Construction of Ground States and Resonances in Nonrelativistic QED

Volker Bach (U Mainz)

jointly with
Jürg Fröhlich (ETH Zürich)
Alessandro Pizzo (ETH Zürich)
Marwan Shoufan (U Mainz)

Hydrogen Atom coupled to the Quantized Radiation Field

• Hilbert space is tensor product space,

$$\mathcal{H}=\mathcal{H}_{el}\otimes\mathcal{F},$$

where

• the Hilbert space of the electron (in H-atom) is

$$\mathcal{H}_{el} := L^2(\mathbb{R}^3),$$

• and the Fock space

$$\mathcal{F} = \mathcal{F}_b[L^2(\mathbb{R}^3 \times \mathbb{Z}_2)] = \bigoplus_{n=0}^{\infty} \mathcal{F}^{(n)}$$

is the photon Hilbert space,

 \bullet where the n-photon sector is

$$\mathcal{F}^{(n)} = \{ \psi_n \in \otimes^n L^2 \mid \forall \pi : \psi_n(k^{(n)}) = \psi_n(k^{(n)}_{\pi}) \},$$
 with $k^{(n)} = (k_1, \dots, k_n)$ and $k^{(n)}_{\pi} = (k_{\pi(1)}, \dots, k_{\pi(n)}).$

- $\mathcal{F}^{(0)} := \mathbb{C} \Omega$, where Ω is the vacuum vector.
- On \mathcal{F} , we have creation and annihilation operators, obeying CCR: $\forall k, k'$:

$$[a(k), a(k')] = [a^*(k), a^*(k')] = 0,$$

$$[a(k), a^*(k')] = \delta(k - k'),$$

$$a(k)\Omega = 0.$$

• Interacting **Hamiltonian** results from minimal coupling

$$-i\vec{\nabla}_x \mapsto \vec{v} := -i\vec{\nabla}_x - \alpha^{3/2}\vec{A}(\alpha\vec{x}_j),$$

i.e.,

$$H_{\alpha} := \left(-i\vec{\nabla}_x - \alpha^{3/2}\vec{A}(\alpha\vec{x}_j)\right)^2 + V(x) + H_f,$$

where
$$V(x) := |x|^{-1}$$
,

• the vector potential of the quantized radiation field in Coulomb Gauge $(\vec{\varepsilon}(\vec{k}, +) \perp \vec{\varepsilon}(\vec{k}, -) \perp \vec{k}$ is

$$\begin{split} \vec{A}(\vec{x}) \; := \; \\ \int \frac{\Lambda(k) \, dk}{2 \, \pi^{3/2} \, |\vec{k}|^{1/2}} \left\{ \vec{\varepsilon'}(k) e^{-i\vec{k}\cdot\vec{x}} a^*(k) \, + \, \vec{\varepsilon'}(k)^* e^{i\vec{k}\cdot\vec{x}} a(k) \right\} \, , \end{split}$$

with UV-Cutoff $\kappa(k)=\mathbf{1}[|\vec{k}|\leq \Lambda]$, and

$$H_f = \int dk \, \omega(k) \, a^*(k) a(k)$$

is the field energy operator.

• For $\alpha = 0$,

$$H(0) = H_{el} \otimes \mathbf{1} + \mathbf{1} \otimes H_f$$
,
 $H_{el} = -\Delta_x + \frac{1}{|x|}$.

- Spectrum of H(0) is sum of spectra of H_{el} and H_f , $\sigma[H(0)] = \sigma[H_{el}] + \sigma[H_f] = [E_0 \ , \ \infty),$
- ullet Ground state energy $\inf \sigma[H(0)] = e_0$ is eigenvalue at the bottom of the continuum,
- Excited eigenval's e_1, e_2, \ldots are embedded in continuum.

Results

1. Existence of Models

• $H(\alpha)$ is semibounded quadratic form, selfadjoint on domain of H(0) [Hiroshima 99];

2. Binding

• Existence of ground state:
$$\overline{E_{\rm gs}(\alpha) := \inf \sigma[H(\alpha)]}$$
 is an eigenvalue,

$$\exists \phi_{\rm gs}(\alpha) \in \mathcal{H}: \ H(\alpha) \ \phi_{\rm gs}(\alpha) \ = \ E_{\rm gs}(\alpha) \ \phi_{\rm gs}(\alpha),$$

- ullet Existence of ground state for $0<|lpha|\ll 1$ [B + Fröhlich + Sigal 99];
- Existence of ground state $\forall \alpha > 0$, provided (HVZ-type) binding condition (*)

$$E_{\mathrm{gs}}(\alpha,N,V) < \min_{k} \{E_{\mathrm{gs}}(\alpha,N-k,V) + E_{\mathrm{gs}}(\alpha,k,0)\}$$

holds true [Griesemer + Lieb + Loss 00];

• Condition (*) holds true for

$$N = 1$$
 [GLL 00],

$$N = 2$$
 [Chen + Vugalter + Weidl 03],

$$N \ge 1$$
 [Lieb + Loss 03],

- Non-Existence of Gr. St. for
 - Nelson Model [Fröhlich 74, Pizzo 02, Lörinci + Minlos + Spohn 01],
 - Pauli-Fierz Hamiltonian [Arai + Hiroshima + Hirokawa 99, Könenberg 04].
- Key condition for existence/non-existence:

$$\int \frac{\|\vec{G}(k)\|^2}{\omega(k)^2} \, dk \left\{ \begin{array}{ll} <\infty & \text{gs exists,} \\ =\infty & \text{gs doesn't exist.} \end{array} \right.$$

• Enhanced binding: no ground state for $\alpha = 0$, but ground state for $\alpha > 0$, not too large. [Hainzl + Vougalter + Vugalter 01, Catto + Hainzl 04]

3. Construction of Ground States

- For Pauli-Fierz Ham. [B + Fröhlich + Sigal 98]
- For Nelson model [Pizzo 02];
- <u>Thm.</u> [B + Fröhlich + Pizzo '06, B + Könenberg '06, B + Pizzo + Shoufan '07]:
- * For $0<|\alpha|\ll 1$ small, $H(\alpha)$ has a unique ground state vector $\Phi_0(\alpha):=\Phi_{\rm gs}(\alpha)\in \mathcal{H}$ at the bottom $E_0(\alpha):=E_{\rm gs}(\alpha)>\infty$ of its spectrum.
- * For $0 < |\alpha| \ll 1$ small, the complex dilation $H(\alpha, \theta)$ of $H(\alpha)$ has an resonance eigenvector $\Phi_j(\alpha, \theta)$ with resonance eigenvalue $E_j(\alpha) \in \mathbb{C}^-$ in the vicinity $E_j(\alpha) = e_j + \mathcal{O}(\alpha^3)$ of the excited energy levels $e_j, j = 1, 2, \ldots$
- * Both $\Phi_j(\alpha)$ and $E_j(\alpha)$ are constructed by a convergent iteration procedure (*Pizzo's method*).
- * That is, a sequence $(H^{(n)})_{n=0}^{\infty}$ of infrared regularized Hamiltonians with eigenvectors $(\phi^{(n)})_{n=0}^{\infty}$ and corresponding eigenvalues $(E^{(n)})_{n=0}^{\infty}$ is iteratively constructed such that

$$H^{(0)} = H(0), \quad H^{(n)} \to H(\alpha),$$

 $\phi^{(0)} = \Phi_j(0), \quad \phi^{(n)} \to \Phi_j(\alpha),$
 $E^{(0)} = E_j(0), \quad E^{(n)} \to E_j(\alpha),$

• Remarks:

- * Ground state $\Phi_{\mathrm{gs}}(\alpha)$ can be expanded in terms of bare quantities up to $\mathcal{O}(\alpha^L)$, for arbitrary $L \in \mathbb{N}$.
- * Scattering amplitudes can be expanded in bare quantities, as well.
- * Imaginary parts $\operatorname{Im}\{E_j(\alpha)\}$ of resonance eigenvalues can be explicitly computed to leading order in α . This yields the inverse <u>life-time</u>

$$\frac{1}{\tau_j} \sim \operatorname{Im}\{E_j(\alpha)\}$$

of the resonances as metastable states.

4. RG based on SFM

• Smooth Feshbach map (SFM):

Let
$$0 \le \chi \le 1$$
, $\bar{\chi} := \sqrt{1 - \chi^2}$, and $[K, \chi] = 0$. Then

$$\dim \operatorname{Ker}(K+W-z) = \dim \operatorname{Ker}(F[K+W-z]),$$

where

$$F_{\chi,K}[K+W-z] := K-z+\chi W\chi - \chi W\bar{\chi} (K-z+\bar{\chi}W\bar{\chi})^{-1}\bar{\chi}W\chi.$$

on Ran[χ].

- Renormalization group (RG) map \mathcal{R} based on SFM:
- * Effective Hamiltonian $H^{(n)} =: K^{(n)} + W^{(n)}$ is defined on $\mathbf{1}[H_f < 1]\mathcal{H}$,
- st where $K^{(n)}=T^{(n)}(H_f)$ and

$$W^{(n)} = \sum_{M,N} \int a^*(\xi_1) \cdots a^*(\xi_M) \ w_{M,N}(H_f, \xi, \tilde{\xi}) \ a(\tilde{\xi}_1) \cdots a(\tilde{\xi}_N),$$

* and choose $\chi := \mathbf{1}[H_f < \rho]$ with $0 < \rho \ll 1$.

* Set

$$H^{(n+1)}(z) := \mathcal{R}[H^{(n)}(z)],$$

where $\mathcal{R} = \mathcal{S} \circ F_{\chi,H_f}$ is composition of SFM and rescaling map \mathcal{S} which maps

$$\mathbf{1}[H_f < \rho]\mathcal{H} \mapsto \mathbf{1}[H_f < 1]\mathcal{H}$$

- * Show that $W^{(n)} \to 0$, as $n \to \infty$.
- Preservation of soft photon sum rules (SR) under RG map:

$$[S, H] = 0 \Rightarrow [S, \mathcal{R}(H)] = 0.$$

5. Pizzo's Scale Decomposition

• Define a decreasing energy scales by

$$\sigma_n := \Lambda \beta^n,$$

ullet Divide momentum space into corresponding slices, for $1 \leq m < n \leq \infty$,

$$\mathcal{K}_n := \left\{ (\vec{k}, \tau) \in \mathbb{R}^3 \times \mathbb{Z}_2 \mid \sigma_n \le \omega(\vec{k}) \right\},
\mathcal{K}_n^m := \left\{ (\vec{k}, \tau) \in \mathbb{R}^3 \times \mathbb{Z}_2 \mid \sigma_n \le \omega(\vec{k}) < \sigma_m \right\},$$

• with corresponding L^2 -spaces

$$h_n := L^2[\mathcal{K}_n]$$
 and $h_n^m := L^2[\mathcal{K}_n^m]$

• and corresponding Fock spaces

$$\mathcal{F}_n := \mathcal{F}[h_n]$$
 and $\mathcal{F}_n^m := \mathcal{F}[h_n^m]$.

• This gives rise to an momentum scale decomposition of the photon Fock space

$$\mathcal{F} = \mathcal{F}_{\infty} \cong \mathcal{F}_n \otimes \mathcal{F}_{n+1}^n \otimes \mathcal{F}_{\infty}^{n+1}$$
.

• Similarly, we decompose the Hamiltonian as

$$\vec{v}_{n} := -i\vec{\nabla}_{x} + a^{*}(\vec{G}_{n}) + a(\vec{G}_{n}),
\check{H}_{n} := \int \mathbf{1}(\sigma_{n} \leq |k|) \,\omega(k) \,a^{*}(k)a(k) \,dk,
\check{H}_{n}^{m} := \int \mathbf{1}(\sigma_{n} \leq |k| < \sigma_{m}) \,\omega(k) \,a^{*}(k)a(k) \,dk,
H_{n} := \vec{v}_{n}^{2} - V(x) + \check{H}_{n},$$

• which implies that

$$\begin{aligned} W^n_{n+1} &:= & H_{n+1} - H_n &= & (\vec{v}_{n+1})^2 - & (\vec{v}_n)^2 \\ &= & 2 \, a^* (\vec{G}^n_{n+1}) \cdot \vec{v}_n \, + \, 2 \, \vec{v}_n \cdot a (\vec{G}^n_{n+1}) \\ &+ & \left(a^* (\vec{G}^n_{n+1}) + a (\vec{G}^n_{n+1}) \right)^2 \, , \end{aligned}$$

where, e.g.,

$$a^*(\vec{G}_{n+1}^n) := \int \frac{\mathbf{1}[\sigma_{n+1} \le \omega(k) < \sigma_n] dk}{2 \pi^{3/2} |\vec{k}|^{1/2}} \vec{\varepsilon}(k) e^{-i\vec{k} \cdot \vec{x}} a^*(k) .$$

ullet Projection P_n onto approx. ground state or resonance:

$$P_n = \frac{-1}{2\pi i} \int_{|z| = \sigma_n} \frac{dz}{H_n - \widehat{E}_n - z}$$

• Inductive step $n \to n+1$ by Neumann series expansions:

$$P_{n+1} = \frac{-1}{2\pi i} \int_{|z| = \sigma_{n+1}} \frac{dz}{H_{n+1} - \widehat{E}_n - z}$$

and

$$\frac{1}{H_{n+1} - \widehat{E}_n - z} = \sum_{k=0}^{\infty} \frac{1}{H_n + \check{H}_{n+1}^n - \widehat{E}_n - z} \left\{ -W_{n+1}^n \left(\frac{1}{H_n + \check{H}_{n+1}^n - \widehat{E}_n - z} \right) \right\}^k$$

- Existence of each P_n is easy convergence $P_n \to P_j(\alpha)$ and $\widehat{E}_n \to E_j(\alpha)$ is difficult
- ullet For this use that W^n_{n+1} is "small" and

$$i[H_n, \vec{x}] = 2 \vec{v}_n,$$

which only holds for the minimally coupled model.