rxy is left A-linear: Rxy(am) = p(|X|+|Y]|, |a|)Rxy(m),
4) R is a p-symmetric map: Rxy = —p(|X]|,|Y|)Ry.x
for any a € A, m€ M, X,Y € p-DerA.

In the case when the bimodule M is p-DerA then the torsion of the connection

V as the map
Ty : (p-DerA) x (p-DerA) — p-DerA

defined by
Iv(X,Y) =[VxY,VyX] — [X,Y],

for any homogeneous X,Y € p-DerA.
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Remark 1. If the group G is Zo and the cocycle is from example 2 then A is a
superalgebra. In this case we obtain the same definition of linear connections as in

7).

Remark 2. The noncommutative geometry of p-algebras may be view as a natural
generalization of fermionic differential calculus.

2.4. Distributions. Let A be a p-algebra and (€2 (A), d) a p-differential calculus
over A.

Definition 6. A distribution D in the p-algebra A over the p-differential calculus
(Q2(A),d) is an A-sub-bimodule D of ) (A).

The distribution D is globally integrable if there is a p-subalgebra B of A such
that D is the space generated by AdB and (dB) A.

Remark 3. Let us assume that A is generated as algebra by m homogeneous co-
ordinates xi, s, ...,x, and the p-differential calculus (2(A),d) by the differentials
dzq,dzs, ..., dz, with some relations between them. In this case any globally integrable
distribution D is generated by a subset of p elements, denoted by I of {1, ..., N}, such
that D is generated by x;y; and y;x; for any j € {1,..., N} and i € I. In this situation
we say that the distribution D has the dimension p. For other examples than M, (C)
of these kind of spaces, see [Ciup2|, [Ciup5], [Ciup6], [Ciup7].

Definition 7. We say that the distribution D over the p-differential calculus (2 (A) , d)
is parallel with respect to the connection V : p-DerA — End(QA) if

Vx(m) =0, for any X € p-DerA and for any m € D.

3. APPLICATIONS TO THE MATRIX ALGEBRA

In this section we apply the geometrical objects which are defined in the previous
section to the particular case of the matrix algebra M, (C).

3.1. Derivations. We denote by p-DerM,,(C) the set of p-derivations of the al-

gebra M, (C) and it is generated by the elements %%, aq%, with a = (a1, ) € G,
which acts on the basis {p®¢*?| (a1, az) € G} like partial derivatives:
a (s Z N2 ai a1 —k as a o
a—pk(p q?) = - P and 8_pk<q ) =0 of G — degree (—F,0) (15)
and
0 0
8_Qk(qa2pal) = %q%_kpal and 8—qk(p°‘1) =0, of G — degree (0,—k), (16)
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for any (ai,@2) € G. Remark that the first relation from (16) is equivalent with
o (pg) = SZembprigenh (17)

From an easy calculus we obtain that the applications from the equations (15)
and (16) are p-derivations. Results that p-DerM,,(C) is a M, (C)-bimodule generated
by 2n — 1 elements and the p-bracket of the p-derivations is zero i.e. [8%1, &1%] =0.

Then any X € p-DerM,,(C) is given by the following relation:

X= Y (8 Xal+ixa2), (18)

(o5} Q2
a=(a1,02)€EG 8p 8(]

where X, X2 € M,(C). We denote the derivation from 18 using the following
compact form:

X =) 0.X" (19)

3.2. The algebra of forms of M, (C). In this section we use the construction
of the algebra of forms of a p-commutative algebra from [Bongaarts] for defining our
construction of the algebra of forms of the algebra M, (C). Thus we obtain a new
differential calculus on the matrix algebra.

We denote by QP (M,,(C)) the space of p—forms and

Q(M,(C)) = @ 9" (M,(C))

PEZL

the algebra of forms of M,,(C).
The bimodule Q' (M,,(C)) is also free of rank 2n with the basis dual to the basis

{0a] @ € G} := { 0. 0| j= L_n} of the bimodule p-Der(M,,(C)).The basis of

ap'? g7
QY(M,(C)) is {do| @ € G} := {di, dy| i,j =1,n} with the relations:
0 . 0 9,
dpi(apj) =0 for i # j, dpz(api) =1 and dpz(ﬁqj) =0, (20)
0 . 0 9]
dqi(aqj) =0 for ¢ # j, dpi(api) =1and dqi(apj) = 0. (21)

For an easier writing the relations (20) and (21) can be written in the following
compact form:

do(03) =0 for a # 3, and d,(0,) = 1. (22)
Remark that the G—degree of the 1-form d, is {dpk| = (k,0) and of dyr is |dgx| =
(0,k).
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An arbitrary 1-form oy can be written in the following way:

ap = Z do Ay = i dyi Ay + idqa‘Aqa‘
=1 =1

aceG

where A, = Ozl<£)i) € M,(C) and A, = al(a%j) € M,(C), for i,j = 1,n, or using
the compact form we have: A, = a1(0,) € M,(C), for a € G.

Because Q' (M,,(C)) is of finite rank 2n, QF (M, (C)) is the pth exterior power of
Q! (M, (C)), in the sense of M, (C)—modules, and is again free of the rank (p,2n).

An arbitrary p—form o, can be written as

1 o) o
2 Z dail /\ /\ daikpAil“'ip’

with
Ail...ip = Oép<aai1, ceey 80%) € Mn(C)

From these considerations the algebra 2 (M,,(C)) is generated by the elements p’, ¢/
for 7,7 = 1, n and their differentials d,i, d,, for i, j = 1,n with the relations:

¢
P =¢p, P =p'p (23)
dpidqj = —Eijdqjdpi, dpidpj = dpjdpi (24)

and

pidqj = 8ijdqui, qidpj = 6_ijdqui, dpzp] = pjdpi, qidqj = dqjqi (25)

3.3. The algebra of universal differential forms of M, (C). In this paragraph
we present our construction of the algebra of universal differential forms of M, (C),
using the construction from the paragraph 2.2.

Let a = (aj,a3) € G = Z, X Z, an arbitrary element. QLM,(C) is the
M,,(C)—bimodule generated by the elements adb, with a,b € M,(C) which satis-
fies the properties:

1) d(a + b) = da + db,

2) d(ab) = (da)b+ p(c, |a|)adb,

3) d1 =0, for any a,b € M, (C), where 1 is the unit from M, (C).

From an easy computation we obtain the following relations:
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Proposition 3. 1) p*dp = (dp)p and ¢'dqg = (dg)q'
1) dp - {(1+€*0¢2+5*2a2+ +g(k 1)a2) k=1dp if ke{1,...,.n—1}

. 0ifk
2) dp® = {(1+e*a1+s*2al+...+s<5*1>a1)ps—ldp if se{1,....n—1}

For an easier writing we make the following notations:
o { 0 if k=0
(k,0) IT4+e— 242024  fe—(k—Dag if kc{1 .. .n—1}
and
6] _ { 0 if s=0
€(0,) = Vlge14e—200 4 e (s=Dotif se{1,....n—1}

From the properties of the derivation d and from the proposition 6 we obtain:

Proposition 4. d(p‘q®) = &5, P~} (dp)q® + e72cf, , pPq*dg,
for any k,s € {0,...,n — 1} .

Putting together the propositions 6 and 7 we obtain the structure of the M,,(C)-
bimodule Q2 M,,(C) :

Theorem 5. QL M, (C) is generated by the elements p', ¢’ dp®, dq®, i, j, k, s € {0,....,n — 1}

with the relations:

1) p*q* = eMqpF,

2) prdp’ = (dp")p* and ¢*dg’ = (dq")¢’,

3) dp* = ef}, 0" 'dp and dg® = £§;) yq°'dg

4) d(p*q®) = €(;, 0’0" 1 q°(dp) + e *2f;, yp"q> dg,
for any k,l,s € G.

The M, (C)—bimodule QF M, (C) is again free and an arbitrary element wj, €
QF M,,(C) can be written

W' = > A (dp)(dg)°, (26)
l+s=k
where 4, € M,(C).
From these considerations we obtain the following theorem which gives the struc-
ture of the algebra Q, M, (C).

Theorem 6. The algebra Q,M, (C) is generated by the elements p', ¢, (dp)* =
P* (dg)* == @, i,j € {0,...,n — 1}k, s € Z with the relations:

1) pgh = igip, PG = ( 1)kseh*QP*,

2) kas _ Psp , qk:Qs — quk

3) kas — 8stSpk, qkps — gfkspsqk'
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3.4. Linear connections on M, (C). Next we introduce linear connections on
the algebra M,,(C). A linear connection on M, (C) is a linear map

V :p—DerM,(C) — End(p — DerM,(C))
Vi (p = DerMy (). — (p— DerMy(C))us (27)

satisfying the equations (13). Any linear connection is well defined if are given the
connections coefficients on the basis {9,|a € G} :

for any «, 8 € G.
The curvature R of the connection V is given by the curvature coefficients:

o2
avﬁzT

-1 5 = [Vau: Va,|(0r) — Via,,05(0r). (29)

,B,T

From an easy computation it follows that

Z,B,T = aﬂl<rg,7) - p(Oé, ‘FM’T‘)FZ,M - (30)
—p(Oé, B) (aﬁrgn‘ - p(57 }FH7U‘) g#)

for any o, B, 7,0 € G.
The torsion of the connection V is well defined by the torsion coefficients:

T(0u,03) = angﬁ (31)
and the relations between connections coeflicients and the torsion coefficients are:

TS, =T, — pla, )T, (32)

Linear connections on }, (M, (C)). Any linear connection V on the M,,(C)-
bimodule Q! (M, (C)) is given by the connection coefficients thus (using the compact
formula):

v(’),g dap = F%pdap + ngda%
I, I € M,(C).
For example we have

V o (dop) =T7Pdp + TP q

op?

and

0 .
Voo (P'dap) = 57 (7 dap 4 ((=0,0), (1, 0) PV o, (dep) =

E o
= =P dap + P dap + 17 dag.
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3.5. Distributions. In this subsection we introduce distributions on the matrix
algebra M, (C) over the differential calculi Q (M, (C)) and Q, (M,(C)). In each of
these situation we give characterizations of globally integrable distributions and glob-
ally integrable distributions parallel with respect to a connection V on Q! (M, (C))
and Q}, (M, (C)).

Distributions on 2 (1,(C)). From the definition 6 a distribution D on € (M,,(C))
is a M, (C) p-sub-bimodule of 2 (M,,(C)) . The distribution D is globally integrable if
there is a subspace B of M,,(C) so that D is generated by M, (C)d (B), so the deter-
mination of this kind of distributions is reduced to the determination of subalgebras
from M, (C).

Let D, = {k € N such that k|n} be the set of all natural divisors of n. Then for
any subalgebra B of M, (C) there are k,s € D,, such that B is generated by the set
{p*iq*J, i,j € Z} . Consequently we have the following result.

Proposition 7. For any globally integrable distribution D of ) (M, (C)) there are
k,s € D, such that D is generated by the elements p', ¢/ for i,5 = 1,n and the

differentials dyix, dg-s, for i,j = 1,n.

Remark 4. Without any confusion the previous proposition may be written using
the compact form (19 and 22): for any globally integrable distribution D of Q (M,,(C))
there is a subgroup H of G such that D is generated by the elements a,dbgz, with a,,
bg € M,(C) with o € G and € H.

Remark 5. If D is a globally integrable distribution of Q2 (M, (C)) of the dimension
p then p is a divisor of n?.

It is obvious that a linear connection V on the M, (C)-bimodule Q'(M,(C)) is
given by their connection coefficients, again denoted by, I'}, ; € M, (C) and they are
given by the following equation:

Vonds =175 5ds, (33)
for any «, 8 € G.

Proposition 8. Any globally integrable and parallel distribution D with respect to
a connection V : p-DerM, (C) —End(Q! (M, (C))) of dimension p is given by the
following equations:

Z,ﬂ = (34)

for a subgroup H of G and for any o, € G, € H.
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Distributions on (2, (M, (C)). Let a € G. Any distribution D on §, (M, (C))
is a M, (C) p-sub-bimodule of Q, (M, (C)).

Using the structure of Q, (M, (C)) (theorem 6) we have that any globally inte-
grable distribution D on £, (M, (C)) is one of the following subalgebras: M,,(C),
M, (C)dap, M,(C)dnq and Q, (M,(C)), consequently any globally integrable distri-
bution on €, (M, (C)) has the dimension 0, 1 or 2.

Any globally integrable and parallel distribution D with respect to a connection
V : p-DerM,(C) —End(Q}, (M, (C))) of dimension 1 is given by the following equa-
tions:

P =Tp'=0 (35)

if D is M, (C)d,p and
Igr=r4"=0

if is M,,(C)d,q, for any 8 € G.

Conclusions and remarks. In this paper we present the principal notions from
the (noncommutative) geometry as differential calculus and linear connections and
distributions no the matrix algebra M,,(C) using methods of p-algebras.

There are more geometrical objects to introduce on matrix algebra such as: ten-
sors, metrics, simpletic forms etc.
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