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1. Introduction

In this paper we study the following scalar conservation law

∂tu(t, x, ω) + ∂xΨ
(
u(t, x, ω)

)
= ∂xḞ (t, x, ω) . (1)

In the above equation, x ∈ R, t ≥ 0, u(t, x, ·) is a random variable with values in
R and F is a random force. A deterministic initial data u(t0, x) = u0(x) is given.
We will always assume that u0 ∈ L∞(R). As usual the random force will not be
differentiable in the time variable, hence Ḟ denotes its formal time derivative.

∗This work was partially support by the Laboratoire Européen Associé CNRS Franco-
Roumain, Math Mode.
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The sense given to the above equation will be stated below thanks to a weak
formulation.

When all the functions Fk are null, Equation (1) is a deterministic scalar
conservation law and there exists wide literature on this subject. Remind that
in this deterministic case, the weak solution to such a problem is not unique
in general. One needs to introduce the notion of entropy solution in order to
discriminate the physical solution. Furthermore the selected solution has a nice
qualitative behavior: discontinuities that are related with the creation of shocks,
description of the behavior in terms of characteristic (see [1]). One can cite in a
non exhaustive way [2, 4, 9, 15] for didactic introduction about this wide area.

Stochastic scalar conservation laws is a topic of growing interest in the few
years. Nevertheless, there is only a few number of works on this subject. In the
paper of [8] an operator splitting method is proposed to proved the existence of
a weak solution to the Cauchy problem in R du+∂xf(u)dt = g(u)dWt. In [11] a
method of compensated-compactness is used to prove the existence of a stochas-
tic weak entropy solution to the problem du+∂xf(u)dt = g(t, x)dWt, x ∈ R. the
uniqueness s achieved thanks to a Kruzkhov-type method. A notion of strong en-
tropy solution is proposed by [5] in order to extend the above-mentioned result to
the problem du+ divf(u)dt = σ(t, u)dWt, x ∈ Rd. A stochastic scalar conserva-
tion law in a bounded domain of Rd is investigated in [18] using measure-valued
solution and Kruzkhov’s entropy formulation.

Besides this work, let us mention more precisely the work of E, Khanin, Mazel
and Sinai [3] which was the starting point of our investigation. This article deals
with the Burger’s case (that is Ψ(u) = u2/2):

∂tu(t, x, ω) + ∂x
(
u(t, x, ω)

)2 = ∂xḞ (t, x, ω) ,

with a stochastic forcing given by F (t, x, ω) =
∑∞
k=1 Fk(x)Ḃk(t) where (Bk)k≥1

are independent standard Wiener processes on the real line R (Ḃk is again desig-
nates the formal time derivative of this process). The existence and uniqueness is
proved together with the existence of an invariant measure. A parabolic pertur-
bation problem approach is considered, based on the Hopf-Cole transformation.

On the one hand, our work is a generalization of the existence and unique-
ness results contained in [3] because we work with a general conservation law
depending on the function Ψ and also because we can reach a large class of noise.
In one word since we work on each trajectory of the noise, we prove the exis-
tence and uniqueness of (1) for any noise having Hölder continuous paths. We
will also prove a Lax-Olĕınik formula using a direct approach via the Hamilton-
Jacobi equation that is naturally associated to our problem. The existence and
uniqueness result is presented in the next section in Theorem 1.

On the other hand, we generalize the existence of an invariant measure to the
case of a fractional noise that is when the sequence of independent Brownian
motion is replaced by fractional Brownian motions on the real line. There are
serious difficulties to work with fBm. First, unlike the classical Brownian motion,
the two-sided (this means defined on the all real line) fBm is not obtained by
gluing two independent copies of a one-sided (defined on R+) fBm together at
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time t = 0. Moreover, when t ≤ 0, the two-sided fBm is no more a Volterra
type process (as it is the case for the classical fBm). One refer to [10] for a more
detailed discussion on this fact. In [3], there is roughly speaking only one purely
probabilistic property of the noise that is employed. This property is the fact
that the Brownian noise is arbitrary small on an infinite number of arbitrary
long time intervals. In other words for all ε > 0, T > 0, for almost-all ω, there
exists a sequence of random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

∑
k≥1

{
‖Fk‖C2

b
(R)|Bk(s)−Bk(tn)|

}
≤ ε .

This result relies on the independence of the increments of a Brownian motion
and on Borel-Cantelli lemma. In a fractional Brownian framework the incre-
ments are no more independent. So one have to adapt this argument thanks to
a conditional version Borel-Cantelli lemma to prove an analogous property for
the trajectories of a fBm when the time goes to −∞.

In the following section, we will state our hypothesis and give the main re-
sults of our work. Section 3 is devoted to the variational principle which is used
to prove the existence and uniqueness. As regards the the calculus of variation
problem considered in Section 3, we study in Section 4 a particular class of
minimizers of the action appearing in the Lax-Olĕınik formula. These one-sided
minimizers are used to construct a unique solution of (1) defined on the time
interval R. In other words the random attractor consists of a single trajectory
almost surely. Then we prove easily the existence os an invariant solution. Fi-
nally, the proof of the oscillation property (see Theorem 2) of the fractional
Noise is given in Section 5.

2. Notations and main results

We will use the following notations:

• Crb (R) is the space of r−times differentiable bounded functions with bounded
derivatives endowed with the norm given by ‖ϕ‖Cr

b
(R) =

∑r
i=0 ‖ϕ(i)‖∞;

• for 0 < λ < 1 and −∞ < a < b < +∞, Cλ(a, b) is the space of λ-
Hölder continuous functions f : [a,b] → R, equipped with the norm
‖f‖λ := ‖f‖a,b,∞ + ‖f‖a,b,λ, where

‖f‖a,b,∞ = sup
a≤r≤b

|f(r)| and ‖f‖a,b,λ = sup
a≤r≤s≤b

|f(s)− f(r)|
|s− r|λ

;

• for two times t1, t2, H1(t1, t2) is the Sobolev space of L2(t1, t2)−weakly
differentiable functions from [t1,t2] to R equipped of the scalar product

〈ξ1,ξ2〉 =
∫ t2

t1

ξ1(s)ξ2(s)ds+
∫ t2

t1

ξ̇1(s)ξ̇2(s)ds ;

• for a function f from R→ R, we denote f∗ its Legendre transform defined
as f∗(q) = supp∈R

(
pq − f(p)

)
for q ∈ R.
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In the probabilistic framework of (Ω,F ,P), we make the following assumption
on the stochastic forcing term F .

Hypothesis I. For any t, x, the stochastic term F can be decomposed as F (t, x) =∑∞
k=1 Fk(x)Bk(t) where:

(a) the sequence (Fk)k≥1 is such that for any k, the function Fk belongs to
C3
b (R) satisfies ‖Fk‖C3

b
(R) ≤ Ck−

2+H
H .

(b) there exists λ > 0 such that the sequence of processes
(
(Bk(t))t∈(−∞,∞)

)
k≥1

satisfies Bk(·) ∈ Cλ(a, b) for any k ≥ 1, −∞ < a < b < +∞. Without
loss of generality we impose that ‖Bk‖λ ≤ C.

We remark that the processes Bk are not necessarily independent. It is quite
straightforward that the above noise term covers the one of [3] but it also covers
sequences of processes as fractional Brownian motion of any Hurst parameter.
One may assume that the Hölder norm of Bk depends on k but in this case one
have to impose additionally that

∑
k≥1 ‖Bk‖λ k−

2+H
H <∞.

The function Ψ will satisfy the following assumption.

Hypothesis II. The flux Ψ satisfies

(a) Ψ is uniformly convex: there exists θ > 0 such that Ψ′′(v) ≥ θ for all
v ∈ R,

(b) super-linear growth condition: there exists k2 > k1 > 0 and two constants
l1, l2 such that l1|v|k1 ≤ Ψ(v)

|v| ≤ l2|v|
k2 ,

(c) there exists L such that |Ψ′(v)−Ψ′(v′)| ≤ L|v − v′|,
(d) there exists a positive function R 7→ C(R) such that |Ψ∗(v) − Ψ∗(v′)| ≤

C(R)|v − v′| whenever max(|v|, |v′|) ≤ R.

We stress the fact that our assumptions Ψ are clearly true if the flux is the
square function as in the Burger’s case.

Now we give the precise meaning of (1).

Definition 1. A random field u defined on [t0,+∞) × R × Ω with real values
is a weak solution of (1) with initial condition u(t0, ·) = u0(·) ∈ L∞(R) if:

(i) For all t > t0 and x ∈ R, u(t, x, ·) is measurable with respect to Ft0,t =
σ{Bk(s), t0 ≤ s ≤ t, k ≥ 1}.

(ii) Almost surely, u(·, ·, ω) ∈ L1
loc([t0,∞)×R) and u(t, ·, ω) ∈ L∞(R) for any

t ≥ t0
(iii) For all test function ϕ ∈ C2

c (R×R) (the set of twice differentiable functions
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with compact support) the following equality holds almost-surely∫ ∞
t0

∫
R

∂ϕ(t, x)
∂t

u(t, x)dxdt+
∫ ∞
t0

∫
R

∂ϕ(t, x)
∂x

Ψ
(
u(t, x)

)
dxdt =

−
∫

R
u0(x)ϕ(t0, x)dx

−
∫

R

∞∑
k=1

{
Fk(x)

∫ ∞
t0

∂2ϕ(t, x)
∂t∂x

(Bk(t)−Bk(t0))dt
}
dx . (2)

It is well known that this notion of weak solution is not sufficient to have
uniqueness for the solution of (1) in the deterministic case. One have to introduce
the notion of admissible solution (or weak-entropy solution).

Definition 2. We say that a random field u which is a already a weak solution
of Equation (1) is an entropy-weak solution if there exists C > 0 such that for
almost-all ω ∈ Ω,

u(t, x+ z, ω)− u(t, x, ω) ≤ C
(
1 + 1

t−t0

)
z (3)

for all (t, x) ∈ (t0,∞)× R and z > 0.

The above entropy condition is the historical "condition E" as so called in
[14]. This condition will ensure us the uniqueness of bounded weak solution. It
follows from (3) that for t > t0 the function x 7→ u(t, x)− Cx is nonincreasing,
and consequently has left and right hand limits at each point. Thus also x 7→
u(t, x) has left and right hand limits at each point, with u(t, x−) ≥ u(t, x+).
In particular, this classical form of the entropy condition holds at any point of
discontinuity.

First of all, in this paper we are interested in the existence and uniqueness of
the entropy-weak solution of (1). In [3], this property is proved for the particular
case of the Burger’s equation. The authors use the standard mollification of the
Brownian noise and then obtain a variational formula as the deteministic Lax-
Olĕınik formula. Our method is slightly different because we do not use any
regularization of the noise (see Section 3).

We generalize this result for a general flux and a wide class of noise in the
following theorem.

Theorem 1. We assume Hypotheses I and II. Let u0 ∈ L∞(R). There exists
a unique entropy-weak solution to the stochastic scalar conservation law (1)
such that u(t0, x) = u0(x). For t ≥ t0, this solution is given by the following
Lax-Olĕınik type formula :

u(t, x, ω) =
∂

∂x

(
inf

ξ ∈ H1(t0, t)
ξ(t) = x

{
At0,t +

∫ ξ(t0)

0

u0(z)dz

})
, (4)
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with

At0,t(ξ) =
∫ t

t0

{
Ψ∗(ξ̇(s))−

∑
k≥1

(
Bk(s)−Bk(t0)

)
fk(ξ(s))ξ̇(s)

}
ds

+
∑
k≥1

(
Bk(t)−Bk(t0)

)
Fk(ξ(t)) . (5)

The second (and certainly the most important) contribution of our work is
the study of the invariant measure for the stochastic conservation law (1) for
the particular case of a fractional noise. There is only the work of E, Khanin,
Mazel and Sinai that deals with invariant measure for such equation and this is
in the particular case of the Burger’s equation with a Brownian noise. In order
to state the results concerning the invariant measure, we work with the following
particular noise term F .

Hypothesis III. The stochastic term F has again the decomposition F (t, x) =∑∞
k=1 Fk(x)Bk(t) with the property stated in Hypothesis I(a). Moreover the

sequence of processes
(
(Bk(t))t∈R

)
k≥1

is a sequence of independent fractional
Brownian motions (fBm in short) with Hurst parameter H ∈ (0,1). This means
that for each k, (Bk(t))t∈R is a Gaussian process satisfying Bk(0) = 0 and
E(|Bk(t)−Bk(s)|2) = |t− s|2H .

The probabilistic property of the noise that is employed to construct the
invariant measure is the fact that it has periods of arbitrary length and arbitrary
small amplitude oscillation as time goes to −∞. The result, which is interesting
in itself and new to our knowledge, is the following.

Theorem 2. For all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n ,
∑
k≥1

{
‖Fk‖C2

b
(R) sup

tn−T≤s≤r≤tn
|Bk(r)−Bk(s)|

}
≤ ε . (6)

In the Brownian case, this property is easy to prove thanks to the indepen-
dence of the increments and the classical Borel-Cantelli lemma. In the framework
of the fBm, the increments are no more independent and we naturally employ a
conditional version of Borel-Cantelli lemma to prove this path-property of the
fBm. We will additionally make use of the Garsia-Rodemich-Rumsey inequality
and Talagrand’s small ball estimate (see the proof given in Section 5).

Despite these difficulties, one can state the following results concerning the
invariant measure for the stochastic scalar conservation law with fractional forc-
ing. Let us introduce what is the precise formulation of the result.

We denote D the Skorohod space consisting of functions from R to R having
discontinuities of the first kind. It is endowed with the metric

d(f, g) =
∑
n≥1

2−n
(
1 ∨ dn(f, g)

)
where dn is the usual distance of Skorohod on [−n,n]. Hence (D,D) is a mea-
surable space with D the sigma-algebra of Borel sets on D.
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In order to construct an invariant measure, we will construct an invariant
solution. To this aim we show that for almost-all ω, there exists a solution
(t, x) 7→ u](t, x, ω) starting from u0 ≡ 0 at t0 = −∞. This solution will be build
via minimizers of the action At0,0 when t0 → −∞ (see Section 4).

More precisely we will prove that there exists u] from R × R × Ω to R such
that:

(i) almost-surely, u](t, ·, ω) ∈ L∞(R) for any t;
(ii) almost-surely, u](t, ·, ω) ∈ D for any t;
(iii) given t, the mapping ω 7→ u](t, ·, ω) is measurable from (Ω,F) to (D,D);
(iv) on any finite time interval [t1,t2], for almost-all ω, (t, x) 7→ u](t, x, ω) is a

weak solution of (1) with initial data u0(x) = u](t1, x, ω).

On the canonical space Ω = C0(R,R) the space of continuous functions vanishing
at 0, we denote θτ the shift operator on Ω with increment τ defined by θτ (ω) =
ω(· + τ) for any ω ∈ Ω. The solution operator Sτω is defined for v ∈ L∞(R) by
Sτω(v) as the solution of (1) at time τ , with initial condition v at time t0 = 0
when the realization of the noise is ω.

Now we can state the most important result of this work.

Theorem 3. On (Ω× D ; F ⊗D), the measure µ defined by

µ(dω,dv) = δu](0,·,ω)(dv) P(dω) (7)

is the unique measure that leaves invariant the (skew-product) transformation

Ω× D −→ Ω× D
(ω, v) −→ (θtω, Stω(v))

with given projection P on (Ω,F).

The proof of this result is given at the end of Section 4.

3. Variational principle

First we give a detail discussion to introduce the variational principle.

3.1. The Burger’s case

We begin with the particular case of Burgers equation when the flux is Ψ(u) =
u2/2. We recall that if we consider the one dimensional (inviscid) Burgers equa-
tion

∂tu+ ∂x

(
u2

2

)
=

∂

∂x
G(t, x) t > 0 , x ∈ R

then for an initial condition u0 having discontinuities of the first kind (i.e. u0

belongs to the Skorohod space D) there unique entropy-weak solution u is given
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by

u(t, x) =
∂

∂x

 inf
ξ ∈ C1(0, t)
ξ(t) = x

{
A0,t +

∫ ξ(0)

0

u0(z)dz

} ,

where

A0,t(ξ) =
∫ t

0

(
1
2
ξ̇(s)2 +G(t, ξ(s))

)
ds . (8)

For two times t1, t2, we have denoted C1(t1, t2) the space of continuously differ-
entiable functions from [t1,t2] to R.

This relation between the Burgers’s equation and the minimization problem
is known as Lax-Olĕınik formula (see [12, 14]) (and Hopf-Lax formula in its
original context of Hamilton-Jacobi equations). It will be fully exploited in the
study of scalar conservation law with stochastic forcing as we will see it right
now.

In the above equation we have intuitively assumed that G is a deterministic
regular force. Now the source term in the action Aτ,t is

∫ t
τ

∑
k≥1 Fk(ξ(s))dBk(s)

where the above integral is not a stochastic integral but a path-wise integral.
Indeed, since the trajectories ω → Bk(t)(ω) are ε−Hölder continuous and ξ is
differentiable,

∫ t
τ
Fk(ξ(s))dBk(s) exists as a Riemann-Stieltjes integral thanks

to a result of Young [19]. Nevertheless, to avoid the use of such integrals we use
integration by parts formula : one have with g(·) := Fk(ξ(·))∫ t

τ

g(s)dBk(s) = lim
∆→0

n∑
i=0

g(ti)(Bk(ti+1)−Bk(ti))

where the convergence holds uniformly in all finite partitions P∆ := {τ = t0 ≤
t1 ≤ ...tn+1 = t} with maxi |ti+1 − ti| < ∆. With B̄(s) := Bk(s) − B(τ) one
writes

n∑
i=0

g(ti)(Bk(ti+1)−Bk(ti)) =
n∑
i=0

g(ti)(B̄(ti+1)− B̄(ti))

= −
n∑
i=0

B̄(ti+1)
(
g(ti+1)− g(ti)

)
+

n∑
i=0

{
B̄(ti)

(
g(ti+1)− g(ti)

)
+
(
B̄(ti+1)− B̄(ti)

)
g(ti+1)

}
= −

n∑
i=0

B̄(ti+1)
(
g(ti+1)− g(ti)

)
+ B̄(t)g(t)− B̄(τ)g(τ) .

Consequently∫ t

τ

g(s)dBk(s) = −
∫ τ

t

(
Bk(s)−Bk(τ)

)
ġ(s)ds+

(
Bk(t)−Bk(τ)

)
g(t)
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and we rewrite the stochastic term of the action as∫ t

τ

∑
k≥1Fk(ξ(s))dBk(s) =−

∫ t

τ

∑
k≥1

(
Bk(s)−Bk(τ)

)
fk(ξ(s))ξ̇(s)ds

+
∑
k≥1

(
Bk(t)−Bk(τ)

)
Fk(ξ(t)) (9)

where fk = F ′k. If ξ(t) is fixed to be x, then the second term in the above equality
is independent on ξ, hence as in [3] the action is redefined as for ξ ∈ C1(τ ,t) as

Aτ,t(ξ) =
∫ t

τ

(
1
2
ξ̇(s)2 −

∑
k≥1

(
Bk(s)−Bk(τ)

)
fk(ξ(s))ξ̇(s)

)
ds

+
∑
k≥1

(
Bk(t)−Bk(τ)

)
Fk(ξ(t)) .

Remark. Since the action is defined path-wisely it depends on ω hence should
be denoted Aωτ,t. We will not do for brevity of notations.

Remark. We strength the fact that (9) is a true integration by parts that allows
us to rewrite the stochastic term and not a formal one as it was mentioned in
[3].

The Burgers case is particular because the Legendre transform of the flux
Ψ(p) = p2/2 that appears in (8) with the term 1

2 ξ̇
2 is again the half of the func-

tion square. This is no more the case when the flux is another convex function.
This term still be the Legendre transform of Ψ and these remarks motivate the
Lax-Olĕınik formula (4) with the action defined in (5).

There is another way of thinking in order to introduce the optimization prob-
lem: one can make a kind of change of variable in the variational formulation (2)
and introduce an Hamilton-Jacobi-Bellman equation (HJB equation in short).
Thus it is well known that these partial differential equation is related to a
variational principle. This is briefly discussed in the following subsection.

3.2. Redefining the action via HJB equation

Let us develop the following non rigorous arguments. Let ϕ a test function in
C2
c (R× R), thanks to an integration by parts one rewrites (2) as∫ ∞

t0

∫
R
∂tϕ(t, x)u(t, x)dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
u(t, x)

)
dxdt =

−
∫

R
u0(x)ϕ(t0, x)dx+

∫
R

∫ ∞
t0

∂tϕ(t, x)v(t, x)dtdx (10)

with F ′k = fk and

v(t, x) =
∞∑
k=1

fk(x)(Bk(t)−Bk(t0)) . (11)
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Consequently∫ ∞
t0

∫
R
∂tϕ(t, x)

[
u(t, x)− v(t, x)

]
dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
u(t, x)

)
dxdt

= −
∫

R
u0(x)ϕ(t0, x)dx

and if W is such that ∂xW = w with w = u+ v we obtain∫ ∞
t0

∫
R
∂tϕ(t, x)w(t, x)dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
w(t, x) + v(t, x)

)
dxdt

= −
∫

R
u0(x)ϕ(t0, x)dx .

Hence w is a solution of the stochastic scalar conservation law

∂tw + divxΨ(w + v) = 0

and if we integrate with respect to the space variable x this equation, we derive
the HJB equation

∂tW + Ψ(∂xW + v) = 0 .

This HJB is related to an optimization problem with an action involving the
Legendre transform of p 7→ Ψ(p+ v). Thanks to the behavior under translation
of the Legendre transformation, one have

(
Ψ(· + v)

)∗(q) = Ψ∗(q) − vq and we
obtain the same king of action that in (5).

The above remarks are now made rigorous in the following subsection.

3.3. Dynamic programming equation

First we express the action At0,t as

At0,t(ξ) =
∫ t

t0

L(s, ξ(s), ξ̇(s))ds︸ ︷︷ ︸
Ãt0,t(ξ)

+V (t, ξ(t)) with

L(s, x, p) =
(
Ψ(·+ v(s, x))

)∗(p)
= Ψ∗(p)−

∑
k≥1

(
Bk(s)−Bk(t0)

)
fk(x)× p and

V (t, x) =
∑
k≥1

(
Bk(t)−Bk(t0)

)
Fk(x) .

With U0 such that ∂xU0 = u0, we define

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{
Ãt0,t(ξ) + U0(ξ(t0))

}
. (12)
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We remark that U0(ξ(t0)) =
∫ ξ(t0)

0
u0(z)dz and

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{
At0,t(ξ)

}
− V (t, x) .

The function W will be the unique solution of an Hamilton-Jacobi-Bellman
equation. In classical calculus of variations, the left end point is fixed. This
minor modification is not difficult and do not imply any changes except in the
expression of the Hamiltonian that becomes in our case the Legendre transform
of p 7→ L(t, x, p). Since we do not know any precise reference where these changes
are discussed, we shortly prove that there exists a minimizer of the action Ãt0,t.
We recall the definition:

Definition 3. On the interval [t1,t2], we say that ξ ∈ H1(t1, t2) is a minimizer
of the action Ãt1,t2 if for any γ ∈ H1(t1, t2) with γ(t1) = ξ(t1) and γ(t2) = ξ(t2)
we have Ãt1,t2(ξ) ≤ Ãt1,t2(γ).

We prove in the following proposition that the functionW solves an Hamilton-
Jacobi-Bellman equation.

Proposition 4. The function (t, x) 7→ W (t, x) is Lipschitz continuous and
satisfies for almost-all t, x the Hamilton-Jacobi-Bellman equation

∂tW (t, x) + Ψ
(
∂xW (t, x) +

∑
k≥1fk(x)(Bk(t)−Bk(t0))

)
= 0 . (13)

Proof. We denote

BR(t1, t2) =
{
ξ ∈ H1(t1,t2) ; |ξ(t1)|+

∫ t2
t1
|ξ̇(s)|2ds ≤ R

}
which is clearly a closed and bounded subset ofH1(t1,t2), hence weakly compact.
Now we prove that there exists on BR(t0, t) one minimizer of ξ 7→ F (ξ) :=
Ãt0,t(ξ) + U0(ξ(t0)). By the weak compactness of BR(t0, t) it is sufficient that
ξ 7→ F (ξ) is lower semi-continuous. Following [6], Theorem I.9.1 we just have to
check the lower semi-continuity of the stochastic part

S(ξ) = −
∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))fk(ξ(s))ξ̇(s)ds .

Let (ξn)n≥1 a sequence of BR(t0, t) converging to ξ weakly. The weak conver-
gence on BR(t0, t) implies the uniform convergence on [t0,t]. Writing S(ξ) −
S(ξn) = S1

n + S2
n with

S1
n =

∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))
[
fk(ξn(s))− fk(ξ(s))

]
ξ̇n(s)ds

S2
n =

∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))fk(ξ(s))
[
ξ̇n(s)− ξ̇(s)

]
ds ,
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and by uniform convergence, limn S
1
n = 0. The weak convergence and the fact

that s 7→
∑
k≥1(Bk(s)−Bk(t0))fk(ξ(s)) belongs to L2(t0,t) yield limn S

2
n = 0.

Hence we have the lower semi-continuity and then there exists a minimizer
ξmin ∈ BR(t0, t) of ξ 7→ Ãt0,t(ξ) + U0(ξ(t0)). So for every t, x, there exists a
minimizer ξmin ∈ H1(t0,t) with ξmin(t) = x such that

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{
Ãt0,t(ξ) + U0(ξ(t0))

}

=
∫ t

t0

L(s, ξmin(s), ξ̇min(s))ds+ U0(ξmin(t0)) . (14)

Working with the right end-point condition ξ(t) = x in the calculus of variations
will not affect theorems I.9.2, I.9.3 and I.9.4 of [6]. Then there exists M such
that for any (t, x) and (t′, x′) in R× R,

|W (t, x)−W (t′, x′)| ≤M
(
|t− t′|+ |x− x′|

)
. (15)

The equation satisfied by W will be obtained thanks to the following version
of the dynamic programming principle. Indeed we can observe that for any
t0 ≤ r ≤ t,

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

(∫ t

r

L(s, ξ(s), ξ̇(s))ds+W (r, ξ(r))
)
.

Now let 0 < h < t − t0 and take r = t − h in the above identity. We substract
W (t, x) from both sides and we get

inf
ξ ∈ H1(t0, t)
ξ(t) = x

(
1
h

∫ t

t−h
L(s, ξ(s), ξ̇(s))ds+

1
h

(
W (t− h, ξ(t− h))−W (t, x)

))
= 0 .

When h ↓ 0, we obtain

− ∂W

∂t
(t, x) + inf

ξ ∈ H1(t0, t)
ξ(t) = x

(
L(t, x, ξ̇(t))− ∂W

∂x
(t, x)× ξ̇(t)

)
= 0

+
∂W

∂t
(t, x)− inf

q∈R

(
−q × ∂W

∂x
(t, x) + L(t, x, q)

)
= 0

+
∂W

∂t
(t, x) + sup

q∈R

(
+q × ∂W

∂x
(t, x)− L(t, x, q)

)
= 0

+
∂W

∂t
(t, x) +H

(
t, x,

∂W

∂x
(t, x)

)
= 0

where p 7→ H(t, x, p) is the Legendre transform of q 7→ L(t, x, q). Using the
behavior under translation of the Legendre transform, we have H(t, x, p) =
Ψ(p + v(t, x)) where v is defined in (11). In other words, for al t, x W satis-
fies Hamilton-Jacobi-Bellman equation (13) (also refer in the literature as the
dynamic programming equation).
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We will also need the following property.

Proposition 5. For any t, the function x 7→ W (t, x) is semi concave. More
precisely there exists a constant K such that x 7→ W (t, x) − K(1 − 1

t−t0 )x2 is
concave.

Proof. The concavity of x 7→W (t, x)−Kx2 is concave is equivalent to

W (t, x) ≥ 1
2
(
W (t, x+ h) +W (t, x− h)

)
−K

(
1 + 1

t−t0

)
× h2, ∀ x, h. (16)

Let ξmin be the minimizer of the action such that W satisfies (14) (we recall
that ξmin(t) = x). We introduce γx+h and γx−h in H1(t0, t) defined by

γx±h(s) = ξmin(s)± s− t0
t− t0

h ,

then satisfying γx±h(t) = x± h and γx±h(t0) = ξmin(t0). We calculate

∆1
x,h = W (t, x+ h) +W (t, x− h)

≤
∫ t

t0

(
L(s, γx+h(s), γ̇x+h(s)) + L(s, γx−h(s), γ̇x−h(s))

)
ds

+ U0(γx+h(t0)) + U0(γx−h(t0))

≤
∫ t

t0

(
L(s, ξmin(s), γ̇x+h(s)) + L(s, ξmin(s), γ̇x−h(s))

)
ds

+
∫ t

t0

(
L(s, γx+h(s), γ̇x+h(s))− L(s, ξmin(s), γ̇x+h(s))

)
ds

+
∫ t

t0

(
L(s, γx−h(s), γ̇x−h(s))− L(s, ξmin(s), γ̇x−h(s))

)
ds

+ 2U0(ξmin(t0))

≤ δ1
x,h + δ2

x,h + δ3
x,h + 2U0(ξmin(t0)) ,

with obvious notations. First we evaluate the term δ1
x,h we recall that since

Ψ is uniformly convex, for any real q we have Ψ′′(q) ≥ θ. Then the Legendre
transform L(s, x, p) = Ψ(·, γx+h(s)

)∗(p) satisfies (see [4, page 131])

1
2
L(s, x, p1) +

1
2
L(s, x, p2) ≤ L

(
s, x, (p1 + p2)/2)

)
+

1
8θ
|p1 − p2|2 .

Using the identities γ̇x+h + γ̇x−h = 2ξ̇min and γ̇x+h − γ̇x−h = 2h/(t − t0), we
deduce that

δ1
x,h ≤ 2

∫ t

t0

{
L
(
s, ξmin(s), (γ̇x+h(s) + γ̇x−h(s))/2

)
+ C|γ̇x+h(s)− γ̇x−h(s)|2

}
ds

≤ 2
∫ t

t0

L(s, ξmin(s), ξ̇min(s))ds+ C
h2

t− t0
.
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We finally obtain that

δ1
x,h + 2U0(ξmin(t0)) ≤ 2W (t, x) + C

h2

t− t0
.

Now we write

δ2
x,h =

∫ t

t0

∑
k≥1(Bk(s)−Bk(t0))

[
fk(γx+h(s))− fk(ξmin(s))

]
γ̇x+h(s)ds

=
∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))γ̇x+h(s)(∫ 1

0

∂xfk ((1− ν)γx+h(s)− νξmin(s)) (γx+h(s)− ξmin(s))dν
)}

ds

=
∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))

(∫ 1

0
∂xfk

(
ξmin(s) + (1− ν) s−t0t−t0 h

)
dν
)

(
ξ̇min(s) +

h

t− t0

)s− t0
t− t0

h
}
ds

and analogously it holds that

δ3
x,h =

∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))

(∫ 1

0
∂xfk

(
ξmin(s)− (1− ν) s−t0t−t0 h

)
dν
)

(
ξ̇min(s)− h

t− t0

)s− t0
t− t0

(−h)
}
ds .

We compute the sum

δ2
x,h + δ3

x,h

=
∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))h

2(s−t0)
t−t0(∫ 1

0

[
∂xfk

(
ξmin(s) + (1− ν) s−t0t−t0 h

)
+ ∂xfk

(
ξmin(s)− (1− ν) s−t0t−t0 h

)]
dν
)}
ds

+
∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))h(s−t0)

t−t0 ξ̇min(s)(∫ 1

0

[
∂xfk

(
ξmin(s) + (1− ν) s−t0t−t0 h

)
− ∂xfk

(
ξmin(s)− (1− ν) s−t0t−t0 h

)]
dν
)}
ds

and using hypothesis I and the identity∫ 1

0

[
∂xfk

(
ξmin(s) + (1− ν)

s− t0
t− t0

h

)
− ∂xfk

(
ξmin(s)− (1− ν)

s− t0
t− t0

h

)]
dν

=
∫ 1

0

∫ 1

0

∂2
xfk

(
ξmin(s) + (1− 2µ)(1− ν)

s− t0
t− t0

h

)
dµ 2(1− ν)

s− t0
t− t0

h dµ
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we deduce that

δ2
x,h + δ3

x,h ≤ 2(t− t0)λ+1
∑
k≥1

‖∂xfk‖∞‖Bk‖t0,t,λ × h2

+ (t− t0)λ
∑
k≥1

‖∂2
xfk‖∞‖Bk‖t0,t,λ × h2 × ‖ξmin‖H1(t0,t)

≤ C × h2 .

As a conclusion we obtain (16).

Remark. By Alexandrov’s theorem (see Appendix E in [6]), x 7→ W (t, x) is
almost everywhere twice differentiable.

3.4. Proof of Theorem 1

Now the proof of existence and uniqueness of the solution of (1).

Existence: Our candidate is u = ∂xW + v with W defined in (12) and v
defined by (11). It is clearly adapted. Hypothesis I implies that v(t, ·) ∈ L∞(R)
and the Lipschitz property (15) for W imply that (ii) in definition 1 holds true.

We prove the variational formulation. Let ϕ be a test function in C2
c (R×R).

We integrate the HJB equation (13) against ∂xϕ and we integrate by parts in
order to obtain :

−
∫ ∞
t0

∫
R

Ψ
(
∂xW (t, x) + v(t, x)

)
∂xϕ(t, x)dxdt =

∫ ∞
t0

∫
R
∂sW (t, x)∂xϕ(t, x)dxdt

= −
∫

R
W0(x)∂xϕ(t0, x)dx+

∫ ∞
t0

∫
R
∂xW (t, x)∂tϕ(t, x)dxdt .

We have ∂xW0(x) = ∂xW (t0, x) = u(t0, x) + v(t0, x) = u0(x). By another inte-
gration by parts one obtains (10) that is an equivalent form of (2).

The entropy condition (3) is a consequence of the semi concavity of W (see
proposition 5). Indeed, the concavity of x 7→ W (t, x) − Kx2 implies that its
derivative is is a decreasing function. Then for any z > 0,

∂xW (t, x+ z)− 2K(x+ z) ≤ ∂xW (t, x)− 2Kx .

Moreover it holds that ‖∂xv(t, .)‖∞ ≤ (t − t0)λ
∑
k≥1 ‖∂xfk‖∞‖Bk‖t,t0,λ := C

and consequently x 7→ v(t, x)− 2C x is a decreasing function and for any z > 0,

v(t, x+ z)− 2C(x+ z) ≤ v(t, x)− 2Cx .

The two above inequalities imply that u = ∂xW + v satisfies Olĕınik’s entropy
condition (3).

Uniqueness: Since the random force in Equation (1) does not depend on u,
the uniqueness is given by classical arguments as in Theorem 3 in [4].
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4. Action minimizers and generalized characteristics

In order to construct an invariant measure for the stochastic scalar conservation
law (1), we will construct an invariant solution. To do this we will use minimizers
of the action Aτ,t defined for a piecewise regular curve ξ with ξ(t) = x as:

Aτ,t(ξ) =
∫ t

τ

Ψ∗(ξ̇(s))−
∑
k≥1(Bk(s)−Bk(τ))fk(ξ(s))ξ̇(s)ds

+
∑
k≥1(Bk(t)−Bk(τ))Fk(ξ(t))

with t0 → −∞. Using (9), of any path η ∈ C1(s, t) can be expressed as

As,t(η) =
∫ t

s

Ψ∗(η̇(r))dr +
∫ t

s

∑
k≥1Fk(η(r))dBk(r).

Hence the action is additive with respect to C1 curves.
As in [3], the fundamental object is the one-sided minimizer defined as follows.

Definition 4. Let t ∈ R. A piecewise C1 curve ξ: ]−∞,t]→ R is a one-sided
minimizer if

(i) for any ξ̃ ∈ H1(−∞,t) such that ξ̃(t) = ξ(t) and ξ̃ = ξ on ] − ∞,τ ] for
some τ < t, it holds that As,t(ξ) ≤ As,t(ξ̃) for any s ≤ τ ;

(ii) for any s ≤ t, |ξ(s)− ξ(t)| ≤ 1.

Most of the properties of these one-sided minimizers are quite basic facts
proves in [3]. Nevertheless we will give precisions as regard to the fact that
we work with a general convex flux instead of the square function used in the
Burger’s case. We strength the fact that we choose a slightly different definition
of one sided-minimizer (we impose the boundedness when the value ξ(t) is fixed)
because we do not work on the torus as in [3] but on R.

4.1. Euler-Lagrange equations and properties of the action
minimizers

We begin our study on a finite time interval [t1,t2]. We prove that

• a minimizer of the action satisfies an Euler-Lagrange equation and is a
regular curve (Lemma 6),

• there exists effectively a unique solution to such an equation (Lemma 7),
• we give estimation on the velocities of such a minimizer (Lemma 8).

All these facts are true for all ω ∈ Ω or in other words, we still work on each
trajectories of the noise term. For any times t1, t2 and any x1, x2 ∈ R, we denote

Ht1,t2x1,x2
=
{
ξ ∈ H1(t1, t2) ; ξ(t1) = x1 , ξ(t2) = x2

}
.

We have the following lemma in which we give the Euler-Lagrange equations
satisfied by the minimizers.
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Lemma 6. If γ is a minimizer of A on [t1,t2], that is

At1,t2(γ) = inf
ξ∈Ht1,t2x1,x2

{∫ t2

t1

Ψ∗(ξ̇(s))−
∑
k≥1(Bk(s)−Bk(t1))fk(ξ(s))ξ̇(s)ds

+
∑
k≥1(Bk(t2)−Bk(t1))Fk(ξ(t2))

}
then γ̇ ∈ C1(t1,t2) satisfies for t1 ≤ r ≤ s ≤ t2

(Ψ∗)′(γ̇(s))− (Ψ∗)′(γ̇(r)) =
∫ s

r

∑
k≥1fk(γ(τ))dBk(τ) . (17)

Proof. Since γ minimizes the functional At1,t2 , we have for any ξ ∈ Ht1,t2x1,x2
,

ε 7→ d
dεAt1,t2(γ + εξ) equals 0 in ε = 0. This yields

0 =
∫ t2

t1

[
(Ψ∗)′(γ̇)(s)ξ̇(s)−

∑
k≥1(Bk(s)−Bk(t1))

(
f ′k(γ)γ̇ξ + fk(γ)ξ̇

)
(s)
]
ds

+
∑
k≥1(Bk(t2)−Bk(t1))fk(γ(t2))ξ(t2) .

For t1 < τ1 ≤ τ2 < t2, we write this identity with ξn defined as

ξn(s) = 0× 11[t1,τ1]∪[τ2,t2](s) + n
(
s− (τ1 − 1/n)

)
11[τ1−1/n,τ1](s)

+11[τ1,τ2](s) + n
(
− s+ (τ2 + 1/n)

)
11[τ2,τ2+1/n](s).

We obtain∫ τ2+1/n

τ2

n(Ψ∗)′(γ̇(s))ds−
∫ τ1

τ1−1/n

n(Ψ∗)′(γ̇(s))ds =

−
∫ τ2

τ1

∑
k≥1(Bk(s)−Bk(t1))f ′k(γ(s))γ̇(s)ds

−
∫ τ1

τ1−1/n

∑
k≥1(Bk(s)−Bk(t1))(f ′k(γ)γ̇ξn)(s)ds

−
∫ τ1

τ1−1/n

n
∑
k≥1(Bk(s)−Bk(t1))fk(γ(s))ds

−
∫ τ2+1/n

τ2

∑
k≥1(Bk(s)−Bk(t1))(f ′k(γ)γ̇ξn)(s)ds

+
∫ τ2+1/n

τ2

n
∑
k≥1(Bk(s)−Bk(t1))fk(γ(s))ds .

We remark that supn ‖ξn‖∞ ≤ c and easy arguments allow us to let n goes to
infinity. Hence

(Ψ∗)′(γ̇(τ2))− (Ψ∗)′(γ̇(τ1)) =−
∫ τ2

τ1

∑
k≥1(Bk(s)−Bk(t1))f ′k(γ(s))γ̇(s)ds

+
∑
k≥1(Bk(τ2)−Bk(t1))fk(γ(τ2))−

∑
k≥1(Bk(τ1)−Bk(t1))fk(γ(τ1))
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that implies that τ 7→ (Ψ∗)′(γ̇(τ)) is continuous and since (Ψ∗)′ = (Ψ′)−1,
τ 7→ γ̇(τ) is also continuous. Consequently, and with g(s) =

∑
k≥1(Bk(s) −

Bk(t1))f ′k(γ(s))γ̇(s) and the integration by parts formula 9 one may write

(Ψ∗)′(γ̇(τ2))− (Ψ∗)′(γ̇(τ1))

= −
∫ τ2

t1

g(s)ds+ g(τ2)− g(t1)−
(
−
∫ τ1

t1

g(s)ds+ g(τ1)− g(t1)
)

=
∫ τ2

t1

∑
k≥1fk(γ(s))dBk(s)−

∫ τ1

t1

∑
k≥1fk(γ(s))dBk(s)

=
∫ τ2

τ1

∑
k≥1fk(γ(s))dBk(s) .

By continuity of τ 7→
∫ τ
t1

∑
k≥1fk(γ(s))dBk(s) (see Prop. 4.4.1 in [20]), the above

formula is also true for τ1 = t1 and τ2 = t2. Then the formula (17) is true and
γ ∈ C1(t1,t2).

Remark. Any action minimizer γ satisfies the following Euler-Lagrange equa-
tion: {

γ̇(s) = Ψ′(v(s))
dv(s) =

∑
k≥1fk(γ(τ))dBk(τ) (18)

This Euler-Lagrange equation can be formally deduced from the following com-
putation. If we want to find two curves γ and v such that v(t) = u(t, γ(t)),
then

dv(t) = ∂tu(t, γ(t)) + ∂xu(t, γ(t))γ̇(t).

With γ̇(t) = Ψ′(u(t, γ(t))) (or equivalently v(t) = (Ψ′)−1(γ̇(t))), together with
(1) one writes

dv(t) = ∂tu(t, γ(t)) + ∂xΨ(u(t, γ(t))),

and we obtain (18). The curve γ is a generalized characteristic in the sense of
Dafermos (see [1]).

Remark. The equation (18) is a generalization of the Euler-Lagrange equation
(2.3) in [3] obtained for Ψ(z) = z2/2:{

γ̇(s) = v(s)
dv(s) =

∑
k≥1fk(γ(τ))dBk(τ).

For sake of completeness we state in the following Lemma that there exists
a unique solution to the Euler-Lagrange system of equations.

Lemma 7. Let two times T < τ0 be fixed and ξ0 and v0 are two given real
numbers. There exists a unique solution ξ ∈ C1(T ,τ0) to the Euler-Lagrange
equation (18)

ξ̇(s) = Ψ′(v(s))

v(s) = v(τ0) +
∫ τ0

s

∑
k≥1fk(ξ(r))dBk(r) T ≤ s ≤ τ0 (19)
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such that ξ(τ0) = ξ0 and ξ̇(τ0) = Ψ′(v0) with the initial condition (ξ(τ0),ξ̇(τ0)) =
(ξ0,Ψ′(v0)).

Proof. Let T < t < τ0. We denote

KB,F
T,τ0

=
∑
k≥1

‖Fk‖C3

{
sup

T≤t1≤t2≤τ0
|Bk(t1)−Bk(t2)|

}
.

The operator L : C1(t,τ0)→ C1(t,τ0) is defined by
˙L(ξ) = Ψ′(v)

v(s) = v(τ0)−
∫ τ0
s

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(ξ(r))ξ̇(r)dr

+
∑
k≥1

(
Bk(τ0)−Bk(s)

)
fk(ξ(τ0))

with L(ξ)(τ0) = ξ(τ0) and ˙L(ξ)(τ0) = Ψ′(v0) = ξ̇(τ0). We have

‖ ˙L(ξ)‖t,τ0,∞ ≤ |Ψ′(v(τ0))|+ ‖Ψ′(v)−Ψ′(v(τ0))‖t,τ0,∞
≤ |ξ̇(τ0)|+ L‖v − v(τ0)‖t,τ0,∞
≤ |ξ̇(τ0)|+ L(τ0 − T )λKB,F

T,τ0

(
(τ0 − T )‖ξ̇‖t,τ0,∞ + 1

)
and since L(ξ)(s) = ξ(τ0) +

∫ τ0
s

˙L(ξ)(r)dr we may write

‖L(ξ)‖t,τ0,∞ ≤ |ξ(τ0)|+ CT,τ0(τ0 − t)
(
1 + ‖ξ̇‖t,τ0,∞

)
.

Consequently ‖L(ξ)‖C1(t,τ0) ≤ |ξ0|+ |Ψ′(v0)|+C(τ0− t)(1+‖ξ̇‖C1(t,τ0)) and the
operator L satisfies L(B0) ⊆ B0 with

B0 = {ξ ∈ C1(t, τ0) : ‖ξ‖C1(t,τ0) ≤ 2(1 + |ξ0|+ |Ψ′(v0)|)}

provided that t is small enough to ensure that C(t− τ0) ≤ 1/2. Let ξ1, ξ2 ∈ B0

and vi = (Ψ′)−1(ξ̇i) for i = 1, 2. Thanks to the following identity

v1(s)− v2(s) =−
∫ τ0

s

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(ξ1(r))

[
ξ̇1(r)− ξ̇2(r)

]
dr

−
∫ τ0

s

∑
k≥1

(
Bk(r)−Bk(s)

)[
f ′k(ξ1(r))− f ′k(ξ2(r))

]
ξ̇2(r)

We can easily prove that

‖L(ξ1)− L(ξ2)‖C1(t,τ0) ≤ C(τ0 − t)‖ξ1 − ξ2‖C1(t,τ0) .

Hence L is a contraction on B0 (with t eventually smaller) and there exists
ξ ∈ B0 such that L(ξ) = ξ and then there exists a unique solution in C1(t, τ0) to
the euler-Lagrange equations (19) for short time. By a concatenation argument,
the existence and uniqueness is extended to C1(T, τ0) for any T < τ0.
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The following lemma gives a key estimation on the velocities of the charac-
teristics. This will play a central role in our further investigations.

We recall that Ψ′ is Lipschitz (Hypothesis II(a)) and the Legendre transform
of Ψ satisfies also the linear growth condition c1|v|1+α ≤ |Ψ∗(v)| ≤ c2|v|1+β

with α = 1/k2, β = 1/k1 and and two positive constants c3 and c4 different
from those in Hypothsesis II(b)).

Lemma 8. If γ is a minimizer of the action A on the time interval [t1,t2] with
γ(t1) = x1, γ(t2) = x2 and t2 − t1 ≥ 1, then there exists a constant c such that

‖γ̇‖t1,t2,∞ ≤ c Ct1,t2

+
(

(t2 − t1)
−1
1+α + Ct1,t2(t2 − t1)

α
1+α

)
(x2 − x1)

1+β
1+α

+
(

(t2 − t1)
−1
1+α + Ct1,t2(t2 − t1)

α
1+α

)(
C

1
1+α
t1,t2 + C

1
α
t1,t2(t2 − t1)

1
1+α

)
(20)

with Ct1,t2 =
∑
k≥1 ‖Fk‖C2

{
supt1≤r≤r′≤t2 |Bk(r)−Bk(r′)|

}
.

Proof. Let t1 ≤ t ≤ t2 and s be such that |γ̇(s)| = infr∈[t1,t2] |γ̇(r)|. Writing
γ̇(t) = (Ψ′ ◦ (Ψ′)−1)(γ̇(t))− (Ψ′ ◦ (Ψ′)−1)(γ̇(s)) + γ̇(s), we have

|γ̇(t)| ≤ L
∣∣∣(Ψ′)−1(γ̇(t))− (Ψ′)−1(γ̇(s))

∣∣∣+ |γ̇(s)|

≤ L×∆s,t +
‖γ̇‖L1(t1,t2)

t2 − t1
,

with

∆s,t =
∣∣∣(Ψ′)−1(γ̇(t))− (Ψ′)−1(γ̇(s))

∣∣∣
= −

∫ t

s

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(γ(r))γ̇(r)dr

+
∑
k≥1

(
Bk(t)−Bk(s)

)
fk(γ(t))

≤ Ct1,t2 + Ct1,t2‖γ̇‖L1(t1,t2) .

Consequently,

|γ̇(t)| ≤ Ct1,t2L+ (Ct1,t2L+ 1/(t2 − t1)) ‖γ̇‖L1(t1,t2) . (21)

Now we estimate the L1 norm of γ̇. We recall that c1|v|1+α ≤ |Ψ∗(v)|. By
Young’s inequality ab ≤ (c1/2) a1+α + c b(1+α)/α and Jensen’s inequality we
obtain∫ t2

t1

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(γ(r))γ̇(r)dr

≤ c (t2 − t1)C(1+α)/α
t1,t2 +

c1
2

∫ t2

t1

|γ̇(s)|1+αds .
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Since γ is a minimizer,

At1,t2(γ) =
∫ t2

t1

Ψ∗(γ̇(s))−
∑
k≥1(Bk(s)−Bk(t1))fk(γ(s))γ̇(s)ds

+
∑
k≥1(Bk(t2)−Bk(t1))Fk(γ(t2))

and

c1
2

∫ t2

t1

|γ̇(s)|1+αds ≤ At1,t2(γ) + c (t2 − t1) C(1+α)/α
t1,t2 + Ct1,t2 . (22)

By the minimization property of γ,At1,t2(γ) ≤ At1,t2(ξ) with the curve ξ defined
by ξ(s) = x1 + (s− t1)/(t2 − t1)× (x2 − x1). Using |Ψ∗(v)| ≤ c2|v|1+β we may
write

At1,t2(γ) ≤ c Ct1,t2 + c
(x2 − x1)1+β

(t2 − t1)β
≤ c ((x2 − x1)1+β + Ct1,t2)

where we used the fact that t2 − t1 ≥ 1. We report the above inequality in (22)
and we get that∫ t2

t1

|γ̇(s)|1+αds ≤ c
(

(x2 − x1)1+β + Ct1,t2 + C
(1+α)/α
t1,t2 (t2 − t1)

)
.

Since ‖γ̇‖L1(t1,t2) ≤ (t2 − t1)α/(1+α)‖γ̇‖L1+α(t1,t2), with (21) we obtain

|γ̇(t)| ≤ c Ct1,t2 + c

(
Ct1,t2 +

1
t2 − t1

)
(t2 − t1)α/(1+α)

×
(

(x2 − x1)1+β + Ct1,t2 + C
(1+α)/α
t1,t2 (t2 − t1)

)1/(1+α)

and using the inequality (1 + x)a ≤ 1 + xa when a < 1 and x ≥ 0 we obtain
(20).

4.2. Existence and uniqueness of one-sided minimizers

The following proposition establishes the existence of a one-sided minimizer. It
is a short rewriting of the one contained in [3] that takes care of the fact that
we do not work on the torus.

Proposition 9. For every x ∈ R and t ∈ R, there exists a one-sided minimizer
γ such that γ(t) = x.

Proof. Let n be an integer such that −n < t and γn a minimizer of A−n,t satis-
fying γn(t) = x, γn(−n) = x+1 and sup−n≤s≤t |γn(s)−x| ≤ 1. As regards to the
proof of Proposition 4 such a γn exists. For −n < s < t we have ‖γ̇n‖s,t,∞ ≤ K
by Lemma 8, where K depends on s and t but do not depend on x. Hence, up
to a subsequence, there exists γ ∈ H1(s, t) such that limn→∞ γn = γ in C(s, t)
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and limn→∞ γ̇n = γ̇ weakly in L2(s, t). From the Euler-Lagrange equation (19)
it follows that limn→∞ γn = γ in C1(s, t) (after a new extraction of a subse-
quence). A diagonal process implies that there exists γ ∈ C1(−∞, t) such that
limn→∞ γn = γ for the C1 convergence on any compact of ]−∞,t].

It remains to prove that γ is a one-sided minimizer. By construction, (ii) in
Definition 4 is satisfied. Let a curve ξ ∈ H1(−∞,t) with ξ(t) = x and ξ = γ
on ] −∞,τ ] for some τ . Without loss of generality we can take ξ ∈ C1(−∞, t)
because the action can be strictly decreased by smoothing a curve containing
corners (see Fact 2 page 885 in [3]). Fix s ≤ τ and let (ξn)n≥1 a sequence in
C1(s, t) such that ξn(s) = γn(s), ξn(t) = x and limn→∞ ξn = ξ in C1(s, t). We
have limn→∞ ξn(s) = limn→∞ γn(s) = γ(s) = ξ(s). Using Hypothesis I(d) we
obtain∣∣As,t(ξ)−As,t(ξn)

∣∣ ≤ ∫ t

s

|Ψ∗(ξ̇(r))−Ψ∗(ξ̇n(r))|dr

+
∫ t

s

∣∣∣∑k≥1(Bk(r)−Bk(s))fk(ξn(r))
(
ξ̇(r)− ξ̇n(r)

)∣∣∣ dr
+
∫ t

s

∣∣∣∑k≥1(Bk(r)−Bk(s))
(
fk(ξ(r))− fk(ξn(r))

)
ξ̇(r)

∣∣∣ dr
+
∣∣∣∑k≥1(Bk(t)−Bk(s))

(
Fk(ξn(t))− Fk(ξ(t))

)∣∣∣
≤ (C(R) + Cs,t) ‖ξ̇ − ξ̇n‖L1(s,t) + Cs,t ‖ξ̇‖L2(s,t) ‖ξ − ξn‖L2(s,t)

with Cs,t =
∑
k≥1 ‖Fk‖C2

{
supt1≤r≤r′≤t2 |Bk(r)−Bk(r′)|

}
is defined as in Lemma

8 and R is such that ‖ξ̇‖s,t,∞ ∨
(

supn≥1 ‖ξ̇n‖s,t,∞
)
≤ R. The above estimation

implies limn→∞As,t(ξn) = As,t(ξ). Moreover

|As,t(γ)−As,t(γn)| ≤ C ‖γ − γn‖C1(s,t) −−−−→
n→∞

0 ,

with C depending on ‖γ‖C1(s,t) and for −n ≤ s, As,t(γn) ≤ As,t(ξn) because
γn is a minimizer of A−n,t. Therefore

As,t(γ) = lim
n→∞

As,t(γn) ≤ lim
n→∞

As,t(ξn) = As,t(ξ) .

We conclude that γ is a one-sided minimizer.

4.3. Intersection of one-sided minimizers

It is a classical fact that two different one-sided minimizers γ1 ∈ C1(−∞, t1) and
γ2 ∈ C1(−∞, t2) with the same end γ1(t1) = γ2(t2) cannot intersect each other
more than once (see [3, Lemma 3.2]). So if two one-sided minimizers intersect
more than once, they coincide on their common interval of definition.

Now we will use for the first time the randomness of the force. More precisely
since our force is random, it can be proved that two minimizers have an effective
intersection at −∞. We will use Theorem 2 stating that the fractional Brownian
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noise is arbitrary small on an infinite number of arbitrary long time intervals.
In other words for all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

∑
k≥1

{
‖Fk‖C2

b
(R)|Bk(s)−Bk(tn)|

}
≤ ε .

We can state the following proposition which is contained in [3].

Proposition 10. For almost-all ω, for any distinct one-sided minimizers γ1

and γ2 on ]−∞, t1] and ]−∞, t2] respectively the following result holds. Assume
that γ1 and γ2 intersect at time t in a point x, then t1 = t2 = t and γ1(t1) =
γ2(t2) = x.

The proof of this result is exactly the same that the proof of Theorem 3.2
in [3] so we do not repeat it. Nevertheless, it is based on [3, Lemma 3.3] that
we recall and briefly prove because there are minor modification due to our
fractional noise.

Lemma 11. Almost-surely, for any ε > 0 and any two one-sided minimizers
γ1 ∈ C1(−∞, t1) and γ2 ∈ C1(−∞, t2), there exists T = T (ε) and a sequence of
random times tn = tn(ω, ε)→ −∞ such that

|Atn−T,tn(γi)−Atn−T,tn(ζ)| < ε , for i = 1, 2 and ζ ∈ {γ̂1γ2,γ̂2γ1}

where γ̂1γ2 and γ̂2γ1 are reconnecting curves defined by

γ̂1γ2(s) = tn−s
T γ1(s)− tn−T−s

T γ2(s)

γ̂2γ1(s) = tn−s
T γ2(s)− tn−T−s

T γ1(s) .

Proof. For T sufficiently large, we use (6) (which is recalled above) in order to
find a sequence of random time (tn)n≥1 such that limn→∞ tn = −∞ and

∀ n , Ctn−T,tn = sup
tn−T≤s≤tn

∑
k≥1

{
‖Fk‖C2

b
(R)|Bk(s)−Bk(tn)|

}
≤ 1
T
, (23)

where the notation Ctn−T,tn comes from (20) of Lemma 8.
Now we make the following remark. If a curve γ minimizes the action on the

interval [s,t] in the sense of Lemma 6, then for any s < r < t, its restriction
on [s,r] will minimize the action with respect to curves in H1(s, r) having the
same ends as γ at s and r. Indeed suppose that there a minimizer ξ 6= γ on
[s, r] that such that As,r(ξ) = As,r(γ)− ε. Using (9), the action can be written
using a true pathwise integral with respect to the noise, so the action of any
path η ∈ C1(s, t) is expressed as

As,t(η) =
∫ t

s

Ψ∗(η̇(s))ds+
∫ t

s

∑
k≥1Fk(η(s))dBk(s)

so the action is additive with respect to C1 curves. Considering the curve ξ̂γr,t
obtained by gluing the path ξ to the restriction of γ on [r,t], we observe that

As,t(ξ̂γr,t) = As,r(γ)− ε+Ar,t(γ) = As,t(γ)− ε < As,t(γ)
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that contradicts the fact that γ is a minimizer on [s,t].
Therefore, the one-sided minimizers γi are minimizers on each time interval

[tn − T ,tn] and we may apply Lemma 8 in order to obtain thanks to (23) that
for any n

sup
tn−T≤s≤tn

|γ̇i(s)| ≤
c

T
+ 2 c

(
T−

1
1+α + T−

2
1+α + T−

1
α

)
≤ c̃

T 1/(1+α)
.

Consequently, for ζ ∈ {γ̂1γ2,γ̂2γ1} we have ‖ζ̇‖tn−T,tn,∞ ≤ 2c̃
T 1/(1+α) . Using

|Ψ∗(v)| ≤ c2|v|1+β and (23) we then compute

|Atn−T,tn(γi)−Atn−T,tn(ζ)|

≤
∫ tn

tn−T

∣∣∣Ψ∗(γ̇i(s))−Ψ∗(ζ̇(s))
∣∣∣ ds

+
∫ tn

tn−T

∣∣∣∑k≥1(Bk(s)−Bk(tn − T ))fk(ζ)
(
γ̇i(s)− ζ̇(s)

)∣∣∣ ds
+
∫ tn

tn−T

∣∣∣∑k≥1(Bk(s)−Bk(tn − T ))
(
fk(γi(s))− fk(ζ(s))

)
γ̇i(s)

∣∣∣ ds
+
∣∣∣∑k≥1(Bk(tn)−Bk(tn − T ))

(
Fk(ζ(tn))− Fk(γi(tn))

)∣∣∣
≤ C

(
2 T

T
1+β
1+α

+ T
4 Ctn−T,tn
T 1/(1+α)

+ 2 Ctn−T,tn

)
≤ C

(
2

T
β−α
1+α

+
4

T 1/(1+α)
+

2
T

)
. (24)

where C is a numerical constant. The result follows by choosing T such that the
right hand side of (24) is less than ε.

4.4. Invariant measure: existence and uniqueness (proof of
Theorem 3)

In this subsection, we prove Theorem 3. First we construct the invariant solution
u]. We denote Mt,x the family of all one-sided minimizers with end x at time
t. We define

u](t, x, ω) = inf
γ∈Mt,x

γ̇(t) . (25)

Proposition 10 implies an important property of one-sided minimizers. To any
x ∈ R such that the cardinal ofMt,x is at least 2 (this means that more than
one one-sided minimizer comes to x at time t), there corresponds a non-trivial
segment I(x) = [γ1(t − T ),γ2(t − T )], where γ1 < γ2 on ] −∞,t] because two
different one-sided minimizers can not intersect each other more than once. Then



B. Saussereau and L. Stoica/SCL with fractional stochastic forcing 25

the segments I(x) are mutually disjoint. Consequently, for almost-all ω, the set
of x ∈ R with more than one one-sided minimizer is coming to x at time t is
at most countable. This is the key point to prove that u](t, ·, ω) ∈ D (see [3,
Lemma 3.8]).

The fact that u] ∈ L∞(R) is a trivial consequence of Lemma 8. The measur-
ability issues can be treated as in [3, Lemma 3.9].

The fact that on any finite time interval [t1,t2], for almost-all ω, (t, x) 7→
u](t, x, ω) is a weak solution of (1) with initial data u0(x) = u](t1, x, ω) is
obtained by construction of u]. Hence Stωδu](0,·,ω) = δu](0,·,θtω) = δu](t,·,ω). Thus
the measure µ defined in Theorem 3 is invariant.

It only remains to prove the uniqueness. This is also done in the proof of the
Theorem 4.2 in [3]. Let us give few details. for λ another invariant measure, we
denote λω its projection on Ω in such a way that we may write that λ(dω, dv) =∫

Ω
λω(dv)P(dω). The invariance of λ implies that there exists a subset D of

D such that λ(Dc) = 0 and with the property that for any v ∈ D and any
n ∈ N, there exists vn such that H−n(vn) = v where the operator Ht maps the
solution of (1) at a negative time t to this solution at time 0. By repeating the
end of the proof of Proposition 9, one can prove that if a solution of (1) can
be extended to arbitrary negative times, this solution coincides with u] at time
t = 0 for almost-all x (because the set of x ∈ R with more than one one-sided
minimizer is coming to x at time 0 is at most countable). Hence v(x) = u](0, x)
almost-everywhere and λω(dv) = δu](0,·,ω)(dv) so we have uniqueness.

5. An asymptotic property of fBm: proof of Theorem 2

The paper [3] essentially uses the fact that the Brownian motion has periods of
arbitrary length and arbitrary small amplitude oscillation as time goes to −∞.
In this section, we will prove that a similar property holds for the fBm defined
on the all real line (−∞,+∞). The result stated in Theorem 2 is recalled below.

Theorem 2: For all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n ,
∑
k≥1

{
‖Fk‖C2

b
(R) sup

tn−T≤s≤r≤tn
|Bk(r)−Bk(s)|

}
≤ ε .

Before proving this theorem, we will recall and prove some basic facts about
the fBm defined on the real line R. We first give the moving average represen-
tation of the fBm (B(t))t∈R. For s, t ∈ R, we define

ft(s) = cH

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
with

cH =
(∫ ∞

0

(
(1 + s)H−

1
2 − s 1

2

)2

ds+
1

2H

)− 1
2

.
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Notice that
∫

R f
2
t (s)ds <∞ and more precisely, if H 6= 1/2, s 7→ ft(s) behaves

like (−s)H−3/2 when s → −∞ which is square integrable at −∞. With these
notations, the fBm can be written as

B(t) =
∫

R
ft(s)dWs

where the process (Wt)t∈R is a two sided classical Brownian motion which is ob-
tained by gluing two independent copies of one sided Brownian motions together
at time t = 0.

Since we are interested in the oscillations of the fBm, we express its increments
for t < t′ < 0 as

B(t)−B(t′) =
∫

R
cH

{
(t− r)H−

1
2

+ − (t′ − r)H−
1
2

+

}
dWr

=
∫ t

−∞
cH

{
(t− r)H− 1

2 − (t′ − r)H− 1
2

}
dWr +

∫ t′

t

cH(t′ − r)H− 1
2 dWr

=
∫

R
gt,t′(r)dWr

where

gt,t′(r) = cH

{
(t− r)H− 1

2 − (t′ − r)H− 1
2

}
11]−∞,t](r) + cH(t′ − r)H− 1

2 11[t,t′](r) .

Let Fs the sigma-algebra generated by the family of random variables {B(r);−
∞ < r ≤ s}. We remark that for s ≤ 0, Fs ⊆ σ {Wr;−∞ < r ≤ s} := FW−∞,s.
Then we deduce the following expression: for any −∞ < s ≤ t ≤ t′ ≤ 0

E(B(t)−B(t′)|Fs) = E
[∫ s

−∞
cH

{
(t− r)H− 1

2 − (t′ − r)H− 1
2

}
dWr

∣∣∣∣Fs] .

(26)

The proof of Theorem 2 is based on the following reversed conditional Borel-
Cantelli’s lemma.

Lemma 12. Let (Fn)n≥1 be a decreasing sequence of σ−fields and (An)n≥1a
sequence of events such that An ∈ Fn. Then the events∑

k≥1

11Ak <∞

 and

∑
k≥1

E (1Ak |Fk+1) <∞


are almost-surely equal.

Proof. LetMn = 11An−E(11An |Fn+1). We have E(Mn|Fn+1) = 0 so (Mn)n≥1 is a
reversed martingale difference sequence. Thus

∑
k≥1 E(M2

k |Fk+1) < ∞ implies
that

∑
k≥1Mk is convergent almost-surely (see Stout [16, Theorem 2.8.7]). We
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have

E(M2
k |Fk+1) = E(112Ak |Fk+1)− (E(11Ak |Fk+1))2

= E(11Ak |Fk+1)
[
1− E(11Ak |Fk+1)

]
≤ E(11Ak |Fk+1) .

Hence
∑
k≥1Mk is almost surely convergent and since

∑
k≥1Mk =

∑
k≥1 11Ak −∑

k≥1 E(11Ak |Fk+1), we deduce that∑
k≥1

11Ak <∞

 ⊃
∑
k≥1

E (1Ak |Fk+1) <∞

 .

It is clear that if
∑
k≥1 11Ak < ∞ then

∑
k≥1 E(1Ak |Fk+1) is integrable and

consequently almost-surely finite. So we have the equality of the two events.

Now we prove Theorem 2.

Proof. Let ε > 0 and T > 0 be fixed. Let (tn)n≥1 be a decreasing sequence of
negative real numbers such that

limn→∞ tn = −∞ ;
tn+1 < tn − T and∑
n≥1(tn − tn+1)H−1 <∞.

Step 1:

First we prove the result for a single fBm (B(t))t∈R. Our goal is to show that

lim inf
n→∞

sup
tn−T≤t,s≤tn

|Bt −Bs| ≤ ε .

We denote Ftn = σ{B(r);−∞ < r ≤ tn}. For t ≥ tn+1 we set

Bn+1(t) = E(B(t)|Ftn+1)

B
n+1

(t) = B(t)−Bn+1(t) .

By the gaussian properties of the fBm it follows that B
n+1

(t) is independent of
Ftn+1 . We set

An(ε) =
{

sup
tn−T≤t,s≤tn

|B(t)−B(s)| ≤ ε
}
,

Ãn(ε) =
{

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣ ≤ ε} ,

An(ε) =
{

sup
tn−T≤t,s≤tn

∣∣∣Bn+1
(t)−Bn+1

(s)
∣∣∣ ≤ ε} .
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Then obviously one has An(ε/2) ⊂ An(ε) ∪ (Ãn(ε/2))c. This implies

11An(ε) + 11
(Ãn(ε/2))c

≥ 11An(ε/2) .

We take the conditional expectation with respect to Ftn+1 and we deduce that

E
(
11An(ε)|Ftn+1

)
≥ P

(
An(ε/2)

)
− 11

(Ãn(ε/2))c

because An(ε/2) is independent of Ftn+1 , while Ãn(ε/2) belongs to Ftn+1 . Ar-
guing as above we also obtain

P(An(ε/2)) + P((Ãn(ε/4))c) ≥ P(An(ε/4)) .

We add these inequalities and we get

E
(
11An(ε)|Ftn+1

)
≥ P(An(ε/4))− P((Ãn(ε/4))c)− 11

(Ãn(ε/2))c
. (27)

We will show hereafter that one has∑
n≥1

P((Ãn(ε))c) <∞ , (28)

while
P(An(ε)) ≥ exp

(
−cT
εH

)
. (29)

Assume for a moment that these inequalities hold true. Then from (27) we
deduce that

∑
n≥1 E(11An(ε)|Ftn+1) = ∞ a.s. and by Lemma 12 we obtain∑

n≥1 11An(ε) =∞ a.s., which implies

lim inf
n→∞

sup
tn−T≤t,s≤tn

|Bt −Bs| ≤ ε.

Proof of (28)

Let tn − T ≤ s ≤ t ≤ tn. By (26) we have

Bn+1(t)−Bn+1(s) = E
[∫ tn+1

−∞
cH

{
(s− r)H− 1

2 − (t− r)H− 1
2

}
dWr

∣∣∣∣Ftn+1

]
and for p ≥ 1 we obtain

E
(
|Bn+1(t)−Bn+1(s)|2p

)
≤ c

(∫ tn+1

−∞

∣∣∣(s− r)H− 1
2 − (t− r)H− 1

2

∣∣∣2 dr)p .

In the above integral we make successively the changes of variables v = r − s
and u = v/(t− s). This yield

(
E
(
|Bn+1(t)−Bn+1(s)|2p

)) 1
p ≤ c(t− s)2H

∫ tn+1−s
t−s

−∞

∣∣∣(−u)H−
1
2 − (1− u)H−

1
2

∣∣∣2 du
≤ c(t− s)2H

∫ tn+1−s
t−s

−∞
(−u)2H−3du
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where we have used the fact that for−u sufficiently big (and positive), |(−u)H−
1
2−

(1−u)H−
1
2 | ≤ c(−u)H−

3
2 . The above inequality is then true for sufficiently large

n. Finally we obtain that

E
(
|Bn+1(t)−Bn+1(s)|2p

)
≤ c

(
(t− s)(tn − tn+1)H−1

)2p
. (30)

Now we use the Garsia-Rodemich-Rumsey inequality (see [7]): let f be a con-
tinuous function, ρ and g two continuous stricly increasing functions on [0,∞)
with ρ(0) = g(0) = 0 and limx→∞ ρ(x) =∞. Then it holds

|f(t)− f(s)| ≤ 8
∫ t−s

0

ρ−1

(
4Cs,t
u2

)
dg(u)

with Cs,t =
∫ t

s

∫ t

s

ρ

(
|f(t′)− f(s′)|
g(|t′ − s′|)

)
ds′dt′ .

We apply the above inequality with ρ(u) = u4 and g(u) = u. Thus there exists
a constant c and a random variable δn such that

|Bn+1(t)−Bn+1(s)| ≤ δn × |t− s|1/2 with

δn = c

(∫ tn

tn−T

∫ tn

tn−T

(
|Bn+1(t′)−Bn+1(s′)|

|t′ − s′|

)4

ds′dt′

)1/4

.

By (30) and the Jensen inequality, it is clear that

E(|δn|2p) ≤ cT p(tn − tn+1)2p(H−1) ,

and we obtain

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣ ≤ c T 1/2 δn . (31)

Now we write that

P((Ãn(ε))c) ≤ 1
ε

E
(

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣)

≤ c T
1/2

ε
E(δn) ≤ c T

1/2

ε

(
E(δ2

n)
)1/2

≤ c T
ε

(tn − tn+1)H−1

and since
∑
n≥1(tn − tn+1)H−1 <∞, we obtain (28).

Proof of (29)

This inequality is a consequence of Talagrand’s small ball estimate (see [17] or
[13, Theorem 3.8]). Indeed, one needs al least Tε−H balls of radius ε under
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the Dudley metric d(s, t) =
(
E|B(t) − B(s)|2

)1/2 to cover the time interval
[tn − T ,tn]. It follows that that there exists a constant c such that

log P
(

sup
tn−T≤t,s≤tn

|B(t)−B(s)| ≤ ε
)
≥ −c T

εH

and we deduce (29). This achieves our first step.

Step 2:

We prove Theorem 2 for the noise F (t, x) =
∑
k≥1 Fk(x)Bk(t). We denote

B(t) =
∑
k≥1 ckBk(t) with ck = ‖Fk‖C2

b
(R), Ftn = σ{Bk(r); −∞ < r ≤ tn;k ≥

1} and for t ≥ tn+1 we set

Bn+1(t) = E(B(t)|Ftn+1)

B
n+1

(t) = B(t)−Bn+1(t) .

Replacing B by B in the events An(ε), Ãn(ε) and An(ε), we define the events
An(ε), Ãn(ε) and An(ε) by

An(ε) =

∑
k≥1

ck sup
tn−T≤t,s≤tn

|Bk(t)−Bk(s)| ≤ ε

 ,

Ãn(ε) =

∑
k≥1

ck sup
tn−T≤t,s≤tn

∣∣Bn+1
k (t)−Bn+1

k (s)
∣∣ ≤ ε

 ,

An(ε) =

∑
k≥1

ck sup
tn−T≤t,s≤tn

∣∣∣Bn+1

k (t)−Bn+1

k (s)
∣∣∣ ≤ ε

 .

Clearly (6) will be proved as soon as the inequalities (28) and (29) will be
replaced by ∑

n≥1

P((Ãn(ε))c) <∞ and (32)

P(An(ε)) ≥ exp
(
−cT
εH

)
. (33)

The inequality (31) is valid for any of the fractional Brownian motion Bk we
may write that for any k ≥ 1

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣ ≤ c T 1/2 δn
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and we deduce that

P
(
(Ãn(ε))c

)
≤ 1
ε

E
(∑

k≥1 ck sup
tn−T≤t,s≤tn

∣∣Bn+1
k (t)−Bn+1

k (s)
∣∣)

≤ c T 1/2
(∑

k≥1 ck

)
E(δn)

≤ c T (tn − tn+1)H−1
(∑

k≥1 ck

)
.

Using Hypothesis I,
∑
k≥1 ck ≤ C

∑
k≥1k

− 2+H
H < ∞ and consequently (32)

holds true.
Now we prove (33). Repeating the arguments of the proof of (29) We have

for any k, n ≥ 1

P
(

sup
tn−T≤t,s≤tn

|Bk(t)−Bk(s)| ≤ εkα/H

C0

)
≥ exp

{
−c TC

H
0

εHkα

}
,

with 2+H > α > 1 and C0 will be precised later. For each n the events An,k(ε) =
{suptn−T≤t,s≤tn |Bk(t)−Bk(s)| ≤ εkα/H

C0
} are independant and ∩k≥1An,k(ε) ⊆

An(ε) if we choose C0 =
∑
k≥1 ckk

α/H which is a convergent sum thanks to
Hypothesis I. Since

∑
k≥1

1
kα <∞ it holds

P(An(ε)) ≥
∏
k≥1

P
(
An,k

(
εkα/H

C0

))
≥ exp

−c TCH0εH

∑
k≥1

1
kα

 > 0

and (33) is proved. This completes our proof.
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