
Control of nonlinear PDE’s

1 Exact controllability for the magnetohydro-

dynamic equations with control in their fluid

part

The magnetohydrodynamic (MHD) equations govern the motion of electri-
cally conducting viscous incompressible fluids in magnetic field. They consist
of an elegant and subtle coupling of the Navier–Stokes equations of viscous
incompressible fluid flow and the Maxwell equations of electromagnetic field.
The mathematical theory of the MHD equations (the concept of weak solu-
tion, the functional framework, the methods, the main results of existence
and uniqueness of solution, the regularity) is very similar to that of the
Navier–Stokes equations and can be found in [8], [9], [10], [11] and [3].

Let us now formulate the main result of exact controllability for the three–
dimensional MHD system. Let Ω be a connected bounded open set in R3

with the boundary ∂Ω of class C2 and let T > 0. We set Q = Ω × (0, T )
and Σ = ∂Ω × (0, T ). Let ω be an open subset of Ω (on which the control
action will be distributed). The controlled MHD equations we consider is
the following:

(1)

∂y

∂t
− ν∆y + (y · ∇)y − (B · ∇)B +∇

(
1

2
B2

)
+∇p = f + χωu in Q,

∂B

∂t
+ η curl(curl B) + (y · ∇)B − (B · ∇)y = P (χωu) in Q,

div y = 0, div B = 0 in Q,

y = 0, B ·N = 0, (curl B)×N = 0 on Σ,

y(·, 0) = y0, B(·, 0) = B0 in Ω.
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Here y = (y1, y2, y3) : Ω× [0, T ]→ R3 is the velocity vector field, p : Q→ R
is the (scalar) pressure field, and B = (B1, B2, B3) : Ω × [0, T ] → R3 is
the magnetic field. System (1) is controlled through the vector functions
u = (u1, u2, u3) : Q→ R3 and v = (v1, v2, v3) : Q→ R3. The other symbols in
(1) denote known (given) quantities. So, ν and η are the kinematic viscosity
and magnetic resistivity coefficients, which are assumed to be positive, f =
(f1, f2, f3) : Q → R3 is the density of the external forces, χω : Ω → R is
the characteristic function of ω, and y0 : Ω → R3 and B0 : Ω → R3 are the
initial configurations of the velocity and magnetic field. Since the left–hand
side of the magnetic part of system (1) is proved to be divergence–free and
tangential to the boundary, we are forced to put the Leray projector P in
the right–hand side in order to “kill” the gradient component of χωv. The
term (B · ∇)B −∇(1

2
B2) = (curl B)× B represents the Lorentz force. The

physical meaning of the boundary conditions on B (where N denotes the unit
outer normal vector to ∂Ω) is that the boundary wall is perfectly conductive.
Because of the well–known formula curl(curl B) = ∆B+grad(divB), we can
replace the term curl(curlB) in (1) by −∆B.

As target solution we consider a weak solution (ỹ, B̃) of the uncontrolled
version of equations (1); that is, together with some (non–unique) distribu-

tion p̃, (ỹ, B̃) satisfies:

(2)

∂ỹ

∂t
− ν∆ỹ + (ỹ · ∇)ỹ − (B̃ · ∇)B̃

+∇
(

1

2
B̃2

)
+∇p̃ = f in Q,

∂B̃

∂t
+ η curl(curl B̃) + (ỹ · ∇)B̃ − (B̃ · ∇)ỹ = 0 in Q,

div ỹ = 0, div B̃ = 0 in Q,

ỹ = 0, B̃ ·N = 0, (curl B̃)×N = 0 on Σ,

in the distribution sense. The best result of exact controllability known for
the MHD system (1) is contained in the following statement.

Theorem 1. Let f ∈ (L2(Q))3. If (ỹ, B̃) is a weak solution of (2) which
satisfies

(3) (ỹ, B̃) ∈ (L∞(Q))6 and

(
∂ỹ

∂t
,
∂B̃

∂t

)
∈ L2(0, T ; (L∞(Ω))6),
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then there exists δ > 0 such that, for any (y0, B0) ∈ (H∩(L4(Ω))3)2 satisfying

|y0 − ỹ(·, 0)|(L4(Ω))3 + |B0 − B̃(·, 0)|(L4(Ω))3 ≤ δ,

we can find (u, v) ∈ (L2(Q))6 and a corresponding weak solution (y,B) of
system (1) which also satisfies

y(·, T ) = ỹ(·, T ) and B(·, T ) = B̃(·, T ) a. e. in Ω.

In the above statement H is the standard space of all the weakly divergence–
free vector fields in (L2(Ω))3 which are tangential to the boundary. Theorem
1 (together with its proof) is found in [7]. It is almost the analogue for
the MHD system of the result of exact controllability for the Navier–Stokes
equations established by E. Fernandez-Cara, S. Guerrero, O. Imanuvilov,
and J.-P. Puel in [4]. We point out that in [4] the condition on ỹ which
corresponds to the second regularity condition in (3) is somewhat weaker:

∂ỹ

∂t
∈ L2(0, T ; (Lτ (Ω))3) for τ >

6

5
.

However, for the important case of stationary target solutions, this condition
(like the second one in (3)) is automatically satisfied, and Theorem 1 becomes
the perfect analogue of the result in [4] for the MHD equations. Previous
results of exact controllability for the MHD system (1) were obtained in [1],
[2], and [5]. A similar result of exact controllability for the two-dimensional
MHD equations was established in [6].

The strategy of proving Theorem 1 is quite standard. With the help
of an infinite–dimensional variant of the local inversion theorem, the local
exact controllability of the controlled MHD equations (1) (asserted by Theo-
rem 1) is reduced to a global exact controllability property for the following
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linearization of equations (1) around the target solution:

(4)

∂y

∂t
− ν∆y + (ỹ · ∇)y + (y · ∇)ỹ − (B̃ · ∇)B − (B · ∇)B̃

+∇(B̃ ·B) +∇p = f + χωu in Q,

∂B

∂t
+ η curl(curl B) + (ỹ · ∇)B + (y · ∇)B̃

−(B̃ · ∇)y − (B · ∇)ỹ = P (χωv) in Q,

div y = 0, div B = 0 in Q,

y = 0, B ·N = 0, (curl B)×N = 0 on Σ,

y(·, 0) = y0, B(·, 0) = B0 in Ω.

The global exact controllability for the linear system (4) is equivalent to an
observability inequality for the following adjoint of (4):

(5)

∂z

∂t
+ ν∆z + (∇z + t∇z)ỹ

−(∇C − t∇C)B̃ +∇q = g in Q,

∂C

∂t
− η curl(curl C) + (∇C − t∇C)ỹ

−(∇z + t∇z)B̃ +∇r = G in Q,

div z = 0, div C = 0 in Q,

z = 0, C ·N = 0, (curl C)×N = 0 on Σ.

Here ∇z (for instance) is the matrix (∂zi/∂xj)
n
i,j=1 and t∇z denotes its trans-

position: t∇z = (∂zj/∂xi)
n
i,j=1. So (∇z + t∇z)ỹ signifies the product of the

square matrix ∇z + t∇z and the column matrix ỹ:

((∇z + t∇z)ỹ)i =
n∑
j=1

(
∂zi
∂xj

+
∂zj
∂xi

)
ỹj.

The needed observability inequality for equations (4) easily follows if a certain
global Carleman–type estimate for the same equations is available. So a
suitable Carleman estimate for (4) is the key tool in this approach. The
establishment of such an estimate is the most difficult step in the proof of
Theorem 1.
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The physical significance of the controllability result expressed by The-
orem 1 is however questionable because of the following reasons. First, in
the physical literature, it is always found only the MHD equations with its
magnetic part homogeneous. So we may ask ourselves what physical mean-
ing could have a control action in the right–hand side of the second equation
(magnetic part) of system (1). More than this, for the reason we have ex-
plained earlier, in the same equation we were forced to introduce the Leray
projector P . Of course, it can be viewed as one of the known quantities which
define the system to control. (We could imagine some physical device which
simulates the mathematical action of P .) But could P have physical signif-
icance in the context we have specified at all? Finally, the Leray projector
P instantly spreads the action of the localized control function χωv into the
whole region Ω. Physically, this is not too realistic. For all these reasons, it
is desirable to be able to drive the solution of the MHD equations towards
the target by acting only in the fluid part of the system.

So, instead of the controlled MHD system (1), we shall consider the fol-
lowing one:

(6)

∂y

∂t
− ν∆y + (y · ∇)y − (B · ∇)B

+∇
(

1

2
B2

)
+∇p = f + χωu in Q,

∂B

∂t
+ η curl(curl B) + (y · ∇)B − (B · ∇)y = 0 in Q,

div y = 0, div B = 0 in Q,

y = 0, B ·N = 0, (curl B)×N = 0 on Σ,

y(·, 0) = y0, B(·, 0) = B0 in Ω.

This time, as target, we take a stationary (steady state) solution (ỹ, B̃) of
the uncontrolled version of (6). So, together with some scalar function (dis-
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tribution) p̃, (ỹ, B̃) satisfies:

(7)

−ν∆ỹ + (ỹ · ∇)ỹ − (B̃ · ∇)B̃

+∇
(

1

2
B̃2

)
+∇p̃ = f in Q,

η curl(curl B̃) + (ỹ · ∇)B̃ − (B̃ · ∇)ỹ = 0 in Q,

div ỹ = 0, div B̃ = 0 in Q,

ỹ = 0, B̃ ·N = 0, (curlB̃)×N = 0 on Σ.

Following the same approach as in the case of controllability of system (1),
we expect to finally reduce the exact controllability of the MHD equations
(6) to a special observability inequality for the adjoint system (5), in which
some global weighted L2 norms of z and C are estimated in terms of a certain
local weighted L2 norm of z. In removing the local weighted L2 norm of C
from the right–hand side of an intermediate observability inequality for (5),

the coupling term (t∇C)B̃ in the first equation of system (5) turns out to

be crucial. This term can be rewritten as −(t∇B̃)C, because (t∇C)B̃ =

−(t∇B̃)C as linear functional on H. So, multiplying it by C locally (that is,
multiplying the first equation in (6) by C locally) and then integrating, one
can obtain a local weighted L2 norm of C, which is expected to absorb all
the other similar norms in the right–hand side. Assuming that the magnetic
component B̃ of the stationary target solution (ỹ, B̃) (which satisfies (7)) is
of class C1 (it may be much less regular but so we simplify the discussion),

this idea seems to work if, at some point x0 ∈ Ω, B̃ satisfies

det(t∇B̃)(x0) 6= 0.

Then the small subregion of Ω on which we can act through the control
function u (in order to reach the target) is a (or any) sufficiently small open
neighborhood ω of x0 such that

(8) det(t∇B̃) 6= 0 on ω.

The local exact controllability result for the controlled MHD equations (6)
which could be derived in this way is the main objective of this project.

The question is then how physically significant is condition (8). We may

ask whether other considerations involving the key coupling term (t∇C)B̃
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could produce the observability inequality leading to a similar controllability
result for system (6) under a suitable condition imposed (this time) on B̃

(instead of ∇B̃). The simplest idea would be to locally multiply the first
equation in (6) by a convenient first–order differential expression in C (ob-
tained by applying an appropriate first–order differential operator to C),
instead of a local multiplication by C, and then (after integration) to employ
a Poincaré–type inequality and, possibly, something like Korn’s inequality.
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[7] T. Havârneanu, C. Popa, and S.S. Sritharan, Controllability of the Equa-
tions of Fluid Dynamics, Springer-Verlag, in preparation.

[8] O.A. Ladyzhenskaya and V.A Solonnikov, Solvability of evolution prob-
lems of magnetohydrodynamics, Doklady Akad. Sci. USSR 124 (1959),
26–28.

7



[9] O.A. Ladyzhenskaya and V.A Solonnikov, Resolution of some evolution
problems of magnetohydrodynamics for a viscous incompressible fluid,
Trudy Mat. Inst. Steklov 59 (1960), 115–173.

[10] O.A. Ladyzhenskaya and V.A Solonnikov, The linearization principle
and invariant manifolds for problems of magnetohydrodynamics, Zap.
Nauch. Semin. LOMI 38 (1973), 46–93.

[11] M. Sermange and R. Temam, Some mathematical questions related to
the MHD equations, Comm. Pure Appl. Math. 36 (1983), 635–664.

2 Control and stabilization of coupled sys-

tems in fluid dynamics

Viscous incompressible flows are modelled by the well known Navier-Stokes
system. When supplementary physical effects take place, then the new model
is a coupling between Navier-Stokes system and other equations. For example
one has a coupling with Maxwell equations if one considers fluids with mag-
netic properties (one then obtains magnetohydrodynamic equations). An-
other example is the Boussinesq system where thermal effects are considered:

(1)

{
yt −∆y + (y · ∇)y +∇p = f + θe3

θt + y · ∇θ −∆θ = g

Here y is the velocity field of the fluid, θ is the temperature, f represents an
external field of forces and g is the external heat flow applied to the system.

Our main goal is the study of control problems associated to such systems
There is a vast literature concerning the analysis and the control of

Navier-Stokes, MHD, Boussinesq. We added in the bibliography a selec-
tion of papers representative for the control problems where the controllers
are localized in subdomains. What is common in the cited bibliography is
the fact that the controllers act in all the equations of the system.

We are thus interested in the study of control problems for coupled sys-
tems in fluid dynamics, with controllers acting only in a part of the equations.
For example, in the case of Boussinesq system one may want to control the
system only by heating the fluid. In this general approach we intend to
consider different problems:
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1. Approximate controllability with controllers distributed in a subdo-
main and acting only in the velocity field or only in the heat equation.

2. Feedback stabilization
3. Exact controllability

Another related field of problems is the domain of inverse problems, where
a quantity entering the system has to be determined, in an indirect way, by
knowing some extra information about the solution.

Control and inverse problems are intimately related through Carleman
inequalities which have to be deduced in an appropriate form.

In this context we are also interested in considering fluids with variable
density or compressible fluids.
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