PENCILS ON EXCEPTIONAL CURVES ON A K3 SURFACE (PRELIMINARY DRAFT)

MARIAN APRODU (IMAR) AND GIANLUCA PACIENZA (IRMA)

ABSTRACT. We compute the dimensions of Brill-Noether loci of pencils on exceptional curves on a K3 surface.

This paper is a continuation of [AP08]. We use the notation of [AP08], and [A05].

Theorem 0.1. Let S be a K3 surface with $\operatorname{Pic}(S) \cong \mathbb{Z} \cdot H \oplus \mathbb{Z} \cdot \ell$, where H is very ample, ℓ is a smooth rational curve, $H^2 = 2r - 2 \ge 4$, and $H \cdot \ell = 1$. Then for any $0 \le n \le 2r - 2$ and any smooth curve $C \in |2H + \ell|$ we have $\dim(W_{2r+n}^1(C)) \le \max(n+2,2n)$.

Recall that smooth connected curves in the linear system $|2H + \ell|$ always exist [ELMS89], and, again by [ELMS89, Theorem, p. 176] if $C \in |2H + \ell|$ is smooth then it has the following invariants:

- (1) $g_C = 4r 2;$
- (2) gon(C) = 2r (and this is the maximal gonality for the given genus);
- (3) $\operatorname{Cliff}(C) = 2r 3$ (one less than the maximal Clifford index);
- (4) dim $(W_{2r}^1(C)) = 1$ (a generic curve of even genus has finitely many minimal pencils).

Consider the variety

$$\mathcal{W}_{2r+1}^1(|2H+\ell|_s) \xrightarrow{\pi_S} |2H+\ell|_s,$$

whose fibre over $C \in |2H + \ell|_s$ coincides with $W_{2r+1}^1(C)$ scheme-theoretically [AC81]: the subscript \cdot_s stands here for open subset of $|2H + \ell|$ parametrizing smooth curves.

In order to prove Theorem 0.1 we analyze the birational geometry of all the possible components \mathcal{W} of the variety $\mathcal{W}_{2r+1}^1(|2H + \ell|_s)$ that dominate the linear system $|2H + \ell|$, and prove that the relative dimension cannot exceed two.

Proof of Theorem 0.1. First, remark that

$$\rho(g_C, 1, 2r+n) = 2n,$$

and this is the expected dimension of the Brill-Noether locus in this case. We follow the lines of [AP08]. Let \mathcal{W} be a component of the variety $\mathcal{W}_{2r+1}^1(|2H+\ell|_s)$ dominating the linear system $|2H+\ell|$. By [ACGH85, Lemma 3.5, p. 182] a generic pair (C, A) parametrized by \mathcal{W} will verify $h^0(C, A) = 2$ (as no component of W_{2r+n}^1 is entirely contained in W_{2r+n}^2). As in [AP08], we distinguish two cases:

- (1) either a generic member $(C, A) \in \mathcal{W}$ is such that A is base-point-free and $h^0(C, A) = 2$, or
- (2) a generic member $(C, A) \in \mathcal{W}$ is such that A has base-points and $h^0(C, A) = 2$.

Date: September 22, 2008.

The authors are members of the L.E.A. MathMode.

In the second case, we apply an inductive argument: adding one base-point will increase the dimension of (the corresponding component of) the Brill-Noether locus by one.

In the first case, we use the Lazarsfeld-Mukai bundles [GL87], [La86], [La89], [Mu89], similarly to [AP08].

Recall that if $(C, A) \in \mathcal{W}$ is a generic member, then we have a rank-2 bundle given by an extension

$$0 \to H^0(C, A)^* \otimes \mathcal{O}_S \to E \to K_C(-A) \to 0,$$

with the following invariants:

- (1) $\det(E) = \mathcal{O}_S(C) = \mathcal{O}_S(2H + \ell);$
- (2) $c_2(E) = \deg(A) = 2r + n;$
- (3) $h^0(S, E) = 2h^0(C, A) \deg(A) 1 + g_C$ (and it equals 2r + 1 n);
- (4) E is globally generated (outside the base locus of |A| which is empty in our case);
- (5) $h^1(S, E) = h^2(S, E) = 0.$

There are two subcases:

- (a1) the generic (C, A) corresponds to a simple bundle E(C, A).
- (a2) the generic (C, A) corresponds to a non-simple bundle E = E(C, A).

In case (a1) [AP08, Corollary 3.3] shows that the relative dimension of $\mathcal{W} \to |2H + \ell|_s$ is equal to $\rho(g_C, 1, 2r + n) = 2n$ and we are done.

In case (a2) by the the Donagi-Morrison description [DM89] (see also [CP95]) we know that a non-simple E is given by an extension

$$(0.1) 0 \to M \to E \to N \otimes I_{\xi} \to 0$$

with

(i)
$$h^0(S, M) \ge 2, h^0(S, N) \ge 2;$$

(ii) N is base-point-free;

(iii) if $h^0(S, M \otimes N^{\vee}) = 0$ then $\operatorname{supp}(\xi) = \emptyset$ and the sequence is split.

Write $M = aH + b\ell$ and $N = a'H + b'\ell$. From the equations

(0.2)
$$\det(E) = M \otimes N = \mathcal{O}_S(2H + \ell)$$

and

(0.3)
$$2r + n = c_2(E) = M \cdot N + \lg(\xi),$$

using the conditions (i) and (ii) above we deduce that

(0.4)
$$M = \mathcal{O}_S(H+\ell), \ N = \mathcal{O}_S(H) \text{ and } \lg(\xi) = n+1.$$

Next, as in [AP08], we use (0.4) to obtain a concrete description of the parameter space \mathcal{P} of non-simple Lazarsfeld-Mukai bundles.

Lemma 0.2. For any non simple bundle Lazarsfeld-Mukai bundle E as above, the extension (0.1) is uniquely determined.

Proof. The proof of Lemma 3.6 [AP08] also goes through, as we have a short exact sequence

$$0 \to \mathcal{O}_S \to E(-H-\ell) \to \mathcal{O}_S(-\ell) \otimes I_{\xi} \to 0$$

and $h^0(S, \mathcal{O}_S(-\ell) \otimes I_{\xi}) = 0.$

Lemma 0.3. For any zero-dimensional subscheme ξ of length two, we have

 $\dim \left(\operatorname{Ext}^{1}(\mathcal{O}_{S}(H) \otimes I_{\xi}, \mathcal{O}_{S}(H+\ell)) \right) = n+1.$

 $\mathbf{2}$

Proof. We compute

 $\dim \left(\operatorname{Ext}^{1}(\mathcal{O}_{S}(H) \otimes I_{\xi}, \mathcal{O}_{S}(H+\ell)) \right) = h^{1}(S, M^{\vee} \otimes N \otimes I_{\xi}) = h^{1}(S, I_{\xi}(-\ell))$

using the exact sequence

$$0 \to I_{\xi}(-\ell) \to \mathcal{O}_S(-\ell) \to \mathcal{O}_{\xi} \to 0$$

Since $h^0(\mathcal{O}_{\xi}) = n + 1$, $h^0(S, \mathcal{O}_S(-\ell)) = 0$ and $h^1(S, \mathcal{O}_S(-\ell)) = 0$ (from the exact sequence $0 \to \mathcal{O}_S(-\ell) \to \mathcal{O}_S \to \mathcal{O}_\ell \to 0$, we obtain the exact sequence $0 \to H^0(\mathcal{O}_S) \to H^0(\mathcal{O}_\ell) \to H^1(\mathcal{O}_S(-\ell)) \to H^1(\mathcal{O}_S) = 0$), it follows that $h^1(S, I_{\xi}(-\ell)) = n + 1$.

Lemmas 0.2 and 0.3 eventually show the following statement

Proposition 0.4. The parameter space \mathcal{P} of non-simple Lazarsfeld-Mukai bundles is birational to a \mathbb{P}^n -bundle over $S^{[n+1]}$, hence it is of dimension 3n + 2.

As in [AP08], consider the fibre bundle $\mathcal{G} \xrightarrow{p} \mathcal{P}$ whose fibre over a point $[E] \in \mathcal{P}$ is the Grassmannian:

$$p^{-1}([E]) = G(2, H^0(S, E)).$$

The dimension of \mathcal{G} equals

 $\dim(\mathcal{G}) = \dim(\mathcal{P}) + \dim(G(2, H^0(S, E))) = 3n + 2 + 2(2r - 1 - n) = 4r + n.$

The last step in the proof of Theorem 0.1 is represented by the following

Proposition 0.5. If \mathcal{W} is a dominating component whose generic element (C, A) corresponds to a non-simple Lazarsfeld-Mukai bundle E = E(C, A), then the generic fibres of the morphism $\mathcal{W} \to |2H + \ell|_s$ are (n+2)-dimensional.

For the proof of Proposition 0.5, observe that Proposition 3.9 of [AP08] goes through, hence \mathcal{W} is birational to \mathcal{G} , and dim $(\mathcal{W}) = 4r + n$ for the subcase a2). Since dim $|2H + \ell| = g_C = 4r - 2$, we have

$$\dim(\mathcal{W}) - \dim|2H + \ell| = n + 2.$$

Note that if n = 0, there are no components corresponding to non-simple vector bundles, and if n = 1, then these components are three-dimensional. By excess linear series, in the case n = 1 any smooth curve in $C \in |2H + \ell|$ will have $\dim(W_{2r+1}^1(C)) = 3$.

References

- [A02] M. Aprodu, On the vanishing of the higher syzygies of curves, Math. Z. 241 (2002), 1–15.
- [A04] M. Aprodu, Green-Lazarsfeld gonality conjecture for a generic curve of odd genus, Int. Math. Res. Not. 63 (2004), 3409–3416.
- [A05] M. Aprodu, Remarks on syzygies of d-gonal curves, Math. Res. Lett. 12 (2005), 387– 400.
- [AP08] M. Aprodu and G. Pacienza, The Green conjecture for exceptional curves on a K3 surface, Int. Math. Res. Notices 2008.
- [AV03] M. Aprodu and C. Voisin, Green-Lazarsfeld's conjecture for generic curves of large gonality, C. R. Math. Acad. Sci. Paris 336 (2003), 335–339.
- [AC81] E. Arbarello and M. Cornalba, Su una congettura di Petri, Comm. Math. Helv. 56 (1981), 1–38.
- [ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves, Grundlehren. math. Wiss. 267 (1985) Springer Verlag.
- [CP95] C. Ciliberto and G. Pareschi, Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math. 460 (1995), 15–36.
- [DM89] R. Donagi and D. Morrison, *Linear systems on K3 sections*, J. Diff. Geom. 29 (1989), 49–64.

4	M. APRODU AND G. PACIENZA
[ELMS89]	D. Eisenbud, H. Lange, Herbert, G. Martens and FO. Schreyer, <i>The Clifford dimension of a projective curve</i> , Compositio Math. 72 (1989), 173–204.
[FHL84]	 W. Fulton, J. Harris, R. Lazarsfeld, Excess linear series on an algebraic curve, Proc. Amer. Math. Soc. 92 (1984), 320–322.
[G84]	M. Green, Koszul cohomology and the geometry of projective varieties, J. Diff. Geom. 19 (1984), 125–171, with an Appendix by M. Green and R. Lazarsfeld.
[GL85]	M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1985), 73–90.
[GL87]	M. Green and R. Lazarsfeld, <i>Special divisors on curves on a K3 surface</i> , Invent. Math. 89 (1987), 357–370.
[L83] [La86]	 H. Lange, Universal families of extensions, J. Algebra 83 (1983), 101–112. R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), 299–307.
[La89]	R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, M. Cornalba (ed.) et al.,Proceedings of the first college on Riemann surfaces held in Trieste, Italy, November 9-December 18, 1987. Teaneck, NJ: World Scientific Publishing Co. (1989) 500–559.
[La97]	R. Lazarsfeld, <i>Lectures on Linear Series</i> , IAS/Park City Math. Series vol. 8 (1997) 163–219.
[Ma82]	G. Martens, Über den Clifford-Index algebraischer Kurven, J. Reine Angew. Math. 336 (1982) 83–90.
[Mu89]	S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Ac. Science USA 86 (1989), 3000–3002.
[OSS80]	C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progress in Math. vol. 3, Birkhaeuser Boston, 1980.
[V02]	C. Voisin, Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc. 4 (2002), 363–404.
[V05]	C. Voisin, Green's canonical syzygy conjecture for generic curves of odd genus, Compositio Math. 141 (2005), no. 5, 1163–1190.
MA: Institute of Mathematics "Simion Stoilow" of the Romanian Academy P.O.	

Box 1-764, RO-014700 Bucharest – Romania, and Şcoala Normală Superioară București, Calea Griviței 21, Sector 1, RO-010702 Bucharest - Romania

GP: Institut de Recherches Mathématiques Avancées Université Louis Pasteur et CNRS 7 RUE RENÉ DESCARTES, F-67084 STRASBOURG CEDEX – FRANCE

4

M APRODU ND G PA