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Introduction and motivation

Quantum mechanics: it is impossible to discriminate
two non-orthogonal states perfectly

• Consequence: security of quantum cryptography (B92)

• Impossibility of perfect state discrimination
↔ impossibility of perfect quantum cloning

• Problem for quantum computing:
perfect read-out of non-orthogonal states impossible

• →֒ Discrimination of quantum states is fundamental issue in
quantum information and quantum computing
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Two main strategies for state discrimination

Task: given ̺i ∈ {̺1, ̺2}, with ̺1 and ̺2 known.
Find out whether i = 1 or i = 2.

• Minimum error discrimination (MED):
Minimize the error, i.e. probability to interpret ̺1 as ̺2 and vice versa.

• Unambiguous state discrimination (USD):
No error allowed, but inconclusive answer. Minimize probability to get
inconclusive answer.
(This talk: USD only)
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Pure states, equal a priori probabilities,

”simple” measurements

[Ivanovic 1987, Dieks 1988, Peres 1988]

Task: given |ψi〉 ∈ {|ψ1〉, |ψ2〉}, with |ψ1〉 and |ψ2〉
known. Find out (without making an error) whether

i = 1 or i = 2.
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[Ivanovic 1987, Dieks 1988, Peres 1988]

Task: given |ψi〉 ∈ {|ψ1〉, |ψ2〉}, with |ψ1〉 and |ψ2〉
known. Find out (without making an error) whether

i = 1 or i = 2.

Projective measurement, detects |ψ2〉 unambiguously:
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Pure states, unequal a priori probabilities,

general measurements (POVM)

[Jaeger and Shimony 1995]

Task: given |ψi〉 ∈ {|ψ1〉, |ψ2〉}, with a priori

probabilities η1, η2. Find out (without making error)
whether i = 1 or i = 2.
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Pure states, unequal a priori probabilities,

general measurements (POVM)

[Jaeger and Shimony 1995]

Task: given |ψi〉 ∈ {|ψ1〉, |ψ2〉}, with a priori

probabilities η1, η2. Find out (without making error)
whether i = 1 or i = 2.
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Success probability for pure states
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here: c = |〈ψ1|ψ2〉| = 0.1
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Unambiguous state discrimination of mixed states

Task: given ̺i ∈ {̺1, ̺2}, with a priori probabilities
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i = 1 or i = 2.
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Unambiguous state discrimination of mixed states

Task: given ̺i ∈ {̺1, ̺2}, with a priori probabilities
η1, η2. Find out (without making an error) whether

i = 1 or i = 2.

• For ̺1, ̺2 find a POVM {E1, E2, E?}, such that
tr(E1̺2) = 0 and tr(E2̺1) = 0.

{E1, E2, E?} is a USD measurement if and only if
suppE1 ⊂ ker ̺2 and suppE2 ⊂ ker ̺1

• Note: USD is impossible if ̺1 and ̺2 have same support.

• A priori probabilities: ̺i occurs with probability ηi.
Abbreviation: γi = ηi̺i, with i = 1, 2.
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Optimal USD of mixed states

• Maximize the success probability: psucc = tr(E1γ1) + tr(E2γ2)
Constraint: E? = 11 − E1 − E2 ≥ 0

Optimal USD is a convex optimization problem.

• Numerical solution possible, but we want to understand
structure of the problem.

• Choose H = suppγ1 + suppγ2.

A structural approach to unambiguous state discrimination, p. 10
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corresponds to USD of 2 mixed states (”Unambiguous Filtering”)
[Sun, Bergou and Hillery 2002]
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Optimal USD of 2 mixed states: overview of results

• Unambiguous discrimination between 2 sets of pure states,
corresponds to USD of 2 mixed states (”Unambiguous Filtering”)
[Sun, Bergou and Hillery 2002]

• Upper bound (fidelity) and lower bound (geometrical invariants
between kernels) on success probability
[Rudolph, Spekkens and Turner 2003]

• Reduction theorems for USD of density matrices with rank N and M
→֒ reduce problem to matrices with same rank N0 ≤ min(N,M)
[Raynal, Lütkenhaus and van Enk 2003]

• Tighter bounds and connection to fidelity
[Raynal and Lütkenhaus 2005]

• Commutator relations reveal simultaneous 2 × 2-dimensional
block structures →֒ USD solvable
[Kleinmann, Kampermann, Raynal and Bruß 2007]

• Uniqueness of optimal solution; four-dimensional solution
[Kleinmann, Kampermann and Bruß, in preparation]

→֒ this talk
A structural approach to unambiguous state discrimination, p. 11



The inconclusive result E?

• Any USD measurement is uniquely defined by E?, since
E?γ1 = γ1 − E1γ1.
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• Any USD measurement is uniquely defined by E?, since
E?γ1 = γ1 − E1γ1.

E? defines a USD measurement if and only if
E? ≥ 0, 11 − E? ≥ 0 and γ1(11 −E?)γ2 = 0.

Theorem

For E? optimal,
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The inconclusive result E?

• Any USD measurement is uniquely defined by E?, since
E?γ1 = γ1 − E1γ1.

E? defines a USD measurement if and only if
E? ≥ 0, 11 − E? ≥ 0 and γ1(11 −E?)γ2 = 0.

Theorem

For E? optimal,

• suppE? ∩ ker γ1 = suppE? ∩ ker γ2 = {0},
• rankE? = rank γ1γ2.

To remember: For optimal USD measurement rankE? is fixed.
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The optimality conditions by Eldar et al.

Theorem (Eldar, Stojinc & Hassibi, 2004)

{E1, E2, E?} is optimal, if and only if there exists a Z, such that
Z ≥ 0, ZE? = 0

Λi(Z − γi)Λi ≥ 0, and Λi(Z − γi)Ei = 0 (i = 1, 2).

Λ1 is the projector onto kerγ2.
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The optimality conditions by Eldar et al.

Theorem (Eldar, Stojinc & Hassibi, 2004)

{E1, E2, E?} is optimal, if and only if there exists a Z, such that
Z ≥ 0, ZE? = 0

Λi(Z − γi)Λi ≥ 0, and Λi(Z − γi)Ei = 0 (i = 1, 2).

Λ1 is the projector onto kerγ2.

Z is over-determined and can be eliminated:

Corollary

E? is optimal, if and only if
(Λ1 − Λ2)E?(γ2 − γ1)E?(Λ1 + Λ2) ≥ 0 and

(Λ1 − Λ2)E?(γ2 − γ1)E?(11 − E?) = 0.

Hidden equation (from Hermiticity condition of LHS of inequality):

Λ1E?(γ2 − γ1)E?Λ2 = 0.
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Example for strength of Corollary: Single state detection

Corollary

E? is optimal, if and only if
(Λ1 − Λ2)E?(γ2 − γ1)E?(Λ1 + Λ2) ≥ 0 and

(Λ1 − Λ2)E?(γ2 − γ1)E?(11 − E?) = 0.

Λ1 is the projector onto ker γ2.
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(Λ1 − Λ2)E?(γ2 − γ1)E?(Λ1 + Λ2) ≥ 0 and

(Λ1 − Λ2)E?(γ2 − γ1)E?(11 − E?) = 0.

Λ1 is the projector onto ker γ2.

Example:

• When E1 = 0 →֒ E? = 11 − Λ2, i.e E?γ1 = γ1.

• Then E?(11 − E?) = 0 and E?Λ2 = 0.

• Hence Λ1(11 − Λ2)(γ2 − γ1)(11 − Λ2)Λ1 ≥ 0 remains.
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Example for strength of Corollary: Single state detection

Corollary

E? is optimal, if and only if
(Λ1 − Λ2)E?(γ2 − γ1)E?(Λ1 + Λ2) ≥ 0 and

(Λ1 − Λ2)E?(γ2 − γ1)E?(11 − E?) = 0.

Λ1 is the projector onto ker γ2.

Example:

• When E1 = 0 →֒ E? = 11 − Λ2, i.e E?γ1 = γ1.

• Then E?(11 − E?) = 0 and E?Λ2 = 0.

• Hence Λ1(11 − Λ2)(γ2 − γ1)(11 − Λ2)Λ1 ≥ 0 remains.

Suppose that supp γ1 ∩ supp γ2 = {0}.
Single state detection

E1 = 0 is optimal if and only if γ1(γ2 − γ1)γ1 ≥ 0.
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Fidelity form of USD measurements

• suppγ1 ∩ supp γ2 = {0} (otherwise: reduction, see Raynal et al 2003)
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• Any USD measurement satisfies
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Fidelity form of USD measurements

• suppγ1 ∩ supp γ2 = {0} (otherwise: reduction, see Raynal et al 2003)

• Any USD measurement satisfies

E? = (γ1 + γ2)
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Lemma

For E? optimal, E?(γ2 − γ1)E?

Eldar
= Π?(γ2 − γ1)Π? = ∆(γ2 − γ1)∆.

A structural approach to unambiguous state discrimination, p. 16



Fidelity form of USD measurements

• suppγ1 ∩ supp γ2 = {0} (otherwise: reduction, see Raynal et al 2003)

• Any USD measurement satisfies

E? = (γ1 + γ2)
−1

{
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√
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}

(γ1 + γ2)
−1

Π? projector onto suppE?, ∆ projector onto ker(11 − E?)

Lemma

For E? optimal, E?(γ2 − γ1)E?

Eldar
= Π?(γ2 − γ1)Π? = ∆(γ2 − γ1)∆.

To remember: Optimal USD measurement depends only on suppE?.
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Uniqueness of optimal USD measurement

• Remember: For optimal USD measurement rankE? is fixed.

• Remember: Optimal USD measurement depends only on suppE?.

• Suppose that ∃ E? and E′
?
, both optimal.

Linearity →֒ also 1
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Uniqueness of optimal USD measurement

• Remember: For optimal USD measurement rankE? is fixed.

• Remember: Optimal USD measurement depends only on suppE?.

• Suppose that ∃ E? and E′
?
, both optimal.

Linearity →֒ also 1

2
(E? + E′

?
) optimal.

As E? and E′
?

are positive, rank 1

2
(E? + E′

?
) = rankE? = rankE′

?

implies suppE? = suppE′
?
.

The optimal USD measurement is unique.

A structural approach to unambiguous state discrimination, p. 17



Solution in four dimensions (i)

• suppγ1 ∩ suppγ2 = {0} and suppγ1 ∩ ker γ2 = {0} and
ker γ1 ∩ suppγ2 = {0}. [Raynal, Lütkenhaus and van Enk 2003]
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ker γ1 ∩ suppγ2 = {0}. [Raynal, Lütkenhaus and van Enk 2003]

• Any opt. USD meas. satisfies (∆ is projection onto ker[11 −E?])
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−1

{
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γ2[γ1 − ∆(γ1 − γ2)∆]

√
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√
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(γ1 + γ2)
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(∗)

rank∆ = 0: The optimal solution is already given by (∗).
rank∆ = 1: We have Λ1 ∆(γ2 − γ1)∆ Λ2 = 0.

=⇒











supp∆ ⊆ supp γ1

supp∆ ⊆ supp γ2

〉

→֒ unknown vector in 2 dim

∆(γ2 − γ1)∆ = 0 →֒ (∗).
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Solution in four dimensions (ii)

rank∆ = 2: Then rankE1 + rankE2 = 2 and E2
i = Ei

=⇒
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




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










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〉

→֒ single state detection

rankE1 = 1 = rankE2 →֒ suppE2 = supp(Λ2 − Λ2E1Λ2)

→֒ unknown vector in 2 dim
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Solution in four dimensions (ii)

rank∆ = 2: Then rankE1 + rankE2 = 2 and E2
i = Ei

=⇒























rankE1 = 0

rankE2 = 0

〉

→֒ single state detection

rankE1 = 1 = rankE2 →֒ suppE2 = supp(Λ2 − Λ2E1Λ2)

→֒ unknown vector in 2 dim

The unknown vector in 2 dim can be parameterized with one complex
variable z. →֒ One (complex) equation for z.

Remaining step: Show that the equation only has a finite number of
solutions.
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Types of solutions in four dimensions (iii)

The optimal solution in four dimensions can have the following structure
(depends on ηi):

1) Single state detection (E1 = 0 or E2 = 0).

2) Decomposable into two 2× 2 blocks, solution of Jaeger & Shimony in
each block. (rank∆ = 1)
(Example: [Bergou et al., 2006])

3) General projective measurement (rank∆ = 2) .
(Example: [Raynal & Lütkenhaus, 2007])

4) The “fidelity form” (∆(γ2 − γ1)∆ = 0, rank∆ = 0).
[Herzog & Bergou 2005, Raynal and Lütkenhaus 2005]
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Typical example in four dimensions
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Summary

• Unambiguous state discrimination (USD) is of fundamental interest in
quantum information theory

• The optimality of USD measurements can be expressed as an
equation and a positivity condition on E?.

• From these conditions virtually all known results in USD can be easily
derived.

• Properties of the optimal measurement and new classes of solutions
can be found. Examples are

1 rank of the optimal measurement
2 uniqueness of the optimal measurement
3 optimality conditions for single state detection
4 optimal solution in four dimensions

• Not much hope for a general solution of optimal USD
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