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1. Notations and main results

In this note we study the following scalar conservation law

∂tu(t, x, ω) + divxΨ
(
u(t, x, ω)

)
= divxḞ (t, x, ω) . (1)

In the above equation, x ∈ R, t ≥ 0, u(t, x, ·) is a random variable with values
in R and F is a random force. A deterministic initial data u(t0, x) = u0(x) is
given. We will always assume that u0 ∈ L∞(R). As usual the random force
will not be differentiable in the time variable, hence Ḟ denotes its formal time
derivative. The sense given to the above equation will be stated below thanks
to a weak formulation. Since we will essentially work on each trajectory, our
random term F will belong to a large class of processes. Before we give a precise
description of the class of random forcing we deal with, we recall that in the
pioneer work of [3], the authors proved the existence of an invariant measure
for the Burgers equation (this means that Ψ(u) = u2/2 with stochastic forcing
given by F (t, x, ω) =

∑∞
k=1 Fk(x)Ḃk(t) where (Bk)k≥1 are independent standard

Wiener processes on the real line R (Ḃk is again designates the formal time
derivative of this process).

In a way, our work is a generalization of the existence and uniqueness results
contained in [3] because we work with a general conservation law depending
on the function Ψ and also because we can reach a large class of noise as we
describe it now.

We denote Crb (R) the space of r−times (r is an integer) differentiable bounded
functions with bounded derivatives endowed with the norm given by ‖ϕ‖Cr

b
(R) =∑r

i=0 ‖ϕ(i)‖∞.
For 0 < λ ≤ 1 and −∞ < a < b < +∞, Cλ(a, b) is the space of λ-Hölder

continuous functions f : [a,b]→ R, equipped with the norm ‖f‖λ := ‖f‖a,b,∞+
‖f‖a,b,λ, where

‖f‖a,b,∞ = sup
a≤r≤b

|f(r)| and ‖f‖a,b,λ = sup
a≤r≤s≤b

|f(s)− f(r)|
|s− r|λ

.

In the probabilistic framework of (Ω,F ,P), we make the following assumption
on the stochastic forcing term F .

Hypothesis 1. For any t, x, the stochastic term F can be decomposed as
F (t, x) =

∑∞
k=1 Fk(x)Bk(t) where:

(i) the sequence (Fk)k≥1 is such that for any k, the function Fk belongs to
Crb (R) with an integer r ≥ 3 and satisfies ‖Fk‖Cr

b
(R) ≤ C/k2.

(ii) there exists λ > 0 such that the sequence of processes
(
(Bk(t))t∈(−∞,∞)

)
k≥1

satisfies Bk(·) ∈ Cλ(a, b) for any k ≥ 1, −∞ < a < b < +∞. Without
loss of generality we impose that ‖Bk‖λ ≤ C.

We remark that the processes Bk are not necessarily. It is quite straightfor-
ward that the above noise term covers the one of [3] but it also covers sequences
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of processes as fractional Brownian motion of any Hurst parameter. One may
assume that the Hölder norm of Bk depends on k but in this case one have to
impose additionally that

∑
k≥1 ‖Bk‖λ/k2 <∞.

When all the functions Fk are null, Equation (1) is a deterministic scalar
conservation law and the is a wide literature on this subject. One can cite (in
a non exhaustive way) [2, 14, 8]. In the deteministic case, this kind of equation
has a nice qualitative behavior: discontinuities that are related with the creation
of shocks, description of the behavior in terms of characteristic. The advantage
of the path-wise approach, as it has been done in [3], is to transfert a lot of
tools from the deterministic case to the random equation. More precisely, we
will be able to state important qualitative properties thanks to the equation
satisfied by the characteristic. In the stochastic framework, the Euler-Lagrange
equations will be some ordinary random differential equations.

The function Ψ will satisfy the following assumption.

Hypothesis 2. The function Ψ is convex and satisfies the following super linear
growth condition

Ψ(v)
|v|
−−−−→
|v|→∞

+∞.

Now we give the precise meaning of (1) (see Definition 2.1 in [3]).

Definition 1. A random field u defined on [t0,+∞) × R × Ω with real values
is a weak solution of (1) if:

(i) For all t > t0 and x ∈ R, u(t, x, ·) is measurable with respect to Ft0,t =
σ{Bk(s), t0 ≤ s ≤ t, k ≥ 1}.

(ii) Almost surely, u(·, ·, ω) ∈ L1
loc([t0,∞)× R)

(iii) For all test function ϕ ∈ C2
c (R×R) (the set of twice differentiable functions

with compact support) the following equality holds almost-surely∫ ∞
t0

∫
R

∂ϕ(t, x)
∂t

u(t, x)dxdt+
∫ ∞
t0

∫
R

∂ϕ(t, x)
∂x

Ψ
(
u(t, x)

)
dxdt =

−
∫

R
u0(x)ϕ(t0, x)dx

−
∫

R

∞∑
k=1

{
Fk(x)

∫ ∞
t0

∂2ϕ(t, x)
∂t∂x

(Bk(t)−Bk(t0))dt
}
dx . (2)

It is well known that this notion of weak solution is not sufficient to have
uniqueness for the solution of (1) in the deterministic case. One have to introduce
the notion of admissible solution (or weak-entropy solution).

Definition 2. We say that a random field u which is a already a weak solution
of Equation (1) is an entropy-weak solution if for almost-all ω ∈ Ω,

u(t, x+, ω) ≤ u(t, x−, ω) (3)

for all (t, x) ∈ (t0,∞)× R.
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One refers to [4, 17] for other formulation of stochastic entropy solutions.
First of all, in this paper we are interested in the existence and uniqueness of

the entropy-weak solution of (1). In [3], this property is proved for the particular
case of the Burger’s equation. The authors use the standard mollification of
the Brownian noise and then obtain a variational formula as the deteministic
Lax-Olĕınik formula. We will also prove a Lax-Olĕınik formula using a direct
approach via the Hamilton-Jacobi equation naturally associated to our problem.

Before stating our existence and uniqueness result one have to introduce
further notations.

For two times t1, t2, we denoteH1(t1, t2) the Sobolev space of L2(t1, t2)−weakly
differentiable functions from [t1,t2] to R.

For a function f , we denote f∗ its Legendre transform defined as

f∗(q) = sup
p

(
pq − f(p)

)
.

Our first important result is the following.

Theorem 3. There exists a unique entropy-weak solution to the stochastic
scalar conservation law (1) such that u(t0, x) = u0(x). For t ≥ t0, this solu-
tion is given by the following Lax-Olĕınik type formula :

u(t, x, ω) =
∂

∂x

(
inf

ξ ∈ H1(t0, t)
ξ(t) = x

{
At0,t +

∫ ξ(t0)

0

u0(z)dz

})
, (4)

with

At0,t(ξ) =
∫ t

t0

{
Ψ∗(ξ̇(s))−

∑
k≥1

(
Bk(s)−Bk(t0)

)
fk(ξ(s))ξ̇(s)

}
ds

+
∑
k≥1

(
Bk(t)−Bk(t0)

)
Fk(ξ(t)) . (5)

Stochastic scalar conservation laws is a topic of growing interest in the few
years. Nevertheless, there is only a few number of works on this subject. Besides
the work of [3], one can refer to Kim [10], Holden-Risebro [7], Nualart-Feng [4]
or Vallet-Wittbold [17].

We think that the originality of our contribution is to give a Lax-Olĕınik
formula. Indeed this variational representation is a powerful tool in the study
of the singularities (shocks) of the solution via the characteristic equations.

The second contribution of our work is a first step toward the study of the
invariant measure for the stochastic conservation law (1) for the particular case
of a fractional noise. There is only one paper that deals with invariant measure
and this is for the particular case of Burgers equation with a Brownian noise
(see [3]).

We shall work with the following particular noise term F .

Hypothesis 3. The sequence of processes
(
(Bk(t))t∈R

)
k≥1

is a sequence of in-
dependent fractional Brownian motions (fBm in short) with Hurst parameter
H ∈ (0,1). This means that for each k, (Bk(t))t∈R is a Gaussian process satis-
fying Bk(0) = 0 and E(|Bk(t)−Bk(s)|2) = |t− s|2H .
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There are serious difficulties to work with this fBm. First, unlike the classical
Brownian motion, the two-sided (this means defined on the all real line) fBm is
not obtained by gluing two independent copies of a one-sided (defined on R+)
fBm together at time t = 0. Moreover, when t ≤ 0, the two-sided fBm is no
more a Volterra type process (as it is the case for the classical fBm). One refer
to [9] for a more detailed discussion on this fact.

At last, the increments are not independent. In [3], there is roughly speaking
only one probabilistic property of the noise that is employed. Indeed all the
work can be written, as we did it, for general noise with Hölder regularity
of the trajectories (see Hypothesis 1). In order to prove the existence of an
invariant measure, the authors used that the increments os the Brownian noise
are arbitrary small on an infinite number of arbitrary long time intervals. In
other words for all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n , sup
tn−T≤s≤tn

∑
k≥1

{
‖Fk‖C2

b
(R)|Bk(s)−Bk(tn)|

}
≤ ε .

This result relies on the independence of the increments of a Brownian motion
and on the Borel-Cantelli lemma. In a fractional Brownian framework, one have
to adapt this argument to prove an analogous property for the trajectories of a
fBm when the time goes to −∞.

Despite these difficulties, one can state the following results concerning the
increments of a fractional Brownian motion defined on the real line. This result
is new and is one of the first result on this topic;

Theorem 4. For all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n ,
∑
k≥1

{
‖Fk‖C2

b
(R) sup

tn−T≤s≤r≤tn
|Bk(r)−Bk(s)|

}
≤ ε .

The proof of this result is given in Section 4.

2. Variational principle

We give a detail discussion to introduce the variational principle.

2.1. The Burger’s case

We first begin with the particular case of Burgers equation when the flux is
Ψ(u) = u2/2. We recall that if we consider the one dimensional (inviscid) Burg-
ers equation

∂tu+ ∂x

(
u2

2

)
=

∂

∂x
G(t, x) t > 0 , x ∈ R (6)
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then for an initial condition u0 having discontinuities of the first kind (i.e. u0

belongs to the Skorohod space D) there unique entropy-weak solution u is given
by

u(t, x) =
∂

∂x

 inf
ξ ∈ C1(0, t)
ξ(t) = x

{
A0,t +

∫ ξ(0)

0

u0(z)dz

} ,

where

A0,t(ξ) =
∫ t

0

(
1
2
ξ̇(s)2 +G(t, ξ(s))

)
ds . (7)

For two times t1, t2, we have denoted C1(t1, t2) the space of continuously differ-
entiable functions from [t1,t2] to R.

This relation between the Burgers’s equation and the minimization problem
is known as Lax-Olĕınik formula (see [11, 13]) (and Hopf-Lax formula in its
original context of Hamilton-Jacobi equations). It will be fully exploited in the
study of scalar conservation law with stochastic forcing as we will see it right
now.

In the above equation we have intuitively assumed that G is a deterministic
regular force. Now the source term in the action Aτ,t is

∫ t
τ

∑
k≥1 Fk(ξ(s))dBk(s)

where the above integral is not a stochastic integral but a path-wise integral.
Indeed, since the trajectories ω → Bk(t)(ω) are ε−Hölder continuous and ξ is
differentiable,

∫ t
τ
Fk(ξ(s))dBk(s) exists as a Riemann-Stieltjes integral thanks

to a result of Young [18]. Nevertheless, to avoid the use of such integrals we use
integration by parts formula : one have with g(·) := Fk(ξ(·))∫ t

τ

g(s)dBk(s) = lim
∆→0

n∑
i=0

g(ti)(Bk(ti+1)−Bk(ti))

where the convergence holds uniformly in all finite partitions P∆ := {τ = t0 ≤
t1 ≤ ...tn+1 = t} with maxi |ti+1 − ti| < ∆. With B̄(s) := Bk(s) − B(τ) one
writes

n∑
i=0

g(ti)(Bk(ti+1)−Bk(ti))

=
n∑
i=0

g(ti)(B̄(ti+1)− B̄(ti))

= −
n∑
i=0

B̄(ti+1)
(
g(ti+1)− g(ti)

)
+

n∑
i=0

{
B̄(ti)

(
g(ti+1)− g(ti)

)
+
(
B̄(ti+1)− B̄(ti)

)
g(ti+1)

}
= −

n∑
i=0

B̄(ti+1)
(
g(ti+1)− g(ti)

)
+ B̄(t)g(t)− B̄(τ)g(τ) .
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Consequently∫ t

τ

g(s)dBk(s) = −
∫ τ

t

(
Bk(s)−Bk(τ)

)
ġ(s)ds+

(
Bk(t)−Bk(τ)

)
g(t)

and we rewrite the stochastic term of the action as∫ t

τ

∑
k≥1Fk(ξ(s))dBk(s) =−

∫ t

τ

∑
k≥1

(
Bk(s)−Bk(τ)

)
fk(ξ(s))ξ̇(s)ds

+
∑
k≥1

(
Bk(t)−Bk(τ)

)
Fk(ξ(t)) (8)

where fk = F ′k. If ξ(t) is fixed to be x, then the second term in the above equality
is independent on ξ, hence as in [3] the action is redefined as for ξ ∈ C1(τ ,t) as

Aτ,t(ξ) =
∫ t

τ

(
1
2
ξ̇(s)2 −

∑
k≥1

(
Bk(s)−Bk(τ)

)
fk(ξ(s))ξ̇(s)

)
ds

+
∑
k≥1

(
Bk(t)−Bk(τ)

)
Fk(ξ(t)) .

Remark 5. Since the action is defined path-wisely it depends on ω hence should
be denoted Aωτ,t. We will not do for brevity of notations.

Remark 6. We strength the fact that it is a true integration by parts that allows
us to rewrite the stochastic term and not a formal one as it was mentioned in
[3].

The Burgers case is particular because the Legendre transform of the flux
Ψ(p) = p2/2 that appears in (7) with the term 1

2 ξ̇
2 is again the half of the func-

tion square. This is no more the case when the flux is another convex function.
This term still be the Legendre transform of Ψ and these remarks motivate the
Lax-Olĕınik formula (4) with the action defined in (5).

There is another way of thinking in order to introduce the optimization prob-
lem: one can make a kind of change of variable in the variational formulation (2)
and introduce an Hamilton-Jacobi-Bellman equation (HJB equation in short).
Thus it is well known that these partial differential equation is related to a
variational principle. This is briefly discussed in the following subsection.

2.2. Redefining the action via HJB equation

Let us develop the following non rigorous arguments. Let ϕ a test function in
C2
c , thanks to an integration by parts one rewrites (2) as∫ ∞

t0

∫
R
∂tϕ(t, x)u(t, x)dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
u(t, x)

)
dxdt =

−
∫

R
u0(x)ϕ(t0, x)dx+

∫
R

∫ ∞
t0

∂tϕ(t, x)v(t, x)dtdx (9)
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with F ′k = fk and

v(t, x) =
∞∑
k=1

fk(x)(Bk(t)−Bk(t0)) . (10)

Consequently∫ ∞
t0

∫
R
∂tϕ(t, x)

[
u(t, x)− v(t, x)

]
dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
u(t, x)

)
dxdt

= −
∫

R
u0(x)ϕ(t0, x)dx

and if W is such that ∂xW = w with w = u+ v we obtain∫ ∞
t0

∫
R
∂tϕ(t, x)w(t, x)dxdt+

∫ ∞
t0

∫
R
∂xϕ(t, x)Ψ

(
w(t, x) + v(t, x)

)
dxdt

= −
∫

R
u0(x)ϕ(t0, x)dx .

Hence w is a solution of the stochastic scalar conservation law

∂tw + divxΨ(w + v) = 0

and if we integrate with respect to the space variable x this equation, we derive
the HJB equation

∂tW + Ψ(∂xW + v) = 0 .

This HJB is related to an optimization problem with an action in which the
Legendre transform of p 7→ Ψ(p+w) is involved. Thanks to the behavior under
translation of the Legendre transformation, one have

(
Ψ(·+v)

)∗(q) = Ψ∗(q)−vq
and we obtain the same king of action that in (5).

The above remarks are now made rigorous in the following subsection.

2.3. Dynamic programming equation

First we express the action At0,t as

At0,t(ξ) = Ãt0,t(ξ) + V (t, ξ(t)) with

Ãt0,t(ξ) =
∫ t

t0

L(s, ξ(s), ξ̇(s))ds ,

L(s, x, p) = Ψ∗(p)−
∑
k≥1

(
Bk(s)−Bk(t0)

)
fk(x)× p and

V (t, x) =
∑
k≥1

(
Bk(t)−Bk(t0)

)
Fk(x) .

With U0 defined by ∂xU0 = u0 we define

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{
Ãt0,t(ξ) + U0(ξ(t0))

}
. (11)
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We remark that U0(ξ(t0)) =
∫ ξ(t0)

0
u0(z)dz and

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{At0,t(ξ)} − V (t, x) .

The function W will be the unique solution of an Hamilton-Jacobi-Bellman
equation. In classical calculus of variations, the left end point is fixed and the
functional L is assumed to be regular (three times differentiable in space and
time if one refers to [5]). These minor modifications are not difficult and do not
imply any changes except in the expression of the Hamiltonian that becomes in
our case the Legendre transform of p 7→ L(t, x, p) instead of q 7→ supp(−pq −
L(t, x, p)). Since we do not know any precise reference where these changes are
discussed, we shortly prove the following facts.

Proposition 7. The function (t, x) 7→ W (t, x) is Lipschitz continuous and
satisfies for almost-all t, x the Hamilton-Jacobi-Bellman equation

∂tW (t, x) + Ψ
(
∂xW (t, x) +

∑
k≥1fk(x)(Bk(t)−Bk(t0))

)
= 0 . (12)

The Sobolev space H1(t1, t2) is equipped of the scalar product

〈ξ1,ξ2〉 =
∫ t2

t1

ξ1(s)ξ2(s)ds+
∫ t2

t1

ξ̇1(s)ξ̇2(s)ds .

We have the following lemma.

Lemma 8. For any ξ ∈ H1(t0, t), there exists a constant c such that

Ãt0,t(ξ) ≥
c

2

∫ t

t0

|ξ̇(s)|2∧αds− c . (13)

Proof. If Ψ is superlinear, it is also the case of its Legendre transform Ψ∗. So
there exits c1 and c2 such that Ψ∗(v) ≥ c1|v|2∧α − c2. Then we have

Ãt0,t(ξ) ≥ c1
∫ t

t0

|ξ̇(s)|2∧αds− c2(t− t0)−
∑
k≥1‖fk‖∞

∫ t

t0

|Bk(s)−Bk(t0)||ξ̇(s)|ds

By Young’s inequality ab ≤ a2∧α

ε
+ cεb

β with ε = c1/(2
∑
k≥1 ‖fk‖∞) we obtain

Ãt0,t(ξ) ≥
c1
2

∫ t

t0

|ξ̇(s)|2∧αds− c2(t− t0)− c
∑
k≥1‖fk‖∞‖Bk‖t0,t,λ|t− t0|

βλ+1

and we have (??).

Our aim is to prove that there exists a minimizer of the action Ãt0,t. We
recall the definition
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Definition 9. On the interval [t1,t2], we say that ξ ∈ H1(t1, t2) is a minimizer
of the action Ãt1,t2 if for any γ ∈ H1(t1, t2) with γ(t1) = ξ(t1) and γ(t2) = ξ(t2)
we have Ãt1,t2(ξ) ≤ Ãt1,t2(γ).

We denote

BR(t1, t2) =
{
ξ ∈ H1(t1,t2) ; |ξ(t1)|+

∫ t2
t1
|ξ̇(s)|2ds ≤ R

}
which is clearly a closed and bounded subset ofH1(t1,t2), hence weakly compact.
Now we prove that there exists on BR(t0, t) one minimizer of ξ 7→ F (ξ) :=
Ãt0,t(ξ) + U0(ξ(t0)). By the weak compactness of BR(t0, t) it is sufficient that
ξ 7→ F (ξ) is lower semi-continuous. Following [5], Theorem I.9.1 we just have to
check the lower semi-continuity of the stochastic part

S(ξ) = −
∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))fk(ξ(s))ξ̇(s)ds .

Let (ξn)n≥1 a sequence of BR(t0, t) converging to ξ weakly. The weak conver-
gence on BR(t0, t) implies the uniform convergence on [t0,t]. Writing S(ξ) −
S(ξn) = S1

n + S2
n with

S1
n =

∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))
[
fk(ξn(s))− fk(ξ(s))

]
ξ̇n(s)ds

S2
n =

∑
k≥1

∫ t

t0

(Bk(s)−Bk(t0))fk(ξ(s))
[
ξ̇n(s)− ξ̇(s)

]
ds ,

and by uniform convergence, limn S
1
n = 0. The weak convergence and the fact

that s 7→
∑
k≥1(Bk(s)−Bk(t0))fk(ξ(s)) belongs to L2(t0,t) yield limn S

2
n = 0.

Hence we have the lower semi-continuity and then there exists a minimizer
ξmin ∈ BR(t0, t) of ξ 7→ Ãt0,t(ξ) + U0(ξ(t0)).

Working with the right end-point condition ξ(t) = x in the calculus of vari-
ations will not affect theorems I.9.2, I.9.3 and I.9.4 of [5]. Thus for every t, x,
there exists a minimizer ξmin ∈ H1(t0,t) with ξmin(t) = x such that

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

{
Ãt0,t(ξ) + U0(ξ(t0))

}

=
∫ t

t0

L(s, ξmin(s), ξ̇min(s))ds+ U0(ξmin(t0)) . (14)

Moreover there exists M such that for any (t, x) and (t′, x′) in R× R,

|W (t, x)−W (t′, x′)| ≤M
(
|t− t′|+ |x− x′|

)
. (15)

The equation satisfied by W will be obtained thanks to the following version
of the dynamic programming principle. Indeed we can observe that for any
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t0 ≤ r ≤ t,

W (t, x) = inf
ξ ∈ H1(t0, t)
ξ(t) = x

(∫ t

r

L(s, ξ(s), ξ̇(s))ds+W (r, ξ(r))
)
. (16)

Now let 0 < h < t − t0 and take r = t − h in the dynamical programming
principle (16). We substract W (t, x) from both sides and we get

inf
ξ ∈ H1(t0, t)
ξ(t) = x

(
1
h

∫ t

t−h
L(s, ξ(s), ξ̇(s))ds+

1
h

(
W (t− h, ξ(t− h))−W (t, x)

))
= 0 .

When h ↓ 0, we obtain

− ∂W

∂t
(t, x) + inf

ξ ∈ H1(t0, t)
ξ(t) = x

(
L(t, x, ξ̇(t))− ∂W

∂x
(t, x)× ξ̇(t)

)
= 0

+
∂W

∂t
(t, x)− inf

q∈R

(
−q × ∂W

∂x
(t, x) + L(t, x, q)

)
= 0

+
∂W

∂t
(t, x) + sup

q∈R

(
+q × ∂W

∂x
(t, x)− L(t, x, q)

)
= 0

+
∂W

∂t
(t, x) +H

(
t, x,

∂W

∂x
(t, x)

)
= 0

where p 7→ H(t, x, p) is the Legendre transform of q 7→ L(t, x, q). Using the
behavior under translation of the Legendre transform, we have H(t, x, p) =
Ψ(p + v(t, x)) where v is defined in (10). In other words, for al t, x W satis-
fies Hamilton-Jacobi-Bellman equation (12) (also refer in the literature as the
dynamic programming equation).

We will also need the following property.

Proposition 10. For any t, the function x 7→W (t, x) is semi concave.

Proof. We fix t. We must find a constant K such that the function g defined by
g(x) = W (t, x)−Kx2 is concave. This is equivalent to

W (t, x) ≥ 1
2
(
W (t, x+ h) +W (t, x− h)

)
−Kh2, ∀ x, h. (17)

Let γx = ξmin be the minimizer of the action such thatW satisfies (14). Remind
that γx(t) = x, so if we introduce γx+h ∈ H1(t0, t) defined by

γx+h(s) = x+ h+
∫ t

s

γ̇x(s)ds = h+ γx(s),
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it satisfies γx+h(t) = x+h and γ̇x+h = γ̇x. We compute the first order difference

∆1
x,h = Ãt0,t(γx+h)− Ãt0,t(γx) + U0(γx+h(t0))− U0(γx(t0))

= δ1
x,h + δ2

x,h + δ3
x,h with,

δ1
x,h =

∫ t

t0

(
Ψ∗(γ̇x+h(s))−Ψ∗(γ̇x(s))

)
ds = 0

δ2
x,h =

∫ t

t0

∑
k≥1(Bk(s)−Bk(t0))

[
fk(γx(s))− fk(γx+h(s))

]
γ̇x(s)ds

δ3
x,h = U0(γx+h(t0))− U0(γx(t0)) ,

and we have

δ2
x,h =

∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))γ̇x(s)(∫ 1

0

∂xfk ((1− ν)γx(s)− νγx+h(s)) (γx(s)− γx+h(s))hdν
)}

ds

=
∫ t

t0

{∑
k≥1(Bk(s)−Bk(t0))γ̇x(s)(∫ 1

0

∂xfk ((1− ν)γx(s)− νγx+h(s))h2dν

)}
ds .

Consequently

δ2
x,h ≤

(
‖ξmin‖H1(t0,t)(t0 − t)λ+1/2

∑
k≥1 ‖∂xfk‖∞‖Bk‖t0,t,λ

)
× h2 ,

and analogously δ3
x,h ≤ ‖∂xU0‖∞ × h2. Finally there exists K such that ∆1

x,h ≤
Kh2. Now since γx is a minimizer,

W (t, x+ h) ≤ Ãt0,t(γx+h)− U0(γx+h(t0))

≤ Ãt0,t(γx) + U0(γx(t0)) +Kh2

≤W (t, x) +Kh2

and this inequality implies (17).

Remark 11. By Alexandrov’s theorem (see Appendix E in [5]), w 7→ W (t, x)
is almost everywhere twice differentiable.

2.4. Proof of Theorem 3

Now the proof of existence and uniqueness of the solution of (1) is simple.
The Lipschitz property (15) forW implies that (ii) in definition 1 holds true.
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We prove the variational formulation. Let ϕ be a test function in C2
c (R×R).

We integrate the HJB equation (12) against ∂xϕ and we integrate by parts in
order to obtain :

−
∫ ∞
t0

∫
R

Ψ
(
∂xW (t, x) + v(t, x)

)
∂xϕ(t, x)dxdt =

∫ ∞
t0

∫
R
∂sW (t, x)∂xϕ(t, x)dxdt

= −
∫

R
W0(x)∂xϕ(t0, x)dx+

∫ ∞
t0

∫
R
∂xW (t, x)∂tϕ(t, x)dxdt .

We have ∂xW0(x) = ∂xW (t0, x) = u(t0, x) + v(t0, x) = u0(x). As we did it
before, we let u = ∂xW + v. By another integration by parts one obtains (9)
that is an equivalent form of (2).

The entropy condition (3) is a consequence of the semi concavity of W (see
proposition 10). Indeed, x 7→W (t, x)−Kx2 concave implies that its derivative is
is a decreasing function. Then ∂xW (t, x−) ≥ ∂xW (t, x+) and since u = ∂xW+v
with v continuous, we obtain (3).

3. Action minimizers and generalized characteristics

We recall that in order to construct an invariant measure for the stochastic
scalar conservation law (1), we will construct an invariant solution. To do this
we will use minimizers of the action At0,t with t0 → −∞.

For any times t1, t2 and any x1, x2 ∈ R, we denote

Ht1,t2x1,x2
=
{
ξ ∈ H1(t1, t2) ; ξ(t1) = x1 , ξ(t2) = x2

}
.

We have the following lemma in which we give the Euler-Lagrange equations
satisfied by the minimizers.

Lemma 12. If γ is a minimizer of A on [t1,t2], that is

At1,t2(γ) = inf
ξ∈Ht1,t2x1,x2

{∫ t2

t1

Ψ∗(ξ̇(s))−
∑
k≥1(Bk(s)−Bk(t1))fk(ξ(s))ξ̇(s)ds

+ U0(ξ(t1)) +
∑
k≥1(Bk(t2)−Bk(t1))Fk(ξ(t2))

}
then γ̇ satisfies t1 ≤ r ≤ s ≤ t2

(Ψ∗)′(γ̇(s))− (Ψ∗)′(γ̇(r)) =
∫ s

r

∑
k≥1fk(γ(τ))dBk(τ) . (18)

Proof. Since γ minimizes the functional At1,t2 , we have for any ξ ∈ Ht1,t2x1,x2
,

ε 7→ d
dεAt1,t2(γ + εξ) equals 0 in ε = 0. This yields

0 =
∫ t2

t1

[
(Ψ∗)′(γ̇)(s)ξ̇(s)−

∑
k≥1(Bk(s)−Bk(t1))

(
f ′k(γ)γ̇ξ + fk(γ)ξ̇

)
(s)
]
ds

+ U0(γ(t1))ξ(t1) +
∑
k≥1(Bk(t2)−Bk(t1))fk(γ(t2))ξ(t2) .
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For t1 < τ1 ≤ τ2 < t2, we write this identity with ξn defined as

ξn(s) = 0× 11[t1,τ1]∪[τ2,t2](s) + n
(
s− (τ1 − 1/n)

)
11[τ1−1/n,τ1](s)

+11[τ1,τ2](s) + n
(
− s+ (τ2 + 1/n)

)
11[τ2,τ2+1/n](s).

We obtain∫ τ2+1/n

τ2

n(Ψ∗)′(γ̇(s))ds−
∫ τ1

τ1−1/n

n(Ψ∗)′(γ̇(s))ds =

−
∫ τ2

τ1

∑
k≥1(Bk(s)−Bk(t1))f ′k(γ(s))γ̇(s)ds

−
∫ τ1

τ1−1/n

∑
k≥1(Bk(s)−Bk(t1))(f ′k(γ)γ̇ξn)(s)ds

−
∫ τ1

τ1−1/n

n
∑
k≥1(Bk(s)−Bk(t1))fk(γ(s))ds

−
∫ τ2+1/n

τ2

∑
k≥1(Bk(s)−Bk(t1))(f ′k(γ)γ̇ξn)(s)ds

+
∫ τ2+1/n

τ2

n
∑
k≥1(Bk(s)−Bk(t1))fk(γ(s))ds .

We remark that supn ‖ξn‖∞ ≤ c and easy arguments allow us to let n goes to
infinity. Hence

(Ψ∗)′(γ̇(τ2))− (Ψ∗)′(γ̇(τ1)) =−
∫ τ2

τ1

∑
k≥1(Bk(s)−Bk(t1))f ′k(γ(s))γ̇(s)ds

+
∑
k≥1(Bk(τ2)−Bk(t1))fk(γ(τ2))−

∑
k≥1(Bk(τ1)−Bk(t1))fk(γ(τ1))

and with g(s) =
∑
k≥1(Bk(s)−Bk(t1))f ′k(γ(s))γ̇(s) one may write

(Ψ∗)′(γ̇(τ2))− (Ψ∗)′(γ̇(τ1))

= −
∫ τ2

t1

g(s)ds+ g(τ2)− g(t1)−
(
−
∫ τ1

t1

g(s)ds+ g(τ1)− g(t1)
)

=
∫ τ2

t1

∑
k≥1fk(γ(s))dBk(s)−

∫ τ1

t1

∑
k≥1fk(γ(s))dBk(s)

=
∫ τ2

τ1

∑
k≥1fk(γ(s))dBk(s) ,

where we have used (8). By continuity of τ 7→
∫ τ
t1

∑
k≥1fk(γ(s))dBk(s) (see

Prop. 4.4.1 in [19]), the above formula is also true for τ1 = t1 and τ2 = t2. Then
the formula (18) is true.

We stress the fact that (Ψ∗)′ = (Ψ′)−1.
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Remark 13. Any action minimizer γ satisfies the following Euler-Lagrange
equation:{

γ̇(s) = Ψ′(v(s))
dv(s) =

∑
k≥1fk(γ(τ))dBk(τ) ⇐⇒

{
v(s) = (Ψ′)−1(γ̇(s))
dv(s) =

∑
k≥1fk(γ(τ))dBk(τ).

(19)

Indeed, the Euler-Lagrange equation can be formally deduced from the following
computation. If we want to find two curves γ and v such that v(t) = u(t, γ(t)),
then

dv(t) = ∂tu(t, γ(t)) + ∂xu(t, γ(t))γ̇(t).

With γ̇(t) = Ψ′(u(t, γ(t))) (or equivalently v(t) = (Ψ′)−1(γ̇(t))), together with
(1) one writes

dv(t) = ∂tu(t, γ(t)) + ∂xΨ(u(t, γ(t))),

and we obtain (19).
The curve γ is a generalized characteristic in the sense of Dafermos (see [1]).

Remark 14. With Ψ(z) = z2/2, (Ψ∗)′(z) = z for any z ∈ R. Hence the
equation (19) genaralises the Euler-Lagrange equation (2.3) in [3].

By (19), v is continuous. Since γ̇ = Ψ′◦v, we deduce that γ̇ is also continuous.
Consequently, any action minimizer of A on [t1,t2] is in C1(t1, t2).

One can easily prove that there exists a unique solution to the Euler-Lagrange
system of equations (19):

Lemma 15. Let ξ0 and v0 be two given real numbers. There exists a unique
solution ξ ∈ C1(−∞,t0) to the Euler-Lagrange equation (19)

ξ̇(s) = Ψ′(v(s))

v(s) = v(t0)−
∫ t0

s

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(ξ(r))ξ̇(r)dr

+
∑
k≥1

(
Bk(t0)−Bk(s)

)
fk(ξ(t0)) ∀s ≤ t0

such that ξ(t0) = ξ0 and ξ̇(t0) = Ψ′(v0).

The following lemma gives a key estimation on the velocities of the charac-
teristics. This will play a central role in our further investigations. We make the
following additional assumption on Ψ that is clearly true if the flux is the square
function.

Hypothesis 4. The derivative Ψ′ of the flux is Lipschitz and its Legendre trans-
form satisfies c3|v|α ≤ |Ψ∗(v)| ≤ c4|v|β with β > α > 1 and two positive con-
stants c3 and c4.

Lemma 16. With the notation of Lemma 12, if γ is a minimizer of the action
A on the time interval [t1,t2] with t2 − t1 ≥ 1, then there exists a constant c
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such that

‖γ̇‖∞,t1,t2 ≤ c
[
1 +KB,Ft1,t2 + (KB,Ft1,t2)

α
α−1

]{
(t2 − t1)−

1
α + (t2 − t1)

α−1
α KB,Ft1,t2

}
+ cKB,Ft1,t2 (20)

with

KB,Ft1,t2 =
∑
k≥1

‖Fk‖C2

{
sup

t1≤r≤r′≤t2
|Bk(r)−Bk(r′)|

}
. (21)

Proof. We fix t1 ≤ t ≤ t2 such that t2 − t1 ≥ 1. Let s be such that |γ̇(s)| =
infr∈[t1,t2] |γ̇(r)|. Writing γ̇(t) = (Ψ′ ◦ (Ψ′)−1)(γ̇(t))− (Ψ′ ◦ (Ψ′)−1)(γ̇(s)) + γ̇(s),
we have

|γ̇(t)| ≤ ‖Ψ′‖Lip

∣∣∣(Ψ′)−1)(γ̇(t))− (Ψ′)−1)(γ̇(s))
∣∣∣+ |γ̇(s)|

≤ ‖Ψ′‖Lip ×∆s,t +
‖γ̇‖L1(t1,t2)

t2 − t1
,

with

∆s,t =
∣∣∣(Ψ′)−1)(γ̇(t))− (Ψ′)−1)(γ̇(s))

∣∣∣
= −

∫ t

s

∑
k≥1

(
Bk(r)−Bk(s)

)
f ′k(γ(r))γ̇(r)dr

+
∑
k≥1

(
Bk(t)−Bk(s)

)
fk(γ(t))

≤ KB,Ft1,t2 +KB,Ft1,t2‖γ̇‖L1(t1,t2) .

Consequently,

|γ̇(t)| ≤ KB,Ft1,t2‖Ψ
′‖Lip +

(
KB,Ft1,t2‖Ψ

′‖Lip + 1/(t2 − t1)
)
‖γ̇‖L1(t1,t2) . (22)

Now we estimate the L1 norm of γ̇. We proceed as in the proof of (??) in Lemma
8. We use Hypothesis 4 together with the Young inequality ab ≤ ap/p + bq/q
with p = α yield

c1
2

∫ t2

t1

|γ̇(s)|αds ≤ At1,t2(γ) + (KB,Ft1,t2)
α
α−1 +KB,Ft1,t2 − U0(x1) . (23)

Since γ is a minimizer of the action At1,t2 , we have At1,t2(γ) ≤ At1,t2(ξ) with
the curve ξ defined by ξ(s) = x1 +(s−t1)/(t2−t1)×(x2−x1). Using Hypothesis
4 one obtains that

At1,t2(γ) ≤ U0(x1) +KB,Ft1,t2 + c(t2 − t1)1−β .

We report the above inequality in (23) and we get that∫ t2

t1

|γ̇(s)|αds ≤ c+ cKB,Ft1,t2 + c(KB,Ft1,t2)
α
α−1 .
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Since ‖γ̇‖L1(t1,t2) ≤ (t2 − t1)
α−1
α ‖γ̇‖Lα(t1,t2), with (22) we have

|γ̇(t)| ≤ c
[
1 +KB,Ft1,t2 + (KB,Ft1,t2)

α
α−1

]{
(t2 − t1)−

1
α + (t2 − t1)

α−1
α KB,Ft1,t2

}
+ cKB,Ft1,t2

and we obtain (20).

4. An asymptotic property of fBm

The paper [3] essentially uses the fact that the Brownian motion has periods of
arbitrary length and arbitrary small amplitude oscillation as time goes to −∞.
In this section, we will prove that a similar property holds for the fBm defined
on the all real line (−∞, +∞). The result, which is interesting in itself, is the
following.

Theorem 17. For all ε > 0, T > 0, for almost-all ω, there exists a sequence of
random time (tn(ω))n≥1, such that tn(ω)→ −∞ and

∀ n ,
∑
k≥1

{
‖Fk‖C2

b
(R) sup

tn−T≤s≤r≤tn
|Bk(r)−Bk(s)|

}
≤ ε .

Before proving this theorem, we will recall and prove some basic facts about
the fBm defined on the real line R. We first recall the moving average represen-
tation of the fBm (B(t))t∈R. For s, t ∈ R, we define

ft(s) =
1
cH

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
with

cH =
(∫ ∞

0

(
(1 + s)H−

1
2 − s 1

2

)2

ds+
1

2H

) 1
2

.

Notice that
∫

R f
2
t (s)ds <∞ and more precisely, if H 6= 1/2, s 7→ ft(s) behaves

like (−s)H−3/2 when s → −∞ which is square integrable at −∞. With these
notations, the fBm can be written as

B(t) =
∫

R
ft(s)dWs (24)

where the process (Wt)t∈R is a two sided classical Brownian motion which is ob-
tained by gluing two independent copies of one sided Brownian motions together
at time t = 0.

Since we are interested in the oscillations of the fBm, we express its increments
for t < t′ < 0 as

B(t)−B(t′) =
∫

R
cH

{
(t− r)H−

1
2

+ − (t′ − r)H−
1
2

+

}
dWr

=
∫ t

−∞
cH

{
(t− r)H− 1

2 − (t′ − r)H− 1
2

}
dWr +

∫ t′

t

cH(t′ − r)H− 1
2 dWr

=
∫

R
gt,t′(r)dWr
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where

gt,t′(r)
cH

=
{

(t− r)H− 1
2 − (t′ − r)H− 1

2

}
11]−∞,t](r) + (t′ − r)H− 1

2 11[t,t′](r) .

Let Fs the sigma-algebra generated by the family of random variables {B(r);−
∞ < r ≤ s}. We remark that for s ≤ 0,

Fs ⊆ σ {Wr;−∞ < r ≤ s} = σ{W̃r;r ≥ −s} := FW̃−s,∞

where W̃ is the Brownian motion in R+ defined by W̃r = W−r for any r ≥ 0.
We need the following expression: for any −∞ < s ≤ t ≤ t′ ≤ 0

E(B(t)−B(t′)|Fs) = E
[∫ s

−∞
cH

{
(t− r)H− 1

2 − (t′ − r)H− 1
2

}
dWr

∣∣∣∣Fs] .

(25)

Indeed, with −s ≥ −t we write

B(t)−B(t′) =
∫ +∞

−t
gt,t′(−r)dW−r

=
∫ +∞

−t
gt,t′(r)dW̃r

=
∫ −s
−t

gt,t′(r)dW̃r +
∫ +∞

−s
gt,t′(r)dW̃r

= I1(s)− I2(s) ,

with obvious notations. The random variable I1(s) is independent of FW̃−s,∞ ⊇ Fs
hence

E(I1(s)|Fs) = E
[
E(I1(s)| FW̃−s,∞)|Fs

]
= 0 .

Consequently,

E(B(t)−B(t′)|Fs) = E
[∫ +∞

−s
gt,t′(r)dW̃r

∣∣∣∣Fs] = E
[∫ s

−∞
gt,t′(r)dWr

∣∣∣∣Fs]
and we have proved (25).

The proof of Theorem 17 is based on the following reversed conditional Borel-
Cantelli lemma.

Lemma 18. Let (Fn)n≥1 be a decreasing sequence of σ−fields and (An)n≥1a
sequence of events such that An ∈ Fn. Then the events∑

k≥1

11Ak <∞

 and

∑
k≥1

E (1Ak |Fk+1) <∞


are almost-surely equal.
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Proof. Let Mn = 11An − E(11An |Fn+1). We have E(Mn|Fn+1) = 0 so (Mn)n≥1 is
a reversed martingale difference sequence. So

∑
k≥1 E(M2

k |Fk+1) < ∞ implies
that

∑
k≥1Mk is convergent almost-surely (see Stout [15, Theorem 2.8.7]). We

have

E(M2
k |Fk+1) = E(112Ak |Fk+1)− (E(11Ak |Fk+1))2

= E(11Ak |Fk+1)
[
1− E(11Ak |Fk+1)

]
≤ E(11Ak |Fk+1) .

Hence
∑
k≥1Mk is almost surely convergent and since

∑
k≥1Mk =

∑
k≥1 11Ak −∑

k≥1 E(11Ak |Fk+1), we deduce that∑
k≥1

11Ak <∞

 ⊃
∑
k≥1

E (1Ak |Fk+1) <∞

 .

It is clear that if
∑
k≥1 11Ak <∞ then

∑
k≥1 E(1Ak |Fk+1) is integrable so almost-

surely finite. So we have the equality.

Now we prove Theorem 17.

Proof. Let ε > 0 and T > 0 be fixed. Let (tn)n≥1 be a decreasing sequence of
negative real numbers such that

limn→∞ tn = −∞ ;
tn+1 < tn − T and∑
n≥1(tn − tn+1)2H−2 <∞.

First we prove the result for a single fBm. More precisely if (B(t))t∈R is a fBm
then

lim inf
n→∞

sup
tn−T≤t,s≤tn

|Bt −Bs| ≤ ε

Using Hypothesis 1(i), this will imply the Theorem 17.
As before we denote Ftn = σ{B(r); − ∞ < r ≤ tn}. For t ≥ tn+1 we

set Bn+1(t) = E(B(t)|Ftn+1) and B
n+1

(t) = B(t) − Bn+1(t). By the gaussian
properties of the fBm it follows that B

n+1
(t) is independent of Ftn+1 . We set

An(ε) =
{

sup
tn−T≤t,s≤tn

|B(t)−B(s)| ≤ ε
}
,

Ãn(ε) =
{

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣ ≤ ε} ,

An(ε) =
{

sup
tn−T≤t,s≤tn

∣∣∣Bn+1
(t)−Bn+1

(s)
∣∣∣ ≤ ε} .

Then obviously one has An(ε/2) ⊂ An(ε) ∪ (Ãn(ε/2))c. This implies

11An(ε) + 11
(Ãn(ε/2))c

≥ 11An(ε/2) .
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We take the conditional expectation with respect to Ftn+1 and we deduce that

E
(
11An(ε)|Ftn+1

)
≥ P

(
An(ε/2)

)
− 11

(Ãn(ε/2))c

because An(ε/2) is independent of Ftn+1 , while Ãn(ε/2) belongs to Ftn+1 .
Arguing as above we also obtain

P(An(ε/2)) + P((Ãn(ε/4))c) ≥ P(An(ε/4)) .

We add these inequalities and we get

E
(
11An(ε)|Ftn+1

)
≥ P(An(ε/4))− P((Ãn(ε/4))c)− 11

(Ãn(ε/2))c
. (26)

We will show hereafter that one has∑
n≥1

P((Ãn(ε))c) <∞ , (27)

while
P(An(ε)) ≥ exp

(
−cT
εH

)
. (28)

Assume for a moment that these inequalities hold true. Then from (26) we
deduce that

∑
n≥1 E(11An(ε)|Ftn+1) = ∞ a.s. and by Lemma 18 we obtain∑

n≥1 11An(ε) =∞ a.s., which implies

lim inf
n→∞

sup
tn−T≤t,s≤tn

|Bt −Bs| ≤ ε.

Proof of (27)

Let tn − T ≤ s ≤ t ≤ tn. By (25) we have

Bn+1(t)−Bn+1(s) = E
[∫ tn+1

−∞
cH

{
(s− r)H− 1

2 − (t− r)H− 1
2

}
dWr

∣∣∣∣Ftn+1

]
and for p ≥ 1 we obtain

E
(
|Bn+1(t)−Bn+1(s)|2p

)
≤ c

(∫ tn+1

−∞

∣∣∣(s− r)H− 1
2 − (t− r)H− 1

2

∣∣∣2 dr)p .

In the above integral we make successively the changes of variables v = r − s
and u = v/(t− s). This yield

(
E
(
|Bn+1(t)−Bn+1(s)|2p

)) 1
p ≤ c(t− s)2H

∫ tn+1−s
t−s

−∞

∣∣∣(−u)H−
1
2 − (1− u)H−

1
2

∣∣∣2 du
≤ c(t− s)2H

∫ tn+1−s
t−s

−∞
(−u)2H−3du
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where we have used the fact that for−u sufficiently big (and positive), |(−u)H−
1
2−

(1−u)H−
1
2 | ≤ c(−u)H−

3
2 . The above inequality is then true for sufficiently large

n. Finally we obtain that

E
(
|Bn+1(t)−Bn+1(s)|2p

)
≤ c

(
(t− s)(tn − tn+1)H−1

)2p
. (29)

Now we use the Garsia-Rodemich-Rumsey inequality (see [6]): let f be a con-
tinuous function, ρ and g two continuous stricly increasing functions on [0,∞)
with ρ(0) = g(0) = 0 and limx→∞ ρ(x) =∞. Then it holds

|f(t)− f(s)| ≤ 8
∫ t−s

0

ρ−1

(
4Cs,t
u2

)
dg(u)

with Cs,t =
∫ t

s

∫ t

s

ρ

(
|f(t′)− f(s′)|
g(|t′ − s′|)

)
ds′dt′ .

Let 0 < ε0 < 1. We apply the above inequality with ρ(u) = u2/(1−ε0) and
g(u) = u. Thus there exists a constant c and a random variable δn such that

|Bn+1(t)−Bn+1(s)| ≤ δn × |t− s|ε0 with

δn = c

(∫ tn

tn−T

∫ tn

tn−T
ρ

(
|Bn+1(t′)−Bn+1(s′)|

|t′ − s′|

) 2
1−ε0

ds′dt′

) 1−ε0
2

.

By (29) and the Jensen inequality, it is clear that

E(|δn|2p) ≤ cT 2p(1−ε0)(tn − tn+1)2p(H−1) ,

and we obtain that

sup
tn−T≤t,s≤tn

∣∣Bn+1(t)−Bn+1(s)
∣∣ ≤ c T ε0 δn .

Now we write that

P((Ãn(ε))c) ≤ c T 2ε0E(δ2
n)/ε2 ≤ c T 2 (tn − tn+1)2H−2/ε2

and since
∑
n≥1(tn − tn+1)2H−2 <∞, we obtain (27).

Proof of (28)

This inequality is a consequence of Talagrand’s small ball estimate (see [16] or
[12, Theorem 3.8]). Indeed, one needs al least Tε−H balls of radius ε under
the Dudley metric d(s, t) =

(
E|B(t) − B(s)|2

)1/2 to cover the time interval
[tn − T ,tn]. It follows that that there exists a constant c such that

log P
(

sup
tn−T≤t,s≤tn

|B(t)−B(s)| ≤ ε
)
≥ −c T

εH

and we deduce (28).
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