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Introduction and motivation

Quantum mechanics: it is impossible to discriminate
two non-orthogonal states perfectly

o Consequence: security of quantum cryptography (B92)

Impossibility of perfect state discrimination
< impossibility of perfect quantum cloning

Problem for quantum computing:
perfect read-out of non-orthogonal states impossible

— Discrimination of quantum states is fundamental issue in
quantum information and quantum computing
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Two main strategies for state discrimination

Task: given o; € {01, 02}, with g1 and g known.
Find out whether i =1 or i = 2.

e Minimum error discrimination (MED):
Minimize the error, i.e. probability to interpret o1 as 02 and vice versa.

¢ Unambiguous state discrimination (USD):
No error allowed, but inconclusive answer. Minimize probability to get
inconclusive answer.
(This talk: USD only)
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Pure states, equal a priori probabilities,
"simple” measurements

[Ivanovic 1987, Dieks 1988, Peres 1988]

Task: given [t);) € {|¢1), |t2)}, with [th1) and [¢)2)

known. Find out (without making an error) whether
t=1o0ri=2.
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Pure states, equal a priori probabilities,
"simple” measurements

[Ivanovic 1987, Dieks 1988, Peres 1988]

Task: given [¢;) € {[11), [th2)}, with [¢01) and [tbg)

known. Find out (without making an error) whether
t=1o0ri=2.

Projective measurement, detects [t)3) unambiguously: B
Py = [¢1) (¥, 1701 = [P1){(¢1], with Py + Py = 1 and (¢1]¢1) =0

Psucec = 1- |<1/11|¢2>|
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Pure states, unequal a priori probabilities,
general measurements (POVM)

[Jaeger and Shimony 1995]
Task: given |¢;) € {|11), [t2) }, with a priori

probabilities 71, 72. Find out (without making error)
whether i =1 or © = 2.
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Pure states, unequal a priori probabilities,
general measurements (POVM)

[Jaeger and Shimony 1995]
Task: given |¢;) € {|11), [t2) }, with a priori

probabilities 71, 72. Find out (without making error)
whether i =1 or © = 2.

POVM, detects [11) and |12) unambiguously:
By=1- tha) (|, B =1 — 1), Er=1—E —E

!

L—m —nac? m< iz
1
Psuce = 1- 2C\/7717722 for ﬁ <m < Txe2
1—mn2—mec T+c2 <m

with ¢ = [(1h1]th2)]
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Success probability for pure states
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Unambiguous state discrimination of mixed states

Task: given g; € {01, 02}, with a priori probabilities
71, m2. Find out (without making an error) whether
1=1ori=2.
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Unambiguous state discrimination of mixed states

Task: given g; € {01, 02}, with a priori probabilities
71, m2. Find out (without making an error) whether
t1=1ori=2.

e For g1, 02 find a POVM {E}, Ey, E;}, such that
tI'(Eng) =0 and tr(E2Q1) =0.

{E1, Es, E»} is a USD measurement if and only if
supp 1 C ker g3 and supp Ey C ker pg

e Note: USD is impossible if 91 and go have same support.
o A priori probabilities: o; occurs with probability 7;.
Abbreviation: v; = n;0;, with ¢ = 1,2.
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e Maximize the success probability: psucc = tr(FE17y1) + tr(Eavys)
Constraint: Fo =1 — Fy — FEy >0

A structural approach to unambiguous state discrimination, p. 10



Optimal USD of mixed states

e Maximize the success probability: psucc = tr(FE17y1) + tr(Eavys)
Constraint: Fo =1 — Fy — FEy >0

Optimal USD is a convex optimization problem. J

A structural approach to unambiguous state discrimination, p. 10



Optimal USD of mixed states

e Maximize the success probability: psucc = tr(FE17y1) + tr(Eavys)
Constraint: Fo =1 — Fy — FEy >0

Optimal USD is a convex optimization problem. J

e Numerical solution possible, but we want to understand
structure of the problem.

A structural approach to unambiguous state discrimination, p. 10



Optimal USD of mixed states

e Maximize the success probability: psucc = tr(FE17y1) + tr(Eavys)
Constraint: Fo =1 — Fy — FEy >0

Optimal USD is a convex optimization problem. J

e Numerical solution possible, but we want to understand
structure of the problem.

e Choose H = supp~; + supp 2.

A structural approach to unambiguous state discrimination, p. 10
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Unambiguous discrimination between 2 sets of pure states,
corresponds to USD of 2 mixed states (" Unambiguous Filtering")
[Sun, Bergou and Hillery 2002]

Upper bound (fidelity) and lower bound (geometrical invariants
between kernels) on success probability

[Rudolph, Spekkens and Turner 2003]

Reduction theorems for USD of density matrices with rank N and M
< reduce problem to matrices with same rank Ny < min(N, M)
[Raynal, Liitkenhaus and van Enk 2003]

Tighter bounds and connection to fidelity

[Raynal and Liitkenhaus 2005]

Commutator relations reveal simultaneous 2 x 2-dimensional
block structures <— USD solvable

[Kleinmann, Kampermann, Raynal and Bruf 2007]
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Optimal USD of 2 mixed states: overview of results

Unambiguous discrimination between 2 sets of pure states,
corresponds to USD of 2 mixed states (" Unambiguous Filtering")
[Sun, Bergou and Hillery 2002]

Upper bound (fidelity) and lower bound (geometrical invariants
between kernels) on success probability

[Rudolph, Spekkens and Turner 2003]

Reduction theorems for USD of density matrices with rank N and M
< reduce problem to matrices with same rank Ny < min(N, M)
[Raynal, Liitkenhaus and van Enk 2003]

Tighter bounds and connection to fidelity

[Raynal and Liitkenhaus 2005]

Commutator relations reveal simultaneous 2 x 2-dimensional
block structures <— USD solvable

[Kleinmann, Kampermann, Raynal and Brufl 2007]

Uniqueness of optimal solution; four-dimensional solution
[Kleinmann, Kampermann and Bruf3, in preparation]

— this talk
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The inconclusive result E

e Any USD measurement is uniquely defined by F-, since
Ermyi=m — Eim.
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The inconclusive result E

e Any USD measurement is uniquely defined by F-, since
Ermyi=m — Eim.

E> defines a USD measurement if and only if
E;>0,1—FE7 >0and v1(1l — E7)y2 =0. J

Theorem

For E> optimal,
e supp Er Nkervy; = supp E7 Nker vo = {0},
e rank F7 = rank vy;7s.
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The inconclusive result E

e Any USD measurement is uniquely defined by F-, since
Ermyi=m — Eim.

E» defines a USD measurement if and only if
E,>0,1—FE; >0 and 'yl(]l — E7)yy = 0.

Theorem

For E> optimal,
e supp Er Nkervy; = supp E7 Nker vo = {0},
e rank F7 = rank vy;7s.

To remember: For optimal USD measurement rank F- is fixed.
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The optimality conditions by Eldar et al.

Theorem (Eldar, Stojinc & Hassibi, 2004)

{E1, Ey, E»} is optimal, if and only if there exists a Z, such that
Z>0, ZE,=0

A is the projector onto kerys.
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The optimality conditions by Eldar et al.

Theorem (Eldar, Stojinc & Hassibi, 2004)

{E1, Ey, E»} is optimal, if and only if there exists a Z, such that
Z>0, ZE,=0

A is the projector onto kerys.

Z is over-determined and can be eliminated:

Corollary

E- is optimal, if and only if
(A1 — A2)Er(y2 —11)E2(A1 + A2) >0 and
(A1 = A2)Er(y2 — 1) Er (1 — Er) = 0.

Hidden equation (from Hermiticity condition of LHS of inequality):

AlE?(’}/g — ’yl)E?AQ = 0
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Example for strength of Corollary: Single state detection

Corollary

E- is optimal, if and only if
(A1 —A2)Er(v2 — 71 )E2(A1 + A2) >0 and

(A1 = A2)Er(y2 — ) B2 (1 — E7) = 0.

A1 is the projector onto ker vs.
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Example for strength of Corollary: Single state detection

Corollary

E- is optimal, if and only if
(A1 — A2)E7(y2 — 71)E2(A1 + A2) >0 and
(A1 = A2)Er(y2 — ) B2 (1 — E7) = 0.

A1 is the projector onto ker vs.
Example:

e When El =0 — E7 =1 —AQ, i.e E?’}/l =7-
e Then E7(]1 — E7) =0 and E?Ag =0.
e Hence A (1 — Ag)(v2 — 71)(IL — A2)A; > 0 remains.
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Example for strength of Corollary: Single state detection

Corollary

E- is optimal, if and only if
(A1 — A2)E7(y2 — 71)E2(A1 + A2) >0 and
(A1 — A2)Er(y2 —m1)E- (1l — Er) = 0.

A1 is the projector onto ker vs.
Example:

e When E1 =0 — E7 =1 —AQ, i.e E7’}/1 =7-
e Then E-(1 — E7) =0 and E;Ay = 0.
e Hence A (1 — Ag)(v2 — 71)(IL — A2)A; > 0 remains.

Suppose that suppy; Nsuppy2 = {0}.
Single state detection J

E; =0 is optimal if and only if 1 (y2 —v1)y > 0.
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General form of success probability

PSJOC

TrA R

TrAp
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Fidelity form of USD measurements

e supp7y; Nsuppvy2 = {0} (otherwise: reduction, see Raynal et a/ 2003)
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Fidelity form of USD measurements

e supp7y; Nsuppvy2 = {0} (otherwise: reduction, see Raynal et a/ 2003)
e Any USD measurement satisfies

Er = (y1 4+ 72) {72 +vemn
+ VAT VALDe — Bl — ) BTV

vy Vb + B — ) Exly Ry
Fon + v2) 7!

II» projector onto supp E-, A projector onto ker(1l — E-)
Lemma J

ldar
P T2 (y2 — )L = A(y2 — m1)A.

For E> optimal, E>(v2 — 71)E>
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Fidelity form of USD measurements

e supp7y; Nsuppvy2 = {0} (otherwise: reduction, see Raynal et a/ 2003)
e Any USD measurement satisfies

Er = (y1 4+ 72) {72 +vemn
+ VAT VALDe — Bl — ) BTV

vy Vb + B — ) Exly Ry
Fon + v2) 7!

II» projector onto supp E-, A projector onto ker(1l — E-)

Lemma
For E; optimal, (12 — 1) B "= Tha(y2 — y)Iz = A(yz — m)A. J

To remember: Optimal USD measurement depends only on supp E-.
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Uniqueness of optimal USD measurement

e Remember: For optimal USD measurement rank E- is fixed.
e Remember: Optimal USD measurement depends only on supp E-.
e Suppose that 3 E» and E, both optimal.

Linearity < also 3(E; + E}) optimal.
As E» and E are positive, rank %(E? + E4) = rank E» = rank Ej

implies supp E» = supp E.

A structural approach to unambiguous state discrimination, p. 17



Uniqueness of optimal USD measurement

e Remember: For optimal USD measurement rank E- is fixed.
e Remember: Optimal USD measurement depends only on supp E-.
e Suppose that 3 E» and E, both optimal.

Linearity < also 3(E; + E}) optimal.
As E» and E are positive, rank %(E? + E4) = rank E» = rank Ej

implies supp E» = supp E.

A structural approach to unambiguous state discrimination, p. 17



Uniqueness of optimal USD measurement

e Remember: For optimal USD measurement rank E- is fixed.
e Remember: Optimal USD measurement depends only on supp E-.
e Suppose that 3 E» and E, both optimal.

Linearity < also 3(E; + E}) optimal.
As E» and E are positive, rank %(E? + E4) = rank E» = rank Ej

implies supp E» = supp E.

The optimal USD measurement is unique. )
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Solution in four dimensions (i)

e suppy; Nsupp~y2 = {0} and supp~y; Nker~y, = {0} and
ker v, Nsuppy2 = {0}. [Raynal, Liitkenhaus and van Enk 2003]
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Solution in four dimensions (i)

e suppy; Nsupp~y2 = {0} and supp~y; Nker~y, = {0} and
ker v, Nsuppy2 = {0}. [Raynal, Liitkenhaus and van Enk 2003]
e Any opt. USD meas. satisfies (A is projection onto ker[1 — E»])

Er = (1 +72) {72 +12m
+ Ay VAThe — Ate — )ALV

+ vV — A — )ALV
oy + )7t

rank A = 0: The optimal solution is already given by (x).
rank A = 1: We have A A(y2 —71)A Ay = 0.

supp A C supp7;
= § suppA Csuppye
Ay —m)A=0 — (%).

> < unknown vector in 2 dim
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Solution in four dimensions (ii)
rank A = 2: Then rank F; + rank F = 2 and Ef =F;

rank B =0 . .
— single state detection

rank Fy =0

rank 1 = 1 =rank By < supp F2 = supp(A2 — AaE1A9)

< unknown vector in 2 dim
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rank A = 2: Then rank F; + rank F = 2 and Ef =F;

rank B =0 . .
— single state detection
rank Fy =0
rank 1 = 1 =rank By < supp F2 = supp(A2 — AaE1A9)
< unknown vector in 2 dim
The unknown vector in 2 dim can be parameterized with one complex
variable z. < One (complex) equation for z.
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Solution in four dimensions (ii)

rank A = 2: Then rank F; + rank F = 2 and Ef =F;

rank B =0 . .
— single state detection
rank Fy =0

rank 1 = 1 =rank By < supp F2 = supp(A2 — AaE1A9)
< unknown vector in 2 dim

The unknown vector in 2 dim can be parameterized with one complex
variable z. < One (complex) equation for z.

Remaining step: Show that the equation only has a finite number of
solutions.

A structural approach to unambiguous state discrimination,

p. 19



Types of solutions in four dimensions (iii)

The optimal solution in four dimensions can have the following structure
(depends on n;):
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Types of solutions in four dimensions (iii)

The optimal solution in four dimensions can have the following structure
(depends on n;):

1) Single state detection (E1 = 0 or Ey = 0).

2) Decomposable into two 2 x 2 blocks, solution of Jaeger & Shimony in
each block. (rank A = 1)
(Example: [Bergou et al., 2006])

3) General projective measurement (rank A = 2) .
(Example: [Raynal & Liitkenhaus, 2007])

4) The “fidelity form” (A(y2 —v1)A =0, rank A = 0).
[Herzog & Bergou 2005, Raynal and Liitkenhaus 2005]
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Typical example in four dimensions

PSJCC

1)
2)
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e Unambiguous state discrimination (USD) is of fundamental interest in
quantum information theory

e The optimality of USD measurements can be expressed as an
equation and a positivity condition on E-.

e From these conditions virtually all known results in USD can be easily
derived.

o Properties of the optimal measurement and new classes of solutions
can be found. Examples are

@ rank of the optimal measurement

@® uniqueness of the optimal measurement

© optimality conditions for single state detection
@ optimal solution in four dimensions

e Not much hope for a general solution of optimal USD
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