
Abstract

In this paper we synthesize the results in [1] – [6] concerning the convergence rate

of the one- and two-level methods for some nonlinear problems: nonlinear variational

inequalities, inequalities with contraction operators, variational inequalities of the sec-

ond kind and quasi-variational inequalities. Also, we verify that the convergence rates

obtained by numerical tests are really in concordance with the theoretical ones. We

comparatively illustrate the convergence rates of the one- and two-level methods by

numerical experiments for the solution of the two-obstacle problem of a nonlinear

elastic membrane.

Keywords: domain decomposition methods, nonlinear variational inequalities, fixed-

point problems, quasi-variational inequalities, multigrid and multilevel methods, con-

tact problems with friction, nonlinear obstacle problems.

1 Introduction

The literature on the domain decomposition methods is very large. We can see, for

instance, the papers in the proceedings of the annual conferences on domain decom-

position methods starting in 1987 with [11] or those cited in the books [16], [22], [24]

and [28]. Naturally, the most of the papers dealing with these methods are dedicated

to the linear elliptic problems. For the variational inequalities, the convergence proofs

refer in general to the inequalities coming from the minimization of quadratic func-

tionals. Also, the most of the papers consider the convex set decomposed according

to the space decomposition as a sum of convex subsets. To our knowledge, very few

papers really deal with the application of these methods to nonlinear problems. We

can cite in this direction the papers written by Boglaev [8], Dryja and Hackbusch [10],

Lui [17], [18] and [19], Tai and Espedal [25], and Tai and Xu [26], for nonlinear equa-
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tions, Hoffmann and Zhou [13], Zeng and Zhou [29], for inequalities having nonlinear

source terms, and Badea [1]–[3], for the minimization of non-quadratic functionals.

The multilevel or multigrid methods can be viewed as domain decomposition meth-

ods and we can cite the results obtained by Kornhuber [14]–[16], Mandel [20], [21],

Smith, Bjørstad and Gropp [24], Tarvainen [27], Badea, Tai and Wang [7], and Badea

[2]. Evidently, this list is not exhaustive and it can be completed with other papers.

In this paper we synthesize the results in [1] – [6] concerning the convergence rate

of the one- and two-level methods for some nonlinear problems: nonlinear variational

inequalities, inequalities with contraction operators, variational inequalities of the sec-

ond kind and quasi-variational inequalities. In these papers the same proof techniques

are used. We give, under a certain assumption, general convergence results (error es-

timations, included) for some subspace correction algorithms in a reflexive Banach

space. In Sobolev spaces, when the subspaces are associated with a domain decompo-

sition, we get the multiplicative and additive Schwarz methods. In the finite element

spaces, for the one- and two-level methods, the constants in the error estimations are

explicitly written as functions of the overlapping and mesh parameters. These error

estimations are similar with the familiar case of linear equations, ie. the convergence is

global and optimal. Also, we verify that the convergence rates obtained by numerical

tests are really in concordance with the theoretical ones. We comparatively illustrate

the convergence rates of the one- and two-level methods by numerical experiments for

the solution of the two-obstacle problem of a nonlinear elastic membrane.

The paper is organized as follows. In Section 2, we give a general background

in which the problems in the next sections are stated. Section 3 is dedicated to the

theoretical convergence results of the algorithms. In Section 4, the Schwarz methods,

including the one and two-level methods, as particular cases in which the Sobolev

and finite element spaces are used. Finally, Section 5 is dedicated to the numerical

experiments.

2 General background

In this section, we give a general framework for all methods we propose. We consider

a reflexive Banach space V , some closed subspaces of it, V1, · · · , Vm, and K ⊂ V a

non empty closed convex set. Let F : V → R be a Gâteaux differentiable functional,

and we assume that there exist p, q > 1 such that for any M > 0 there exist αM , βM >
0 for which

αM ||v − u||p ≤< F ′(v) − F ′(u), v − u >,
||F ′(v) − F ′(u)||V ′ ≤ βM ||v − u||q−1,

(1)

for any u, v ∈ V , ||u||, ||v|| ≤ M . We can prove that, if F satisfies the above proper-

ties, then

αM ||v − u||p ≤< F ′(v) − F ′(u), v − u >≤ βM ||v − u||q

< F ′(u), v − u > +αM

p
||v − u||p ≤ F (v) − F (u) ≤

< F ′(u), v − u > +βM

q
||v − u||q.
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Depending on the algorithm we use, we make one of the following assumptions on the

convex set K. In the case of the multiplicative algorithms for inequalities we assume

Assumption 2.1 There exists a constant C0 > 0 such that for any w, v ∈ K and

wi ∈ Vi with w +
∑i

j=1 wj ∈ K, i = 1, · · · ,m, there exist vi ∈ Vi, i = 1, · · · ,m,

satisfying

w +
i−1
∑

j=1

wj + vi ∈ K, v − w =
m
∑

i=1

vi,
m
∑

i=1

||vi|| ≤ C0

(

||v − w|| +
m
∑

i=1

||wi||

)

.

For the additive algorithms for inequalities, we assume

Assumption 2.2 There exists a constant C0 > 0 such that for any w, v ∈ K there

exist vi ∈ Vi, i = 1, · · · ,m, which satisfy

v − w =
m
∑

i=1

vi, w + vi ∈ K,
m
∑

i=1

||vi|| ≤ C0||v − w||.

Finally, in the case of equations, for both additive and multiplicative algorithms, we

assume,

Assumption 2.3 There exists a constant C0 > 0 such that for any v ∈ V there exist

vi ∈ Vi, i = 1, · · · ,m, which satisfy

v =
m
∑

i=1

vi,
m
∑

i=1

||vi|| ≤ C0||v||.

3 Subspace correction algorithms for nonlinear prob-

lems

In this section we introduce additive and multiplicative algorithms for the nonlinear

problems we have mentioned in the introduction, show that they a globally convergent,

and deduce error estimates.

3.1 Nonlinear variational inequalities

Details on the results in this subsection can be found in [1] and [3]. We assume that

F is coercive, ie.
F (v)
||v||

→ ∞ as ||v|| → ∞, if K is not bounded. We consider the

problem

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K (2)

Under the above conditions on F , this problem has an unique solution, and it is equiv-

alent with the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K.
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To solve problem (2), we introduce two algorithms. The first one is a multiplicative

algorithm,

Algorithm 3.1 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, wn+1
i ∈ Vi,

un+ i−1

m + wn+1
i ∈ K satisfying

< F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i >≥ 0, for any vi ∈ Vi, un+ i−1

m + vi ∈ K,

and then we update un+ i
m = un+ i−1

m + wn+1
i .

The additive algorithm is stated as

Algorithm 3.2 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un + wn+1

i ∈ K, the solution of the

inequality

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 ≥ 0, for any vi ∈ Vi, un + vi ∈ K

for i = 1, · · · ,m, and then we update un+1 = un + %
m
∑

i=1

wn+1
i , where 0 < % ≤ 1

m
for

any n ≥ 0.

We notice that, because of the choice of % in this algorithm, un+1 ∈ K for any n ≥ 0.

Concerning the convergence of the above algorithms, we have the following result

Theorem 3.1 Under the above conditions on the space V and the functional F , we

have the following error estimations:

(i) if p = q we have

F (un) − F (u) ≤
(

C1

C1+1

)n

[F (u0) − F (u)] ,

||un − u||p ≤ 2
αM

(

C1

C1+1

)n

[F (u0) − F (u)] .

(ii) if p > q we have

F (un) − F (u) ≤ F (u0)−F (u)�
1+nC2(F (u0)−F (u))

p−q
q−1

� q−1

p−q

,

||u − un||p ≤ p

αM

F (u0)−F (u)�
1+nC2(F (u0)−F (u))

p−q
q−1

� q−1

p−q

.

for the multiplicative and additive Algorithms 3.1 and 3.2, if the corresponding as-

sumption on the convex set K holds. The constants C1 and C2 depend on the functional

F (ie. on αM , βM , p and q), the number of subspaces m, the initial approximation u0,

and is an increasing function on C0 in assumptions.
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3.2 Inequalities with contraction operators

Details on the results in this subsection can be found in [4]. We assume that p=q, and,

as in the previous case, that F coercive, ie.
F (v)

||v||
→ ∞ as ||v|| → ∞, if K is not

bounded. We consider an operator T : V → V ′ such that for any M > 0 there exists

0 < ρM such that

||T (v) − T (u)||V ′ ≤ ρM ||v − u|| for any v, u ∈ V, ||v||, ||u|| ≤ M. (3)

We consider the problem

u ∈ K : 〈F ′(u), v − u〉 − 〈T (u), v − u〉 ≥ 0, for any v ∈ K (4)

This problem is equivalent with the minimization problem

u ∈ K : F (u) − 〈T (u), u〉 ≤ F (v) − 〈T (u), v〉, for any v ∈ K.

We know that, under the above assumptions on V , K, F and T , if there exists a

constant 0 < θ < 1 such that ρM

αM
≤ θ, for any M > 0, then problem (4) has a unique

solution. Now, we state three multiplicative algorithms for problem (4).

Algorithm 3.3 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un+ i−1

m + wn+1
i ∈ K, the solution of

the inequality

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 − 〈T (un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 ≥ 0,

for any vi ∈ Vi, un+ i−1

m + vi ∈ K

and then we update un+ i
m = un+ i−1

m + wn+1
i , for i = 1, · · · ,m.

Algorithm 3.4 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un+ i−1

m + wn+1
i ∈ K, the solution of

the inequality

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 − 〈T (un+ i−1

m ), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, un+ i−1

m + vi ∈ K

and then we update un+ i
m = un+ i−1

m + wn+1
i , for i = 1, · · · ,m.

Algorithm 3.5 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un+ i−1

m + wn+1
i ∈ K, the solution of

the inequality

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 − 〈T (un), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, un+ i−1

m + vi ∈ K

and then we update un+ i
m = un+ i−1

m + wn+1
i , for i = 1, · · · ,m.
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Also, two additive algorithms can be given for the solution of problem (4),

Algorithm 3.6 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un + wn+1

i ∈ K, the solution of the

inequality

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 − 〈T (un + wn+1
i ), vi − wn+1

i 〉 ≥ 0,
for any vi ∈ Vi, un + vi ∈ K

for i = 1, · · · ,m, and then we update un+1 = un + %
m
∑

i=1

wn+1
i , where 0 < % ≤ 1

m
for

any n ≥ 0 (un+1 ∈ K).

Algorithm 3.7 We start the algorithm with an arbitrary u0 ∈ K. At iteration n + 1,

having un ∈ K, n ≥ 0, we compute wn+1
i ∈ Vi, un + wn+1

i ∈ K, the solution of the

inequality

〈F ′(un + wn+1
i ), vi − wn+1

i 〉 − 〈T (un), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, un + vi ∈ K

for i = 1, · · · ,m, and then we update un+1 = un + %

m
∑

i=1

wn+1
i , where 0 < % ≤ 1

m
for

any n ≥ 0 (un+1 ∈ K).

The following theorem give an error estimation for the above algorithms.

Theorem 3.2 Under the above assumptions on V , F and T , let u be the solution of

our problem, and un, n ≥ 0, be its approximations obtained from one of the above

Algorithms 3.3–3.7. If the assumption corresponding to the algorithm holds, then

there exist a function θmax : R+ → R+ and a constant C1 > 0 such that if ρM

αM
<

θmax(M), for any M > 0, then, for any u0 ∈ K, we have the error estimates

F (un) − 〈T (u), un〉 − F (u) + 〈T (u), u〉 ≤
(

C1

C1+1

)n

[F (u0) − 〈T (u), u0〉 − F (u) + 〈T (u), u〉] ,

||un − u||2 ≤ 2
αM0

(

C1

C1+1

)n

[F (u0) − 〈T (u), u0〉 − F (u) + 〈T (u), u〉]

hold for any n ≥ 1, where M0 = max( ||u||, sup{||v|| : F (v)−〈T (u), v〉 ≤ F (u0)−
〈T (u), u0〉} ). Constant C1 depends on the functional F (ie. on αM , βM ), the operator

T (ie. on ρM ), the number of subspaces m, the initial approximation u0, and is an

increasing function on C0 in assumptions.
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3.3 Variational inequalities of the second kind

Details on the results in this subsection can be found in [5] and [6]. Let ϕ : K → R be

a convex, lower semicontinuous functional s.t. F + ϕ is coercive, ie.
F (v) + ϕ(v)

‖v‖
→

∞, as ‖v‖ → ∞, v ∈ K, if K is not bounded. In addition to the hypotheses of

Assumption 2.1, we suppose that

m
∑

i=1

[ϕ(w +
i−1
∑

j=1

wj + vi) − ϕ(w +
i−1
∑

j=1

wj + wi)] ≤ ϕ(v) − ϕ(w +
m
∑

i=1

wi) (5)

for v, w ∈ K, and vi, wi ∈ Vi, i = 1, . . . ,m, in Assumption 2.1. We consider the

problem

u ∈ K : 〈F ′(u), v − u〉 + ϕ(v) − ϕ(u) ≥ 0, for any v ∈ K. (6)

which is equivalent with

u ∈ K : F (u) + ϕ(u) ≤ F (v) + ϕ(v), for any v ∈ K.

It is well known that problem (6) has a unique solution. We state the following algo-

rithm for the solution of the above problem.

Algorithm 3.8 We start the algorithm with an arbitrary u0 ∈ K. At iteration n +
1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi as the solution of the variational inequality

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 + ϕ(un+ i−1

m + vi)−

ϕ(un+ i−1

m + wn+1
i ) ≥ 0, for any vi ∈ Vi, un+ i−1

m + vi ∈ K,

and then we update un+ i
m = un+ i−1

m + wn+1
i .

Concerning the convergence of this algorithm, we have

Theorem 3.3 Under the above assumptions on V , F and ϕ, let u be the solution of

problem (6), and un, n ≥ 0, be its approximations obtained from the multiplicative

Algorithm 3.8. If Assumption 2.1 together with (5) hold, then there exists M > 0

such that max(‖u‖, ‖u0‖, max
n≥0,1≤i≤m

‖un+ i
m‖) ≤ M and we have the following error

estimations:

(i) if p = q we have

F (un) + ϕ(un) − F (u) − ϕ(u) ≤
(

C1

C1+1

)n

[F (u0) + ϕ(u0) − F (u) − ϕ(u)] ,

‖un − u‖p ≤ p

αM

(

C1

C1+1

)n

[F (u0) + ϕ(u0) − F (u) − ϕ(u)] .
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(ii) if p > q we have

F (un) + ϕ(un) − F (u) − ϕ(u) ≤
F (u0)+ϕ(u0)−F (u)−ϕ(u)�

1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1

� q−1

p−q

,

‖u − un‖p ≤ p

αM

F (u0)+ϕ(u0)−F (u)−ϕ(u)�
1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))

p−q
q−1

� q−1

p−q

.

Constants C1 and C2 depend on the functionals F and ϕ, the number of subspaces m,

the initial approximation u0, and is an increasing function on C0 in Assumption 2.1.

The above theorem has been used in [6] to prove that the multiplicative Schwarz

method converge for the contact problem with Tresca friction.

3.4 Quasi-variational inequalities

Details on the results in this subsection can be found in [5] and [6]. In this subsection,

we consider p = q = 2. Let ϕ : K×K → R be a functional such that, for any u ∈ K,

ϕ(u, ·) : K → R is convex, lower semicontinuous, and F (·) + ϕ(u, ·) is coercive, ie.
F (v) + ϕ(u, v)

‖v‖
→ ∞ as ‖v‖ → ∞, v ∈ K, if K is not bounded. We assume that for

any M > 0 there exists cM > 0 such that

|ϕ(v1, w2) + ϕ(v2, w1) − ϕ(v1, w1) − ϕ(v2, w2)| ≤ cM‖v1 − v2‖‖w1 − w2‖ (7)

for any v1, v2, w1 w2 ∈ K, ‖v1‖, ‖v2‖, ‖w1‖ ‖w2‖ ≤ M . In addition to the

hypotheses of Assumption 2.1, we suppose

m
∑

i=1

[ϕ(u,w +
i−1
∑

j=1

wj + vi) − ϕ(u,w +
i−1
∑

j=1

wj + wi)] ≤

ϕ(u, v) − ϕ(u,w +
m
∑

i=1

wi)

(8)

for any u ∈ K and for v, w ∈ K and vi, wi ∈ Vi, i = 1, . . . ,m, in Assumption 2.1.

We consider the problem

u ∈ K : 〈F ′(u), v − u〉 + ϕ(u, v) − ϕ(u, u) ≥ 0, for any v ∈ K. (9)

which is equivalent with the minimization problem

u ∈ K : F (u) + ϕ(u, u) ≤ F (v) + ϕ(u, v), for any v ∈ K.

With a similar proof to that of Theorem 2.1 in [23], we can show that these problems

have a unique solution if there exists a constant κ < 1 such that cM

αM
≤ κ for any

M > 0. Similarly with the case of inequalities with contraction operators, we can

state three multiplicative algorithms to solve problem (9),
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Algorithm 3.9 We start the algorithm with an arbitrary u0 ∈ K. At iteration n +
1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi satisfying

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 + ϕ(un+ i−1

m + wn+1
i , un+ i−1

m + vi)−

ϕ(un+ i−1

m + wn+1
i , un+ i−1

m + wn+1
i ) ≥ 0, for any vi ∈ Vi, un+ i−1

m + vi ∈ K,

and then we update un+ i
m = un+ i−1

m + wn+1
i .

Algorithm 3.10 We start the algorithm with an arbitrary u0 ∈ K. At iteration n +
1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi satisfying

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 + ϕ(un+ i−1

m , un+ i−1

m + vi)−

ϕ(un+ i−1

m , un+ i−1

m + wn+1
i ) ≥ 0, for any vi ∈ Vi, un+ i−1

m + vi ∈ K

and then we update un+ i
m = un+ i−1

m + wn+1
i .

Algorithm 3.11 We start the algorithm with an arbitrary u0 ∈ K. At iteration n +
1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi satisfying

〈F ′(un+ i−1

m + wn+1
i ), vi − wn+1

i 〉 + ϕ(un, un+ i−1

m + vi)−

ϕ(un, un+ i−1

m + wn+1
i ) ≥ 0, for any vi ∈ Vi, un+ i−1

m + vi ∈ K

and then we update un+ i
m = un+ i−1

m + wn+1
i .

The following theorem proves that if CM is small enough in comparison with αM and

βM , then the multiplicative Algorithms 3.9–3.11 are convergent.

Theorem 3.4 Under the above assumptions on V , F and ϕ, let u be the solution of

problem (9), and un, n ≥ 0, be its approximations obtained from one of the mul-

tiplicative Algorithms 3.9–3.11. If Assumption 2.1 together with (8) hold, and if
αM

2
≥ mCM +

√

2m(25C0 + 8)βMCM , for any M > 0, then there exists an M > 0

such that max(‖u‖, ‖u0‖, max
n≥0,1≤i≤m

‖un+ i
m‖) ≤ M and we have the following error

estimations
F (un) + ϕ(u, un) − F (u) − ϕ(u, u) ≤
(

C1

C1+1

)n

[F (u0) + ϕ(u, u0) − F (u) − ϕ(u, u)] ,

‖un − u‖2 ≤ 2
αM

(

C1

C1+1

)n

[F (u0) + ϕ(u0) − F (u) − ϕ(u)] .

Constant C1 depends on the functionals F and ϕ, the number of subspaces m, the

initial approximation u0, and is an increasing function on C0 in Assumption 2.1.

This result concerning the convergence of Algorithms 3.9–3.11 has been applied in

[6] to prove that the multiplicative Schwarz methods converge for the contact problem

with Coulomb friction.
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4 Schwarz methods as subspace correction methods

Details on the results in this section can be found in [2]. Let Ω ⊂ R
d be an open

bounded domain in R
d with Lipschitz continuous boundary ∂Ω, and we consider

an overlapping decomposition Ω = ∪m
i=1Ωi, where Ωi are open subdomains with

Lipschitz continuous boundary, too. We define the Sobolev space V = W 1,s
0 (Ω),

1 < s < ∞, let K ⊂ V be a convex closed set, and Vi = W 1,s
0 (Ωi), i = 1, · · · ,m.

With these spaces, associated to the domain decomposition, the multiplicative and ad-

ditive algorithms introduced in the previous section represent Schwarz methods. The

above spaces correspond to Dirichlet boundary conditions. Similar results can be ob-

tained if we consider the problems with mixed boundary conditions. Also, we have

considered problems having solution in W 1,s(Ω), but all the obtained results hold for

problems in [W 1,s(Ω)]N , N ≥ 2. We assume that the convex set K has the following

Property 4.1 If v, w ∈ K, and if θ ∈ C1(Ω̄) with 0 ≤ θ ≤ 1, then θv+(1−θ)w ∈ K.

We can prove (see [1] for the multiplicative case, and [3] for the additive one),

Proposition 4.1 Assumptions 2.1–2.3 hold for any convex set K having Property 4.1.

Consequently, the error estimations in Theorems 3.1–3.4 hold for convex sets having

the above property, provided that the functional F and the operator T or functionals

ϕ have appropriate proprieties. The convergence rate of these methods depends es-

sentially on the constant C0 and is an increasing function of this constant. On the

other hand, the constant C0 depends on the domain decomposition. For the one- and

two-level methods, we can write this constant C0 as a function of the overlapping and

mesh parameters.

4.1 One-level method

We consider a simplicial regular mesh partition Th of mesh size h over Ω ⊂ R
d. We

assume that Th supplies a mesh partition for each subdomain Ωi, i = 1, . . . ,m, and

the overlapping parameter of the domain decomposition is δ. We use the piecewise

linear finite element spaces

Vh = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω} and

V i
h = {v ∈ Vh : v = 0 in Ω\Ωi}, i = 1, . . . ,m.

The spaces Vh and V i
h , i = 1, . . . ,m, are considered as subspaces of W 1,s. We assume

that convex set Kh ⊂ Vh satisfies

Property 4.2 If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and 0 ≤
θ ≤ 1, then Lh(θv + (1 − θ)w) ∈ Kh, where Lh is the P1-Lagrangian interpolation.

The following proposition estimates the constant C0 as a function of the number of

subdomains and the overlapping parameter.

10



Proposition 4.2 Assumptions 2.1–2.3 hold for the piecewise linear finite element spaces,

V = Vh and Vi = V i
h , i = 1, . . . ,m, and for any convex set K = Kh ⊂ Vh having

Property 4.2. The constant C0 can be written as

C0 = C(m + 1)(1 +
m − 1

δ
),

in Assumption 2.1, and

C0 = Cm (1 + 1/δ) ,

in Assumptions 2.2 and 2.3, where C is independent of the mesh parameter and the

domain decomposition.

4.2 Two-level method

In the case of the two-level method, we consider two regular simplicial mesh partitions

Th and TH on Ω ⊂ R
d, Th being a refinement of TH . As in the previous case, we

assume that Th supplies a mesh partition for each Ωi, 1 ≤ i ≤ M , and the overlapping

parameter of the domain decomposition is δ. Also, we assume that diam(Ωi) ≤ CH ,

i = 1, . . . ,m, C being independent of the mesh partitions. The domain Ω may be

different from Ω0 = ∪τ∈TH
τ , but we assume that if a node of TH lies on ∂Ω0, then it

lies on ∂Ω, too, and dist(x, Ω0) ≤ CH for any node x of Th, C being independent of

both meshes. The spaces Vh, V i
h , i = 1, . . . ,m are defined as in case of the one-level

method, but we introduce a new piecewise linear finite element space corresponding

to the H-level,

V 0
H =

{

v ∈ C0(Ω̄0) : v|τ ∈ P1(τ), τ ∈ TH , v = 0 on ∂Ω0

}

.

The convex set Kh ⊂ Vh is assumed to satisfy Property 4.2. The two-level Schwarz

methods are obtained from the multiplicative and additive algorithms with V = Vh,

K = Kh, and the subspaces V0 = V 0
H , V1 = V 1

h , V2 = V 2
h , . . ., Vm = V m

h . As in

the case of the one-level method, spaces Vh, V 0
H , V 1

h , V 2
h , . . . , V m

h , are considered as

subspaces of W 1,s for 1 ≤ s ≤ ∞. The following proposition shows that the constant

C0 in Assumptions 2.1–2.3 is independent of the mesh and domain decomposition

parameters if H/δ and H/h are constant.

Proposition 4.3 Assumptions 2.1–2.3 are verified for the piecewise linear finite el-

ement spaces V = Vh and V0 = V 0
H , Vi = V i

h , i = 1, . . . ,m, and any convex set

K = Kh satisfying Property 4.2. The constant C0 can be taken of the form

C0 = Cm

(

1 + (m − 1)
H

δ

)

Cd,s(H, h),

in Assumption 2.1, and

C0 = C(m + 1) (1 + H/δ) Cd,s(H, h),

11



in Assumptions 2.2 and 2.3, where C is independent of the mesh and domain decom-

position parameters, and

Cd,s(H, h) =











1 if d = s = 1 or 1 ≤ d < s ≤ ∞
(

ln H
h

+ 1
)

d−1

d if 1 < d = s < ∞
(

H
h

)
d−s

s if 1 ≤ s < d < ∞,

(10)

Remark 4.1 In the cases of the inequalities of the second kind and the quasi-variational

inequalities we have introduced conditions on (5) and (8), respectively. These condi-

tions refer to the functionals ϕ and the function decompositions in Assumptions 2.1

– 2.3. It is proved in [5], in the general setting, and in [6], in the case of the contact

problems with friction, that if we consider some linear approximations of ϕ, then con-

ditions (5) and (8) hold. Consequently, it follows from Theorems 3.1–3.4, the one- and

two-level methods are globally convergent. The convergence rate essentially depends

on the mesh and overlapping parameters through the constant C0 given in Propositions

4.2 and 4.3.

5 Numerical example

The numerical experiments refer to the two-obstacle problem of a nonlinear elastic

membrane without body forces. In a domain Ω ⊂ R
2, we consider the problem

u ∈ K ≡ [a, b] :
∫

Ω
|∇u|s−2∇u∇(v − u) ≥ 0, for any v ∈ [a, b].

where a ≤ b, a, b ∈ W 1,s
0 (Ω), 1 < s < ∞. This problem is equivalent with the
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Figure 1: (a) Meshes TH , Th, and the domain decomposition, (b) Obstacles a and b.

minimization problem

u ∈ K : F (u) = min
v∈K

1

s

∫

Ω

|∇v|s.
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The above problem is of the type (2) and has been solved by the multiplicative Algo-

rithm 3.1. We know that if 1 < s ≤ 2, then (see [12]) for any v, u ∈ W 1,s
0 (Ω),

< F ′(v) − F ′(u), v − u >≥ α||v − u||21,s/(||v||1,s + ||u||1,s)
2−s

β||v − u||s−1
1,s ≥ ||F ′(v) − F ′(u)||V ′ ,

where α, β > 0 are constants. Consequently, the functions introduced in (1) can be

written as αM = α/(2M)2−s, βM = β with p = 2 and q = s.

If s ≥ 2, then (see [9]) for any v, u ∈ W 1,s
0 (Ω), we have

< F ′(v) − F ′(u), v − u >≥ α||v − u||s1,s

β(||v||1,s + ||u||1,s)
s−2||v − u||1,s ≥ ||F ′(v) − F ′(u)||V ′ ,

where α, β > 0 are constants. Therefore, αM = α, βM = β(2M)s−2, p = s and

q = 2 in (1).
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Figure 2: Solutions for: (a) s=2, (b) s=1.5, (c) s=3.

In our numerical experiments, we have taken Ω = (0, 4) × (0, 3), Th, TH contain

right-angled triangles, and the same number of equal segments are considered on each

side of the rectangular domain Ω. In Figure 1.a, this number is 30 for Th and 6 for

TH . In the same figure we have shown the domain decomposition, the number of the
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Figure 3: Iterations for H/h and H/δ constant: (a) one level, (b) two levels.

subdomains Ωi is 9, and the width of the overlaps is of 2 triangles in Th. The obstacles

a and b are also shown in Figure 1.b. Each of them is composed by a plane, a cylinder

and a semisphere. The computed solutions for s = 2.0, s = 1.5 and s = 3.0 are

plotted in Figure 2 for a mesh Th having 60 nodes on each side of the rectangular

domain Ω. In all the numerical tests the calculus has been stopped at a relative error

of 1.E-03 at the nodes of Th between two consecutive computed solutions.
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Figure 4: Iterations for H and h constant, and δ variable: (a) one level, (b) two levels.

We have seen in the previous section that the convergence rate depends on 1/δ in

the case of the one-level method, and on H/h and H/δ for the two-level method. We

have tried to verify it by numerical tests for the nonlinear membrane problem taking

various values of H , h and δ.

In the tests in Figure 3, H/h = 6 and H/δ = 2 stay unchanged while the coarse

mesh parameter H varies and it corresponds to 2, 4, . . . , 18, 20 segments on each side

of the rectangular domain Ω. We see that the number of the iterations is bounded for

the two-level method, and is an increasing function of 1/δ for the one-level method.
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This is in concordance with our predictions.

In the tests in Figures 4, 5 and 6, two of the parameters H , h or δ are constant and

the third one is variable.

For the tests in Figure 4, we have taken H = 5.0/12, h = 5.0/120 and δ =
1h, 2h, · · · , 10h. We see that, in both cases, the number of iterations is a decreasing

function of δ, and it is concordance with the expressions of C0 in the Propositions 4.2

and 4.3.

The tests in Figure 5 have been made for H = 5.0/6, δ = 5.0/12, and h corre-

sponds to partitions Th with 12, 24, 36, · · · , 120 segments on each side of the rectan-

gular domain Ω. For the one-level method, the number of iterations is constant for

h ≤ 5/24, and it is in concordance with C0 in Proposition 4.2. In the case of the two-

level method, the number of iterations is a decreasing function of h for s = 1.5 and

s = 2, and it is also in concordance with C0 in Proposition 4.3. For s = 3 > d = 2,

Cd,s(H, h) in (10) is equal to 1, and the number of iterations should be bounded. In

Figure 5.b, the number of iterations for s = 3 becomes constant for values of h less

than 5.0/60.
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Figure 5: Iterations for H and δ constant, and h variable: (a) one level, (b) two levels.

In the tests in Figure 6 we have taken h = 5.0/120, δ = 5.0/20 and H = 5.0/20,

5.0/12, 5.0/10, 5.0/8 and 5.0/6. The number of iterations is also in concordance with

the predictions in the previous section.

Finally, we see from our numerical tests that the number of iterations for the two-

level method is always much less than that one for the one-level method. For instance,

for H = 5.0/10, h = 5.0/60, δ = 5.0/20, when the number of unknowns is 3481, the

number of iterations is:

- for one-level: 23 for s = 1.5, 19 for s = 2.0, 15 for s = 3.0

- for two-levels: 13 for s = 1.5, 10 for s = 2.0, 9 for s = 3.0.

But, the two-level method is more complicated than the one-level method because

Kh ⊂ Vh and we look for corrections in VH , too. To see the efficiency of the two-level

method in comparison with the one-level method, we have compared the computing
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Figure 6: Iterations for h and δ constant, and H variable: (a) one level, (b) two levels.

time on a PC with one processor Pentium III of 600MHz for the above example:

- for one-level: 18min45sec for s = 1.5, 6min16sec for s = 2.0, 17min8sec for

s = 3.0

- for two-levels: 13min54sec for s = 1.5, 4min43sec for s = 2.0, 14min27sec for

s = 3.0

We see that the computing time of the two-level method is also less than that in the

case of the one-level method. We notice that the computing time for s = 2.0 is much

less than that for s = 1.5 or s = 3.0. It is natural, because, for s = 2.0, we minimize

quadratic functionals.
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