Koszul Cohomology and Algebraic Geometry

Marian Aprodu

Jan Nagel

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, ROMANIA & Școala Normală Superioară București, 21, Calea Griviței, 010702 Bucharest, Sector 1 ROMANIA

E-mail address: Marian.Aprodu@imar.ro

Institut de Mathmatiques de Bourgogne, CNRS UMR 5584, Université de Bourgogne, U.F.R. Sciences et Techniques B.P. 47870 F-21078 Dijon Cedex FRANCE

E-mail address: Johannes.Nagel@u-bourgogne.fr
2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14F99, 13D02
Contents

Preface vii

Chapter 1. Basic definitions 1
1.1. The Koszul complex 1
1.2. Definitions in the algebraic context 2
1.3. Minimal resolutions 3
1.4. Definitions in the geometric context 5
1.5. Functorial properties 6
1.6. Notes and comments 10

Chapter 2. Basic results 11
2.1. Kernel bundles 11
2.2. Projections and linear sections 12
2.3. Duality 17
2.4. Koszul cohomology versus usual cohomology 19
2.5. Sheaf regularity 21
2.6. Vanishing theorems 22

Chapter 3. Syzygy schemes 25
3.1. Basic definitions 25
3.2. Koszul classes of low rank 32
3.3. The $K_{p,1}$ theorem 34
3.4. Rank-2 bundles and Koszul classes 38
3.5. The curve case 41
3.6. Notes and comments 45

Chapter 4. The conjectures of Green and Green–Lazarsfeld 47
4.1. Brill-Noether theory 47
4.2. Numerical invariants of curves 49
4.3. Statement of the conjectures 51
4.4. Generalizations of the Green conjecture 54
4.5. Notes and comments 57

Chapter 5. Koszul cohomology and the Hilbert scheme 59
5.1. Voisin’s description 59
5.2. Examples 62
5.3. Koszul vanishing via base change 66

Chapter 6. Koszul cohomology of a $K3$ surface 69
6.1. The Serre construction, and vector bundles on $K3$ surfaces 69
6.2. Brill-Noether theory of curves on $K3$ surfaces 70
6.3. Voisin’s proof of Green’s generic conjecture: even genus 73
6.4. The odd-genus case (outline) 81
6.5. Notes and comments 83

Chapter 7. Specific versions of the syzygy conjectures 85

7.1. The specific Green conjecture 85
7.2. Stable curves with extra-syzygies 87
7.3. Curves with small Brill-Noether loci 89
7.4. Further evidence for the Green-Lazarsfeld conjecture 93
7.5. Exceptional curves 95
7.6. Notes and comments 96

Chapter 8. Applications 99

8.1. Koszul cohomology and Hodge theory 99
8.2. Koszul divisors of small slope on the moduli space. 104
8.3. Slopes of fibered surfaces 109
8.4. Notes and comments 110

Bibliography 113

Index 119
Preface

The systematic use of Koszul cohomology computations in algebraic geometry can be traced back to the foundational paper [Gre84a] by M. Green. In this paper, Green introduced the Koszul cohomology groups $K_{p,q}(X, L)$ associated to a line bundle L on a smooth, projective variety X, and studied the basic properties of these groups. Green noted that a number of classical results concerning the generators and relations of the (saturated) ideal of a projective variety can be rephrased naturally in terms of vanishing theorems for Koszul cohomology, and extended these results using his newly developed techniques. In a remarkable series of papers, Green and Lazarsfeld further pursued this approach. Much of their work in the late 80’s centers around the shape of the minimal resolution of the ideal of a projective variety; see [Gre89], [La89] for an overview of the results obtained during this period.

Green and Lazarsfeld also stated two conjectures that relate the Koszul cohomology of algebraic curves to two numerical invariants of the curve, the Clifford index and the gonality. These conjectures became an important guideline for future research. They were solved in a number of special cases, but the solution of the general problem remained elusive. C. Voisin achieved a major breakthrough by proving the Green conjecture for general curves [V02] and [V05]. This result soon led to a proof of the conjecture of Green–Lazarsfeld for general curves [AV03], [Ap04].

Since the appearance of Green’s paper there has been a growing interaction between Koszul cohomology and algebraic geometry. Green and Voisin applied Koszul cohomology to a number of Hodge–theoretic problems, with remarkable success. This work culminated in Nori’s proof of his connectivity theorem [No93]. In recent years, Koszul cohomology has been linked to the geometry of Hilbert schemes (via the geometric description of Koszul cohomology used by Voisin in her work on the Green conjecture) and moduli spaces of curves.

Since there already exists an excellent introduction to the subject [Ei06], this book is devoted to more advanced results. Our main goal was to cover the recent developments in the subject (Voisin’s proof of the generic Green conjecture, and subsequent refinements) and to discuss the geometric aspects of the theory, including a number of concrete applications of Koszul cohomology to problems in algebraic geometry. The relationship between Koszul cohomology and minimal resolutions will not be treated at length, although it is important for historical reasons and provides a way to compute Koszul cohomology by computer calculations.

Outline of contents. The first two chapters contain a review of a number of basic definitions and results, which are mainly included to fix the notation and
to obtain a reasonably self-contained presentation. Chapter 3 is devoted to the
theory of syzygy schemes. The aim of this theory is to study Koszul cohomology
classes in the groups $K_{p,1}(X, L)$ by associating a geometric object to them. This
chapter includes a proof of one of the fundamental results in the subject, Green’s
$K_{p,1}$-theorem. In Chapter 4 we recall a number of results from Brill–Noether
theory that will be needed in the sequel and state the conjectures of Green and
Green–Lazarsfeld.

Chapters 5–7 form the heart of the book. Chapter 5 is devoted to Voisin’s
description of the Koszul cohomology groups $K_{p,q}(X, L)$ in terms of the Hilbert
scheme of zero–dimensional subschemes of X. This description yields a method to
prove vanishing theorems for Koszul cohomology by base change, which is used in
Voisin’s proof of the generic Green conjecture. In Chapter 6 we present Voisin’s
proof for curves of even genus, and outline the main steps of the proof for curves of
odd genus; this case is technically more complicated. Chapter 7 contains a number
of refinements of Voisin’s result; in particular, we have included a proof of the
conjectures of Green and Green–Lazarsfeld for the general curve in a given gonality
stratum of the moduli space of curves. In the final chapter we discuss geometric
applications of Koszul cohomology to Hodge theory and the geometry of the moduli
space of curves.

Acknowledgments. MA thanks the Fourier Institute Grenoble, the University of
Bayreuth, Laboratoire Painlevé Lille, and the Max Planck Institut für Mathematik
Bonn, and JN thanks the Fourier Institute Grenoble, the University of Bayreuth,
and the Simion Stoilow Institute Bucharest for hospitality during the preparation
of this work. MA was partially supported by an ANCS contract. The authors are
members of the L.E.A. “MathMode”.

Marian Aprodu and Jan Nagel