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Main goals

Using recent results by the authors on the
spectral asymptotics of the Neumann Laplacian
with magnetic field, we give precise estimates on
the critical field, HC3, describing the appearance
of superconductivity in superconductors of type II.
Furthermore, we prove that the local and global
definitions of this field coincide. Near HC3 only
a small part, near the boundary points where
the curvature is maximal, of the sample carries
superconductivity. We give precise estimates on
the size of this zone and decay estimates in both the
normal (to the boundary) and parallel variables. We
discuss also the three dimensional case.



Ginzburg-Landau functional

The Ginzburg-Landau functional is given by

Eκ,H[ψ, ~A] =
∫

Ω

{

|∇κH ~Aψ|2 − κ2|ψ|2 + κ2

2 |ψ|4

+κ2H2| curl ~A− 1|2
}

dx ,

with Ω simply connected, (ψ, ~A) ∈ W 1,2(Ω; C) ×
W 1,2(Ω; R2) and where ∇ ~A = (∇− i ~A).

We fix the choice of gauge by imposing that

div ~A = 0 in Ω , ~A · ν = 0 on ∂Ω .



The Ginzburg-Landau functional in three space
dimensions is given by

E [ψ, ~A] =

∫

Ω

{

|∇κH ~Aψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4

}

dx

+ κ2H2

∫

R3
| curl ~A− β|2 dx , (1)

Here ~A is such that

~A− ~F ∈ Ḣ1(R3) ,

where Ḣ1(R3) is the closure of C∞
0 (R3) under the

norm
f 7→ ‖f‖Ḣ1 = ‖∇f‖L2 .

and
curl ~F = β ,

with β constant magnetic field of intensity one along
the z axis.



We come back to dimension two.

Minimizers (ψ, ~A) of the functional satisfy the
Ginzburg-Landau equations,

−∇2
κH ~A

ψ = κ2(1 − |ψ|2)ψ
curl 2 ~A = − i

2κH(ψ∇ψ − ψ∇ψ) − |ψ|2 ~A

}

in Ω ;

(2a)

(∇κH ~Aψ) · ν = 0

curl ~A− 1 = 0

}

on ∂Ω .

(2b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1,

curl 2 ~A = (∂x2( curl ~A),−∂x1( curl ~A)) .



Here ~F denotes the vector potential generating the
constant exterior magnetic field

div ~F = 0

curl ~F = 1

}

in Ω ,

and the boundary condition

~F · ν = 0 on ∂Ω .



In the three dimensional case, minimizers of the
functional E , have to satisfy the Euler-Lagrange
equations:

−∇2
κH ~A

ψ = κ2(1 − |ψ|2)ψ
in Ω ,

curl 2 ~A =
{

− i
2κH(ψ∇ψ − ψ∇ψ) − |ψ|2 ~A

}

1Ω(x)
in R

3 ,

(∇κH ~Aψ) · ν = 0
on ∂Ω .

(3)

Note that it does not give curl A = β on ∂Ω



Terminology for the minimizers

The pair (0, ~F ) is called the Normal State.

A minimizer (ψ,A) for which ψ never vanishes will
be called SuperConducting State.

In the other cases, one will speak about Mixed State.

The general question is to determine the topology
of the sets of (κ,H) corresponding to minimizers
belonging to each of these three situations.



Existence of the third critical field HC3(κ)

It is known that, for given values of the parameters
κ,H, the functional E has minimizers.

However, after some analysis of the functional, one
finds (see [GiPh]) that, for given κ, there exists

H(κ) such that if H > H(κ) then (0, ~F ) is the
unique minimizer of Eκ,H (up to change of gauge).

Following Lu and Pan [LuPa1], we define

HC3
(κ) = inf{H > 0 : (0, ~F ) minimizer of Eκ,H} .

A central question in the mathematical treatment of
Type II superconductors is to establish the asymptotic
behavior of HC3

(κ) for large κ.

We will also discuss the relevance of this definition
and describe how HC3

(κ) can be determined by the
study of a linear problem.



Our first result [FoHe] is the following strengthening
of a result in [HePa].

Theorem A
Suppose Ω is a bounded simply-connected domain in
R

2 with smooth boundary. Let kmax be the maximal
curvature of ∂Ω. Then

HC3
(κ) =

κ

Θ0
+
C1

Θ
3
2
0

kmax + O(κ−
1
2) , (4)

where C1,Θ0 are universal constants.

Remark
The constants Θ0, C1 are defined in terms of auxiliary
spectral problems.



In the case of dimension 3, under certain geometric
assumptions on Ω. One deduces of the result
of Helffer-Morame the following asymptotics for
HC3(κ):

Theorem A’

Suppose Ω is a smooth, bounded, simply connected
domain in R3 satisfying “generic conditions”. Then
one finds

HC3
(κ) − (

κ

Θ0
− γ̂0Θ

−2/3
0 κ1/3) = o(κ1/3) , (5)

where HC3(κ) denotes any of the critical fields
defined above and γ̂0 is a geometrically defined (and
depending on the magnetic field), positive constant.



Localization at the boundary

From the work of Helffer-Morame [HeMo2]

——(improving Del Pino-Fellmer-Sternberg and Lu-
Pan) (see also Helffer-Pan [HePa] for the non-linear
case)——

we know that, when H is sufficiently close to
HC3(κ), (non-trivial) minimizers of the Ginzburg-
Landau functional are exponentially localized to a
region near the boundary.

This is called Surface Superconductivity.

The proof is based on semi-classical Agmon
estimates, but the “Agmon distance” has to be
replaced by the distance to the boundary.



From semi-classical Agmon estimates to weak
localization

Note that the Agmon estimates give first, for some
α > 0,

|| expακd(x, ∂Ω)ψ||22 ≤ C ||ψ||22 ,

which imply

||ψ||22 ≤M

∫

d(x,∂Ω)≤M
κ

|ψ(x)|2dx ,

We will need the following weak form of this
localization :

||ψ||L2(Ω) ≤ C κ−
1
4 ||ψ||L4(Ω) , (6)

which is true for κ large enough.

The proof is similar in Dimension 3.



Localization at the points of maximal curvature

The statement in dimension 2 is that, when H is
rather close to the third critical field, the minimizers
are also localized in the tangential variable to a small
zone around the points of maximal curvature.

This leads in particular to the better

||ψ||L2(Ω) ≤ Cκ−
3
8 ||ψ||L4(Ω) , (7)

One can hope similar results in dimension 3 :

Localization near the curve where the external
magnetic field vector is tangent to the boundary
(see Pan and Helffer-Morame)

Inside this curve, localization due to some “magnetic
curvature”.



Discussion of critical fields

Actually, we should define more than one critical
field, instead of just HC3

.

We should also a priori define an upper third critical
field, by

HC3(κ)

= inf{H > 0 : ∀H ′ > H , (0, ~F )
unique minimizer of Eκ,H′} ,

Of course we have

HC3
(κ) ≤ HC3(κ) .

Note that one can prove that the asymptotics given
before is valid for both fields.



The Schrödinger operator with magnetic field

Let, for B ∈ R+, the magnetic Neumann Laplacian
H(B) be the self-adjoint operator (with Neumann
boundary conditions) associated to the quadratic
form

W 1,2(Ω) ∋ u 7→ QB(u) :=

∫

Ω

|(−i∇−B ~F )u|2 dx ,

We define λ1(B) as the lowest eigenvalue of H(B).



The local upper critical fields can now be defined :

H
loc

C3
(κ) = inf{H > 0 : ∀H ′ > H, λ1(κH

′) ≥ κ2} ,

and

H loc
C3

(κ) = inf{H > 0 : λ1(κH) ≥ κ2} .

The coincidence between H
loc

C3
(κ) and H loc

C3
(κ) is

immediately related to lack of strict monotonicity of
B 7→ λ1(B).

These local critical fields appear when analyzing the
(local) stability of the normal solution (0, ~F ).



Next goal is to compare the various fields ([FoHe]).
Comparison Theorem C
Let Ω be a bounded simply-connected domain in
R

2 with smooth boundary and let κ > 0, then the
following general relations hold

HC3(κ) ≥ H
loc

C3
(κ) ,

and

HC3
(κ) ≥ H loc

C3
(κ) .

EASY and GENERAL.



Next theorem is new and more delicate !

Theorem D
Let Ω be a bounded simply-connected domain in R2

with smooth boundary. Then ∃ κ0 > 0 such that,
for κ > κ0, we have

HC3(κ) = H
loc

C3
(κ) ,

and

HC3
(κ) = H loc

C3
(κ) ,



So if the monotonicity of λ1(B) for B large is
established, or if we prove by other means that

H loc
C3

(κ) = H
loc

C3
(κ) this gives immediately the

coincidence of the four fields !!

In the 2 dimensional case, this monotonicity has been
shown in great generality under generic assumptions
by Fournais-Helffer, who get in addition a complete
asymptotic expansion.

Unfortunately no such complete expansion is
available in the case of dimension 3. The best
result is the result which is deduced of the result of
Helffer-Morame on the groundstate of the Neumann
realization of the Schrödinger operator with magnetic
field.



Around the proof of Theorem D

We treat the case of Dimension 2, but the proof can
be modified for getting the case of Dimension 3.

The crucial point leads in the following argument.

If, for someH, there is a non trivial minimizer (ψ,A),
i.e. satisfying

E(ψ, ~A) ≤ 0 .

then

0 < ∆ := κ2||ψ||22 −QκH ~A[ψ] = κ2||ψ||44 ,

where QκH ~A[ψ] is the energy of ψ.

The last equality is a consequence of the first G-L
equation.



Combining with (6), this gives

||ψ||2 ≤ Cκ−
3
4∆

1
4 .

By comparison of the quadratic forms Q respectively
associated with ~A et ~F , we get, with ~a = ~A− ~F :

∆ ≤
[

κ2 − (1 − ρ)λ1(κH)
]

‖ψ‖2
2 + ρ−1(κH)2

∫

Ω

|~aψ|2 dx ,
(8)

for all ρ > 0.

Note that by the regularity of the system Curl-Div,
combined with the Sobolev’s injection theorem, we
get

‖~a‖4 ≤ C1‖~a‖W 1,2 ≤ C2‖ curl ~a‖2 .



Now ∆ is also controlling ‖ curl ~a‖2
2, so we get :

(κH)2‖~a‖2
4 ≤ C∆ .

Combining all these inequalities leads to :

0 < ∆ ≤
≤

[

κ2 − (1 − ρ)λ1(κH)
]

‖ψ‖2
2 + ρ−1(κH)2‖~a‖2

4‖ψ‖2
4

≤
[

κ2 − λ1(κH)
]

‖ψ‖2
2

+Cρλ1(κH)∆
1
2κ−

3
2 + Cρ−1∆

3
2κ−1 .

Chosing ρ =
√

∆κ−
3
4 , and using the rough upper

bound λ1(κH) < Cκ2, we find

0 < ∆ ≤
[

κ2 − λ1(κH)
]

‖ψ‖2
2 + C∆κ−

1
4 .



This shows finally, for κ large enough independently
of H sufficiently close to “any” third critical field
(they have the same asymptoics)

0 < ∆ ≤ C̃
[

κ2 − λ1(κH)
]

‖ψ‖2
2 ,

so in particular

κ2 − λ1(κH) > 0 .

Coming back to the definitions this leads to the
statement.



Intensity of the onset

We know that if (ψ,A) is a minimizer, then

||ψ||∞ ≤ 1 .

This is far to explain the mechanism of onset of
superconductivity.

With the technique given before, we obtain for H <

HC3(κ) with H sufficiently close to HC3(κ)

||ψ||∞ ≤ Cǫ(HC3(κ) −H)
1
2κ

3
2+ǫ , ∀ǫ > 0 .

This estimate is probably not optimal.



New results on Diamagnetism

Theorem E

If Ω has regular boundary then B 7→ λ1(B) is
monotonically increasing for B large.

The case of the disk was known and has to be done
independently.

We now assume that Ω is NOT a disk.

For a suitable choice of ground state eigenfunction
ψ1(B) of H̃(B) we can therefore calculate for β > 0,



λ′1,+(B) = 〈ψ1(B);
(

A
′ · pBA′ + pBA′ · A′

)

ψ1(B)〉

= 〈ψ1(B);
{H̃(B + β) − H̃(B)

β
− β(A′)2

}

ψ1(B)〉

≥ λ1(B + β) − λ1(B)

β
− β

∫

Ω

(A′)2|ψ1(B)|2 dx.
(9)

Here A
′ is any magnetic potential such that

curl A
′ = 1.

The trick is that for a suitable gauge, we can estimate
for some ǫ0 > 0

∫

Ω

(A′)2|ψ1(B)|2 dx ≤ C

∫

Ω

dist (x, ∂Ω)2|ψ1(B)|2 dx

+ ‖A′‖2
∞

∫

Ω\Ω′(ǫ0)

|ψ1(B)|2 dx.

(10)

Using some version of the Agmon estimates, we



therefore find

∫

Ω

(A′)2|ψ1(B)|2 dx ≤ CB−1. (11)

Choose β = ηB, where η > 0 is arbitrary. Using a
weak asymptotics for λ1(B), we therefore find

lim inf
B→∞

λ′1,+(B) ≥ Θ0 − ηC. (12)

Since η was arbitrary this implies

lim inf
B→∞

λ′1,+(B) ≥ Θ0. (13)

Applying the same argument to the left side
derivative, λ′1,−(B), we get (the inequality gets
turned since β < 0)

lim sup
B→∞

λ′1,−(B) ≤ Θ0. (14)

Since, by perturbation theory, λ′1,+(B) ≤ λ′1,−(B)



for all B, we get

lim
B→∞

λ′1,−(B) = Θ0 = lim
B→∞

λ′1,+(B) , (15)

hence the monotonicity of λ1(B).



Questions, other results and

Perspectives

This is far to be the end of the story. Here are some
additional questions or remarks :

1. The case of corners was analyzed by Hadallah,
Bonnaillie, and a numerical analysis of the
tunneling in polygons was performed by Dauge-
Bonnaillie.

2. Analyze the case when Ω is not simply connected !

3. Analyze the situation between HC3(κ) and
HC2(κ) (Pan, Fournais-Helffer, Almog-Helffer,
Sandier-Serfaty).

4. Analyze other conditions than Neumann (see the
analysis of Lu-Pan and Kachmar for the De Gennes
(Robin) conditions.
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