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Hydrogen Atom coupled to the
Quantized Radiation Field

e Hilbert space is tensor product space,

H=Hg®F,
where

o the Hilbert space of the electron (in H-atom) is
Hel = LZ(R?)),

e and the Fock space

F = FL*(R® x Zy)] = P, F™
is the photon Hilbert space,
e Where the n-photon sector is

FO = {4, € @ L2 | V7 : 4, (k™) = 4, (kM)},

With k) = (ky,. .., k) and kS = (ke - - - k).
o 7O .= CQ, where Q is the vacuum vector.

e On F, we have creation and annihilation operators,
obeying CCR: Vk, k' :

[a(k), a(k')] =

[a(k), a*((
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e Interacting Hamiltonian results from minimal cou-
pling
—iVy = 7= —iV, — o®?A(a7)),
e,
H, = (- iV — a?’/gﬁ'(afj))z + V(z) + Hy,

where V(z) := |z| 1,

e the vector potential oj the quangized radlation field
in Coulomb Gauge (£(k, +) L €(k,—) L kis

A(Z) =

A(k) dk g e—iE-fa* g *eiE-ia
=T o 1ERe ) + awyetam)
with UV-Cutoff x(k) = 1[|k| < A], and

Hy = /dk w(k) a*(k)a(k)

is the field energy operator.
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e Fora =0,

H(0) = Ha®1 + 1QHy,

1
Hel = _Aw+_-
kq

e Spectrum of H(0) is sum of spectra of H,; and Hy,
o[H(0)] = o[Ha] + o[Hf] = [Ey , 00),

e Ground state energy inf o[ H(0)] = ey is eigenvalue
at the bottom of the continuum,

e Excited eigenval’s ey, e, . . . are embedded in
continuum.
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Results

1. Existence of Models
e H(«) is semibounded quadratic form, selfadjoint on
domain of H(0) [Hiroshima 99];
2. Binding

e Existence of ground state:
E4s(o) == inf o[H ()] is an eigenvalue,

dpgs() € H 2 H(a) ggs(@) = Egs(a) (),

e Existence of ground state for 0 < |a| < 1
[B + Frohlich + Sigal 99];

e Existence of ground state V a > 0, provided
(HVZ-type) binding condition ()

Eg(a, N, V) < mkin{Egs(a, N—Fk,V)+Eg(a, k,0)}

holds true [Griesemer + Lieb + Loss 00];

e Condition () holds true for
N =1 [GLL 00],
N = 2 [Chen + Vugalter + Weidl 03],
N > 1 [Lieb + Loss 03],
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e Non-Existence of Gr. St. for
- Nelson Model [Frohlich 74, Pizzo 02,
Lorinci + Minlos + Spohn 01],
- Pauli-Fierz Hamiltonian [Arai + Hiroshima +
Hirokawa 99, Kdnenberg 04].

e Key condition for existence/non-existence:

|G (k)] gpd <o gs exists,
w(k)? = oo s doesn’t exist.

e Enhanced binding: no ground state for o = 0,
but ground state for o > 0, not too large. [Hainzl +
\Vougalter + Vugalter 01, Catto + Hainzl 04]
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3. Construction of Ground States
e For Pauli-Fierz Ham. [B + Frohlich + Sigal 98]

e For Nelson model [Pizzo 02];

e Thm. [B + Frohlich + Pizzo ’06,
B + Kodnenberg ’06, B + Pizzo + Shoufan *07]:

* For 0 < |a| < 1 small, H(«) has a unique ground
state vector ®y(a) := Py () € H at the bottom
Ey(a) := E45(a) > oo of its spectrum.

« For 0 < || < 1 small, the complex dilation H («, #)
of H(«) has an resonance eigenvector ®;(a, #) with

resonance eigenvalue E;(«) € C™ inthe vicinity E; (o) =

e;+0O(a?) of the excited energy levelse;, j = 1,2, . ...

* Both ®;(«) and E;(«) are constructed by a
convergent iteration procedure (Pizzo's method).

* That is, a sequence (H ™), of infrared
regularized Hamiltonians with eigenvectors (¢(™)
and corresponding eigenvalues (E()%  is
iteratively constructed such that

H® = H(0), H™ — H(a
0¥ = 2;(0), ¢<"> — @;(a
E® = E;(0), E™ — Ej(a),

),
)

b
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e Remarks:

* Ground state ®4(c) can be expanded in terms of
bare quantities up to O (), for arbitrary L € N.

x Scattering amplitudes can be expanded in bare
guantities, as well.

 Imaginary parts Im{ E;(«) } of resonance
eigenvalues can be explicitly computed to leading
order in a. This yields the inverse life-time

L m{E(a))

Tj

of the resonances as metastable states.
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4. RG based on SFM
e Smooth Feshbach map (SFM):
Let0 < x <1,x:=+/1—x2and[K,x] =0. Then

dimKer(K +W — z) = dimKer(F[K +W —z]),

where

Fyk[K+W —2] :=
K—z+xWx—xWx(K—-z+ )_(WX)_I)_(WX i

on Ran[x].

e Renormalization group (RG) map R based on SFM:
« Effective Hamiltonian H™ =: K 4 W)
is defined on 1[H < 1]H,
* where K" = T (H;) and
Wi

n) —
Z/a*(&) .. 'a*(fM) wM,N(Hf,f; 5) a(é) .. .a(&v)’

* and choose x := 1[H < p] with 0 < p < 1.
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* Set
H"(z) == R[H™(2)],

where R = S o F) u, is composition of SFM
and rescaling map S which maps

I[Hf < p]'H — I[Hf < 1]7‘[

* Show that W™ — 0, as n — co.

e Preservation of soft photon sum rules (SR)
under RG map:

[S,H]=0 = [S,R(H)]=0.
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5. Pizzo’'s Scale Decomposition

e Define a decreasing energy scales by
o, = AP,

¢ Divide momentum space into corresponding slices,
forl <m < n < oo,

Kn = {(k,7) €R® x Zy |0, <w(k)},
Kyo= {(E,T)€R3xZg‘angw(E)<am},

e with corresponding L2-spaces

h, = L*[K,] and A} := L?[K7]
e and corresponding Fock spaces

Fn = Flhy] and Fr = F[h7].

e This gives rise to an momentum scale
decomposition of the photon Fock space

F=Fo 2 F@F,@FL".
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e Similarly, we decompose the Hamiltonian as

T, = —iVy + a*(Gy) + a(G),
o= [ 100 < ) w(k) @' (Balb) dk
Y = [ 100 < K < o) (k) (R)alk) di
H, = ¥, = V() + Hq,

e which implies that

Wp = Hypp—H, = (77n+1)2 - (Un)2
= 2a*(G",) T + 20, -a(GT,))
* (AN n 2
+ (CL (Gn—H) + a(Gn—H)) )
where, e.g.,
a*(62+1) =

1o, < w(k nldk o =
/ [U +1—w(2<0-] 8(k)6 Zkza*(k).
271'3/2‘k|1/2

e Projection P, onto approx. ground state or reso-
nance:
-1 dz

P, = - — =
2ms |z|=0n Hn — En — 2
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e Inductive step n — n + 1 by Neumann series ex-
pansions:

P -1 dz
+1 = T . =
" 2mi |z|=0n+1 Hn+1 - En -z

and

S Py )

e Existence of each P, is easy - convergence
P, — Pj(a) and E,, — E;(«) is difficult
e For this use that W, , is “small” and

i[Hy, @] = 20,

which only holds for the minimally coupled model.



