PENCILS ON EXCEPTIONAL CURVES ON A K3 SURFACE
(PRELIMINARY DRAFT)
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ABsTRACT. We compute the dimensions of Brill-Noether loci of pencils on
exceptional curves on a K3 surface.
This paper is a continuation of [AP08]. We use the notation of [AP0§]|, and
[A05)].

Theorem 0.1. Let S be a K3 surface with Pic(S) 2 Z-H®Z-{, where H is very
ample, ¢ is a smooth rational curve, H> = 2r —2 > 4, and H - { = 1. Then for
any 0 < n < 2r —2 and any smooth curve C' € |2H + (| we have dim(W3, ., (C)) <
maz(n + 2,2n).

Recall that smooth connected curves in the linear system |2H + ¢| always exist
[ELMS89], and, again by [ELMS89, Theorem, p. 176] if C' € |2H + ¢| is smooth
then it has the following invariants:

(1) go = 4r—2;

(2) gon(C) = 2r (and this is the maximal gonality for the given genus);

(3) Cliff(C') = 2r — 3 (one less than the maximal Clifford index);

(4) dim (W3,.(C)) = 1 (a generic curve of even genus has finitely many minimal
pencils).

Consider the variety
W21T+1(|2H+£|5) E’ |2H+£|Sa

whose fibre over C' € |2H + /|, coincides with W3, ,(C) scheme-theoretically
[AC81]: the subscript -5 stands here for open subset of |2H + ¢| parametrizing
smooth curves.

In order to prove Theorem 0.1 we analyze the birational geometry of all the
possible components W of the variety W3 ., (|12H + ¢|,) that dominate the linear
system |2H + ¢|, and prove that the relative dimension cannot exceed two.

Proof of Theorem 0.1. First, remark that
p(gca ]-a 2r + TL) = 2”;

and this is the expected dimension of the Brill-Noether locus in this case. We
follow the lines of [AP08|. Let W be a component of the variety W3, (|2H + {|,)
dominating the linear system |2H + ¢|. By [ACGH85, Lemma 3.5, p. 182] a generic
pair (C, A) parametrized by W will verify h?(C, A) = 2 (as no component of Wy, ,
is entirely contained in W3, ). As in [AP08|, we distinguish two cases:

(1) either a generic member (C, A) € W is such that A is base-point-free and

hO(C, A) =2, or
(2) ageneric member (C, A) € W is such that A has base-points and h°(C, A) =
2.
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In the second case, we apply an inductive argument: adding one base-point will
increase the dimension of (the corresponding component of) the Brill-Noether locus
by one.

In the first case, we use the Lazarsfeld-Mukai bundles [GL87], [La86], [Lag&9],
[Mu89], similarly to [AP0S].

Recall that if (C, A) € W is a generic member, then we have a rank-2 bundle
given by an extension

0— H(C,A)*® 05 - E — Kc(—A) — 0,

with the following invariants:
(1) det(E) = Os(C) = Os(2H + 0);
(2) c2(F) =deg(A) =2r +n;
(3) hO(S,E) = 2h°(C, A) — deg(A) — 1 + go (and it equals 2r + 1 — n);
(4) Eis globally generated (outside the base locus of |A| which is empty in our
case);

(5) h'(S,E) = h?(S,E) = 0.

There are two subcases:

(al) the generic (C, A) corresponds to a simple bundle E(C, A).

(a2) the generic (C, A) corresponds to a non-simple bundle E = E(C, A).

In case (al) [AP08, Corollary 3.3] shows that the relative dimension of W — |2H +
| is equal to p(gc, 1,2r +n) = 2n and we are done.

In case (a2) by the the Donagi-Morrison description [DM89] (see also [CP95])
we know that a non-simple E is given by an extension

(0.1) 0—-M—-FE—-N®I. -0
with
(i) hO(S,M) > 2, h°(S,N) > 2
(ii) N is base-point-free;
(iii) if h°(S, M ® NV) = 0 then supp(¢) = 0 and the sequence is split.
Write M = aH + bf and N = o’ H + b'¢. From the equations

(0.2) det(E) =M @ N =0g(2H + {)

and

(0.3) % +n=cy(E)= M- N +1g(€),

using the conditions (i) and (ii) above we deduce that

(0.4) M =0g(H+/{), N=0g(H) and 1g(§) =n+ 1.

Next, as in [AP0§|, we use (0.4) to obtain a concrete description of the parameter
space P of non-simple Lazarsfeld-Mukai bundles.

Lemma 0.2. For any non simple bundle Lazarsfeld-Mukai bundle E as above, the
extension (0.1) is uniquely determined.

Proof. The proof of Lemma 3.6 [AP08] also goes through, as we have a short exact
sequence

0—-0s—E(—H —-{) - O0s(—4)®1 — 0
and h°(S,0s(—f) ® I¢) = 0. O
Lemma 0.3. For any zero-dimensional subscheme & of length two, we have

dim (Ext' (Os(H) ® I, Os(H + £))) =n + 1.
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Proof. We compute
dim (Ext"(Os(H) ® I, Os(H + £))) = h' (S, M"Y @ N ® I¢) = h*(S, I¢(—¢))
using the exact sequence
0— Ie(—¢) — Og(—¢) — O — 0.

Since h°(O¢) = n + 1, h9(S,0s(—¢)) = 0 and h'(S,Og(—¢)) = 0 (from the
exact sequence 0 — Og(—¢) — Og — Oy — 0, we obtain the exact sequence 0 —
HY(Og) — HY(O;) — H (Og(—¢)) — H*(Og) = 0), it follows that h'(S, I¢(—¢)) =
n+ 1. (I

Lemmas 0.2 and 0.3 eventually show the following statement

Proposition 0.4. The parameter space P of non-simple Lazarsfeld-Mukai bundles
is birational to a P"-bundle over St hence it is of dimension 3n + 2.

As in [AP08|, consider the fibre bundle G % P whose fibre over a point [E] € P
is the Grassmannian:
p ' ([E) = G(2,H"(S, E)).
The dimension of G equals
dim(G) = dim(P) + dim(G(2, H°(S, E))) = 3n +2+2(2r — 1 —n) = 4r + n.
The last step in the proof of Theorem 0.1 is represented by the following

Proposition 0.5. If W is a dominating component whose generic element (C, A)
corresponds to a non-simple Lazarsfeld-Mukai bundle E = E(C, A), then the generic
fibres of the morphism W — |2H + £|s are (n + 2)-dimensional.

For the proof of Proposition 0.5, observe that Proposition 3.9 of [AP08] goes
through, hence W is birational to G, and dim(W) = 4r + n for the subcase a2).
Since dim|2H + ¢| = gc = 4r — 2, we have

dim(W) — dim|2H + ¢| =n + 2.
O
Note that if n = 0, there are no components corresponding to non-simple vec-

tor bundles, and if n = 1, then these components are three-dimensional. By ex-
cess linear series, in the case n = 1 any smooth curve in C € |2H + ¢| will have

dim(14,.,(0)) = 3.
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