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1 Self-adjointness

The configuration space is R3 and denote

R3 3 x = (X⊥, x3), X⊥ = (x1, x2).

The magnetic field B = b(0, 0, 1), b ≥ 0

The vector potential A := 1
2x×B or A := b

2(−x2, x1, 0)
(the transversal gauge)

Consider the following magnetic Schrödinger operators

H(b) = H0(b) + V acting on L2(R3)

where
H0(b) = H⊥,0(b)⊗ I + I⊗−∂2

x3

and

H⊥,0(b) =

(
i

∂

∂x1
− bx2

2

)2

+

(
i

∂

∂x2
+

bx1

2

)2

− b,

is the 2-d Landau hamiltonian.

H0(b), b ≥ 0 is e.s.a. on C∞
0 (R3), σ(H0(b)) is purely abso-

lutely continuous and :

σ(H0(b)) = {2bq}q∈Z+” + ”[0,∞)

2bq, q ∈ Z+ are the Landau levels.
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V is a real random electric potential :
Let (Ω,F , P) be a complete probability space, and

E(·) =

∫
(·)dP(ω)

denotes the mathematical expectation.

Main assumption : hS, S = R or S = Z

Ω× R3 3 (ω, x) 7→ Vω(x) ∈ R
is a S3− ergodic real random field which is S− ergodic in
the direction of the magnetic field (x3−direction) and :

E
(∫

C
|Vω(x)|4dx

)
< ∞; C :=

(
−1

2
,
1

2

)3

If Vω is R3-ergodic, then

hR → E
(
|Vω(0)|4

)
< ∞.

Random field, ergodicity ... → Figotin Pastur (Springer
1992) or Kirsch (Lect. notes. Phys 1989).

Theorem 1.1. (Hupfer et al, Rev Math. Phys. 2001)
Under the condition hS stated above the operators Hω(b) =
H0(b) + Vω, b ≥ 0 is essentially self adjoint on C∞

0 (R3),
with probability one.
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2 Exemples

Englisch et al, (Comm.Math.Phys. 1990), Fischer et al,
(Jour. Stat Phys 2001), Hupfer et al RMP 2001.......

- Homogeneous R3−random potential, Gaussian poten-
tials: Vω is a real homogeneous Gaussian random field with
E(Vω(0)) = 0, a correlation funct. C(x) = E(Vω(x)Vω(0))
is continuous at 0 and C(x) → 0 as x → ∞. Vω satisfies
hR

- Homogeneous Z3−random potential, Anderson type of
potentials: Let {qj}j∈Z be a sequence of i.i.d. real random
variables and u : R3 → R be the atomic function s.t.

E(|q|4) < ∞ and
∑
j∈Z

(

∫
C
|u(x− j)|4)1/4 < ∞.

Vω(x) =
∑
j∈Z

qju(x− j)

the Minkowski iniquality (c.f. Rudin Mac Graw Hill 1966),
→ Vω =

∑
j qju(x− j) satisfies hZ.
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3 The Integrated density of states

Figotin Pastur, Kirsch ( lect. notes in Math 1985)

Denote by χA the characteristic function of the set A,

Theorem 3.1. (Hupfer et al, Rev Math. Phys. 2001,
Figotin-Pastur) Under the condition hS stated above,
the IDS associated to the operators Hω(b), b ≥ 0,

ρ(E) := E{Tr(χC χ(−∞,E)(Hω(b))χC)}
exists for all energies E ∈ R.

Remark: With probability one we have:

ρ(E) = lim
Λi↑R3

NΛi
(ω,E)

|Λi|
for all E ∈ R where ρ is continuous. This is true for
sequences {Λi}i∈N of domains of R3 → R3 (in the Fischer
sense).
NΛi

(ω,E)] := of eigenvalues < E of the Dirichlet restrict.
of Hω(b) on Λi

Also with probability one

ρ(E) = lim
Λi↑R3

Tr(χΛi
χ(−∞,E)(Hω(b)χΛi

))

|Λi|
for all E ∈ R where ρ is continuous.

5



4 R3−ergodic random electric potentials

Recall that here we are in the regime b →∞.

Avron, Herbst and Simon (Comm. Math. Phys. 1981) :

for large b the quantum particle will move in tight lan-
dau level in the x1 − x2 plane and will be bound in the
x3 direction by the potential (Coulomb) V : the motion
becomes 1− d in the direction of the magnetic field B.

Hω(b) → Heff = −∂2
x3

+ Veff on L2(Rx3)

Two questions: -definition of Veff?
-the sense of the convergence?

→

-the ” stability of the Matter” see also Bamgartner, Solovej,
Lieb, Ruskäı, ... and more recently by Brummelhuis and
Duclos.

- the eigenvalue asymptotics, see Raikov (1998), Ivrii (1989)...
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-The IDS, Kirsch, Raikov (Ann Henri Poincare 2000), Raikov
(Op. Theory 2001), Warzel (PHD 2001).
Suppose first Vω = 0, then the IDS is given by :

ρ(E) :=
b

2π2

∞∑
q=0

(E − 2bq)
1/2
+ .

let λ1 ≤ λ2 fixed. Different asymptotic as b →∞ of

ρ(Eb + λ2)− ρ(Eb + λ1)

1- ”near a given landau level”: E ∈ 2Z+

2-”far from the landau levels” : E /∈ 2Z+

In the case 1 the following holds :

lim
b→∞

b−1 (ρ(Eb + λ2)− ρ(Eb + λ1)) =

1

2π2

(
(λ2)

1/2
+ − (λ1)

1/2
+

)
,

while in the case 2:

lim
b→∞

b−1/2 (ρ(Eb + λ2)− ρ(Eb + λ1)) =

λ2 − λ1

4π2

[E/2]∑
q=0

(E − 2q)−1/2.
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Remark

- The second relation is a typical ”free behavior”, in this
case the leading term of the IDS is order b1/2, while near a
given Landau level it is of order b .

- Let ρ‖ be the IDS associated to H‖ = −∂2
x3

i.e. ρ‖(λ) =

(1/π)λ
1/2
+ . the first case can be read as

lim
b→∞

b−1 (....)) =
1

2π

(
ρ‖(λ2)− ρ‖(λ1)

)
,

So in the case V = 0, Veff = 0 and this is a convergence
relation evoqued above.
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Consider the ”effective” operator: H‖,ω := − d2

dx2
3

+ v(x3)

with
v(x3) = vω(x3) := Vω(0, x3)

Due to the our assumption about Vω, H‖,ω is almost-surely
e.s.a. on C∞

0 (R) (see Figotin-Pastur); Denote by ρ‖ the
IDS of H‖,ω. We have:

Theorem 4.1. Let Vω a random electric potential sat-
isfying hR. Then we have

i) if E ∈ 2Z+, and λ1, λ2 ∈ R, λ1 < λ2,

lim
b→∞

b−1 (ρ(Eb + λ2)− ρ(Eb + λ1)) =

1

2π

(
ρ‖(λ2)− ρ‖(λ1)

)
.

ii) and if E /∈ 2Z+,

lim
b→∞

b−1/2 (ρ(Eb + λ2)− ρ(Eb + λ1)) =

λ2 − λ1

4π2

[E/2]∑
q=0

(E−2q)−1/2.
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Remark

- Veff = V (0, x3)

-Under additional assumptions the result ”near the landau
level” is proved by Kirsch-Raikov for the first landau level
( AHP-2000)and for higher landau levels by Raikov (Op.
Theory 2001).
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5 Z3−ergodic random electric potentials: the suspension

method

See e.g. Kirsch (lect notes in Math 1989) and Figotin Pas-
tur (springer 1992).
Suppose now Vω a real random electric field satisfying hZ.
Let θ be a real random variable uniformly distributed on
Ω0 = (−1/2, 1/2)3 and denote by

(Ω̃, F̃ , P̃) = (Ω,F , P)⊗ (Ω0,F0, P0)

F0, being the Borel sigma algebra on Ω0 and P0 the Lebesgue
measure. Define

Ṽω,θ(x) = Vω(x+θ), ω ∈ Ω, θ ∈
(
−1

2
,
1

2

)3

, x ∈ R3.

Then the potential Ṽω,θ is R3-ergodic and R-ergodic in the
direction of the magnetic field on (Ω̃, F̃ , P̃). Moreover, due
to the unitary equivalence of H̃ω := H0(b)+ Ṽω,θ and Hω =
H0(b) + Vω, we have

%(λ) = %̃(λ), λ ∈ R.

where ρ̃ is the IDS associated to H̃ω. Then the theorem
follows for Z3-ergodic potentials from the theorem applied
to the potential Ṽω.
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Notice that now near the landau levels our relation read as

lim
b→∞

b−1 (ρ(Eb + λ2)− ρ(Eb + λ1)) =

1

2π

(
ρ̃‖(λ2)− ρ̃‖((λ1)

)
.

with

ρ̃‖(λ) =

∫
(−1

2 ,12)
2
ρ‖(λ; θ⊥)dθ⊥ λ ∈ R. (5.1)

6 Periodic Potentials

The suspension procedure holds for real periodic potential
(see e.g. Figotin Pastur): Ṽ is again a periodic potential
but with a random value at the origin. So our theorem
holds in this case.

However we expect here the weaker condition :∫
C
|Vω(x)|2dx < ∞

i.e. V is uniformly locally L2.
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