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1 Self-adjointness

The configuration space is R? and denote
R?)BX:(XJ_,CCg), XJ_Z(CCl,ﬁCQ).

The magnetic field B = 5(0,0,1),6 > 0
b

The vector potential A := %XXB or A :=3(—z,71,0)
(the transversal gauge)

Consider the following magnetic Schrodinger operators

H(b) = Hy(b) +V actingon L*(R?)

where
Hy(b) = H o(b) @ T+1® -0,

and

B 8 bl‘g 2 (9 bilfl 2
HJ_’()(b)_(Za—QCl_T) +(Zax2—|— 2) —b,

1s the 2-d Landau hamiltonian.

Hy(b),b > 0is e.s.a. on CS°(R?), o(Hy(b)) is purely abso-

lutely continuous and :

o(Ho(b)) = {2bq}¢ez.” + 7|0, 00)
2bq, q € Z are the Landau levels.




V' is a real random electric potential :
Let (€2, F,P) be a complete probability space, and

E() = / ()P ()

denotes the mathematical expectation.

Main assumption : hg, S=Ror S =7

QxR (w,2) — V() €ER
is a S°— ergodic real random field which is S— ergodic in
the direction of the magnetic field (x3—direction) and :

(fromt) e (1)

If V, is R*-ergodic, then
hg — E (|V,(0)]") < oco.

Random field, ergodicity ... — Figotin Pastur (Springer
1992) or Kirsch (Lect. notes. Phys 1989).

Theorem 1.1. (Hupfer et al, Rev Math. Phys. 2001)
Under the condition hg stated above the operators H,(b) =
Hy(b) + V,,,b > 0 is essentially self adjoint on C5°(R3),
with probability one.



2 Exemples

Englisch et al, (Comm.Math.Phys. 1990), Fischer et al,
(Jour. Stat Phys 2001), Hupfer et al RMP 2001.......

- Homogeneous R*—random potential, Gaussian poten-
tials: 'V, is a real homogeneous Gaussian random field with
E(V,(0)) = 0, a correlation funct. C(x) = E(V_,(x)V,,(0))
is continuous at 0 and C'(x) — 0 as x — o0. V,, satisfies

hr

- Homogeneous Z>—random potential, Anderson type of
potentials: Let {q;}jez be a sequence of i.i.d. real random
variables and u : R? — R be the atomic function s.t.

Eg) <co and S /C u(z — HIH < oo

€z
Vo(x) = > gqjulx — )
JEL
the Minkowski iniquality (c.f. Rudin Mac Graw Hill 1966),
— V, = Zj q;u(x — j) satisfies hz.



3 The Integrated density of states

Figotin Pastur, Kirsch ( lect. notes in Math 1985)
Denote by x4 the characteristic function of the set A,

Theorem 3.1. (Hupfer et al, Rev Math. Phys. 2001,
Figotin-Pastur) Under the condition hg stated above,
the IDS associated to the operators H,(b),b > 0,

p(E) = E{Tr(xc X(-oo.p)(Hu(b))xc)}
exists for all energies E € R.

Remark: With probability one we have:

. NA'<W7E>
E)=1 !
p(E) e T

for all £ € R where p is continuous. This is true for
sequences {A;}ien of domains of R — R? (in the Fischer
sense).

Ny, (w, E)t := of eigenvalues < E of the Dirichlet restrict.
of H,(b) on A,

Also with probability one

~ Tr(xa; X(—oo.m)(Hu(b)Xa,))
E)=1 T |
PE) MRS | A4l

for all £ € R where p is continuous.
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4 R3—ergodic random electric potentials

Recall that here we are in the regime b — oc.
Avron, Herbst and Simon (Comm. Math. Phys. 1981) :

for large b the quantum particle will move in tight lan-
dau level in the x1 — xo plane and will be bound in the
xg direction by the potential (Coulomb) V' : the motion
becomes 1 — d in the direction of the magnetic field B.

H,(b) = Hepy = —0;, + Vegp on L*(R,,)

Two questions:  -definition of Ve s7
-the sense of the convergence?

—>

-the 7 stability of the Matter” see also Bamgartner, Solovej,
Lieb, Ruskai, ... and more recently by Brummelhuis and
Duclos.

- the eigenvalue asymptotics, see Raikov (1998), Ivrii (1989)...



-The IDS, Kirsch, Raikov (Ann Henri Poincare 2000), Raikov
(Op. Theory 2001), Warzel (PHD 2001).
Suppose first V, = 0, then the IDS is given by :

b - 1/2
p(E) = o5 D (E —2bg)!/”.
q=0

let A1 < Ay fixed. Different asymptotic as b — oo of

1- "near a given landau level”: £ € 27,
2-"far from the landau levels” : £ & 27,

In the case 1 the following holds :
lim b~ (p(Eb+ Xo) — p(Eb+ A1) =

(2= ),

22
while in the case 2:

lim b~ Y2 (p(Eb+ Xo) — p(Eb+ \1)) =

b—o0
£/2]
Ay — A
> (E—29)7

A2

q=0



Remark

- The second relation is a typical "free behavior”, in this
case the leading term of the IDS is order b'/2, while near a
given Landau level it is of order b .

- Let p be the IDS associated to Hy = —8§3 1.e. pHO\) =

(1/ W)A}r/ > the first case can be read as

1

Jim 571 (-)) = o (o(h) = py (M)

So in the case V' = 0, V,yy = 0 and this is a convergence
relation evoqued above.



Consider the "effective” operator: Hj, = L v(xs)

dx%
with
v(x3) = vy(s) = V,(0, x3)
Due to the our assumption about V,,, H) ,, is almost-surely

es.a. on C°(R) (see Figotin-Pastur); Denote by p) the
IDS of H| . We have:

Theorem 4.1. Let V, a random electric potential sat-
wsfying hg. Then we have

Z) ng € 24, and )\1,)\2 e R, A\ < Ao,
lim b~ (p(Eb+ X3) — p(Eb+ Ay)) =

b—o0

% (P1(A2) = py( M) -
i) and if £ ¢ 27,

lim b2 (p(Eb+ Xo) — p(Eb+ Ay)) =

b—oo
€£/2]
Ao — A _
o DLE-20)7

q=0




Remark

- Very = V(0, 23)

-Under additional assumptions the result "near the landau
level” is proved by Kirsch-Raikov for the first landau level
( AHP-2000)and for higher landau levels by Raikov (Op.
Theory 2001).
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5 Z?—ergodic random electric potentials: the suspension
method

See e.g. Kirsch (lect notes in Math 1989) and Figotin Pas-
tur (springer 1992).

Suppose now V,, a real random electric field satistying hz.
Let 0 be a real random variable uniformly distributed on

Qg = (—1/2,1/2)? and denote by
(Qwﬁaf@) — (QvfalP)) & <g207f07p0>

Fo, being the Borel sigma algebra on €2y and Py the Lebesgue
measure. Define

Veo(x) =V (x+0), wel, 0¢ (—5, 5) . xR
Then the potential ‘7%9 is R?’—ergoolic and R-ergodic in the
direction of the magnetic field on (€2, F,P). Moreover, due
to the unitary equivalence of H,, := Hy(b)+V,, 9 and H,, =
Hy(b) + V,,, we have

Q()\> — @O‘)v AeR

where p is the IDS associated to H,. Then the theorem
follows for ZS—ergpdic potentials from the theorem applied
to the potential V,.
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Notice that now near the landau levels our relation read as

lim b (p(Eb+ o) — p(Eb+ \p)) =

b—00

— (510%) — (W)
with

6 Periodic Potentials

The suspension procedure holds for real periodic potential
(see e.g. Figotin Pastur): V is again a periodic potential
but with a random value at the origin. So our theorem
holds in this case.

However we expect here the weaker condition :

/|Vw(x)\2dx < 00
C

i.e. V is uniformly locally L.
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