

Long time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator

Thi Tuyen NGUYEN

IRMAR - University of Rennes 1, France

Joint work with: Emmanuel CHASSEIGNE (LMPT, Tours, France), Olivier LEY (INSA, Rennes, France)

September 18, 2017

Outline of presentation

- I. Introduction.
- II. A priori Lipschitz regularity of solutions.
- III. Well-posedness of solutions.
- IV. Application to ergodic problem and long time behavior.

Introduction

We study long time behavior of solution of Cauchy problem

$$\begin{cases} u_t - \mathcal{F}(x, [u]) + \langle b(x), Du \rangle + H(x, Du) = f(x) \text{ in } Q, \\ u(\cdot, 0) = u_0(\cdot) \text{ in } \mathbb{R}^N, \end{cases}$$
(HJt)

where $Q = \mathbb{R}^N \times (0, \infty)$, \mathcal{F} can be either *local* or *nonlocal*:

$$\begin{cases} \mathcal{F}(x,[u]) = \operatorname{tr}(\sigma(x)\sigma^{T}(x)D^{2}u) \text{ (local case)}, \\ \mathcal{F}(x,[u]) = \mathcal{I}(x,u,Du) \text{ (nonlocal case)}, \end{cases}$$

the term $\mathcal{F} - \langle b, D \rangle$ is called the **Ornstein-Uhlenbeck operator** (O-U). The convergence that we want to obtain:

$$u(\cdot,t)-(ct+v) o 0$$
 locally uniformly in \mathbb{R}^N as $t o \infty$

where $(c, v) \in \mathbb{R} \times C(\mathbb{R}^N)$ is a solution of the associated ergodic problem:

$$c - \mathcal{F}(x, [v]) + \langle b(x), Dv \rangle + H(x, Dv) = f(x) \text{ in } \mathbb{R}^N.$$
 (HJErg)

Main steps to prove the convergence

Goal:
$$u(\cdot,t)-(ct+v)\to 0$$
 locally uniformly in \mathbb{R}^N as $t\to \infty$.

• **Step 1:** Solving the ergodic problem

$$c - \mathcal{F}(x, [v]) + \langle b(x), Dv \rangle + H(x, Dv) = f(x),$$

where
$$(c, v) \in \mathbb{R} \times C(\mathbb{R}^N)$$
.

- **Step 2:** Getting compactness property of $\{u(\cdot,t)-ct,t\geq 0\}$.
- **Step 3:** Applying strong maximum principle.

All three above main steps need Lipschitz regularity of solutions.

Establishing the Lipschitz regularity of solutions is one of the crucial **steps** to study long time behavior of solutions.

Our improvements from Fujita, Ishii & Loreti (2006)'s work

(FIL's eq):
$$u_t - \Delta u + \alpha \langle x, Du \rangle + H(Du) = f(x).$$

Using more general diffusion terms

- $\Delta u \Leftrightarrow \operatorname{tr}(\sigma(x)\sigma^T(x)D^2u)$, with σ is Lipschitz bounded,
 - Nonlocal integro-differential operator of fractional Laplacian type.
- Using more general class of Hamiltonians, H is sublinear and depends on x, i.e., $|H(x,p)| < C(1+|p|), \forall x, p \in \mathbb{R}^N$ instead of H is Lipschitz, i.e., $|H(p) - H(q)| < C|p - q|, \forall p, q \in \mathbb{R}^N$.

Assumptions on datas (1)

Prescribed growth of solutions and datas

$$\phi_{\mu}(x) = e^{\mu \sqrt{|x|^2 + 1}}, \quad \mu > 0,$$
 (growth)

$$\mathcal{E}_{\mu}(\bar{Q}) = \{ v : \bar{Q} \to \mathbb{R} : \lim_{|x| \to +\infty} \sup_{0 \le t < T} \frac{v(x, t)}{\phi_{\mu}(x)} = 0 \}, \qquad (\mathcal{E}_{\mu})$$

where $Q = \mathbb{R}^N \times (0, \infty)$, T > 0. We look for solutions which belong to \mathcal{E}_{μ} with datas f, $u_0 \in \mathcal{E}_u$.

- Local diffusion: σ is a bounded Lipschitz continuous in \mathbb{R}^N .
- Nonlocal diffusion: Let $x \in \mathbb{R}^N$, $\psi : \mathbb{R}^N \to \mathbb{R}$ be a C^2 function,

$$\mathcal{I}(x,\psi,D\psi) = \int_{\mathbb{R}^N} \{\psi(x+z) - \psi(x) - \langle D\psi(x), z \rangle \mathbf{1}_B(z)\} \nu(dz),$$

u: Lévy measure satisfying $\int_{\mathcal{R}} |z|^2 \nu(dz), \int_{\mathcal{R}^c} \phi_{\mu}(z) \nu(dz) \leq C_{\nu}, \ C_{\nu} > 0$,

typical case:
$$\nu(dz)=rac{e^{-\mu|z|}dz}{|z|^{N+\beta}},\;\mu>0,\;\beta\in(0,2).$$

Assumptions on datas (2)

The Ornstein-Uhlenbeck drift term:

There exists
$$\alpha > 0$$
 such that $\langle b(x) - b(y), x - y \rangle \ge \alpha |x - y|^2$, (O-U)

where α is called *size* of the Ornstein-Uhlenbeck operator which has a crutial role in the equation. It gives a kind of supersolution of the equation for large x, that is

$$-\mathcal{F}(x, [\phi_{\mu}]) + \langle b(x), D\phi_{\mu} \rangle - C|D\phi_{\mu}| \ge \phi_{\mu} - K,$$
 (super pro)

where K > 0, and ϕ_{μ} is the growth function.

• The Hamiltonian:

$$|H(x,p)| \le C_H(1+|p|), \quad x,p \in \mathbb{R}^N.$$
 (sublinear)

Lipschitz regularity results for nondegenerate elliptic equations

Let $\lambda > 0$, we consider the approximate stationary problem

$$\lambda u^{\lambda} - \mathcal{F}(x, [u^{\lambda}]) + \langle b(x), Du^{\lambda} \rangle + H(x, Du^{\lambda}) = f(x)$$
 (HJ\lambda)

in \mathbb{R}^N . This equation is called nondegenerate elliptic if

- Local case, $\mathcal{F}(x, [u^{\lambda}]) = \operatorname{tr}(A(x)D^2u^{\lambda})$, A satisfies $A(x) \geq \rho Id$, $\rho > 0$.
- Nonlocal case, $\mathcal{F}(x, [u^{\lambda}]) = \mathcal{I}(x, u^{\lambda}, Du^{\lambda})$, with measures satisfy

$$\begin{array}{c} \text{Let } \boldsymbol{\beta} \in (1,2), \ a \in \mathbb{R}^N. \\ \text{There exist } 0 < \eta < 1 \ \text{and} \ C_{\nu} > 0 \ \text{such that} \\ \forall \gamma > 0 \quad \int_{\mathcal{C}_{\eta,\gamma}(a)} |z|^2 \nu(dz) \geq C_{\nu} \eta^{\frac{N-1}{2}} \gamma^{2-\beta}, \\ \text{where } \mathcal{C}_{\eta,\gamma}(a) := \{z \in B_{\gamma}; (1-\eta)|z||a| \leq |a.z|\} \end{array}$$

here β is called the order of nonlocal operator, see [BCCI-12].

Statement of results

Recall:

$$\begin{split} \phi_{\mu}(x) &= e^{\mu \sqrt{|x|^2 + 1}}, \quad \mu > 0, \\ \mathcal{E}_{\mu}(\mathbb{R}^N) &= \{ v : \mathbb{R}^N \to \mathbb{R} : \lim_{|x| \to +\infty} \frac{v(x)}{\phi_{\mu}(x)} = 0 \}. \end{split}$$

Theorem 1 (Gradient bound for $(HJ\lambda)$) in the **nondegenerate** case)

Let $u^{\lambda} \in \mathcal{E}_{\mu}$ with ϕ_{μ} -growth be a continuous solution of $(HJ\lambda)$. Suppose that $(HJ\lambda)$ is **nondegenerate elliptic** (in the both local and nonlocal case), O-U holds with any size $\alpha > 0$, H is sublinear, $f \in \mathcal{E}_{\mu}$. Then

$$|u^{\lambda}(x) - u^{\lambda}(y)| \le C(\phi_{\mu}(x) + \phi_{\mu}(y))|x - y|, \ C \ \text{independent} \ \text{of} \ \lambda.$$

Arr Same results for parabolic equations (HJt) with C > 0 independent of t.

4 □ > 4 個 > 4 절 > 4 절 > 2 로 → 9 4 연 ·

Ideas of proof (1). Viscosity inequalities.

Arguing by contradiction, using [Ishii-Lions-90] method's ideas. Let $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ be a C^2 concave, increasing function with $\psi(0) = 0$, ϕ_μ be the growth function and set $\Phi(x,y) = \phi_\mu(x) + \phi_\mu(y)$. Suppose that

$$\sup_{x,y\in\mathbb{R}^N}\{u^\lambda(x)-u^\lambda(y)-\psi(|x-y|)\Phi(x,y)\}>0, \text{ achieved at } (\bar{x},\bar{y}),\ \bar{x}\neq\bar{y}.$$

Writing the viscosity inequalities with $\varphi(\bar{x}, \bar{y}) = \psi(|\bar{x} - \bar{y}|)\Phi(\bar{x}, \bar{y})$ we have

$$\lambda(u^{\lambda}(\bar{x}) - u^{\lambda}(\bar{y})) - (\mathcal{F}(\bar{x}, [u^{\lambda}]) - \mathcal{F}(\bar{y}, [u^{\lambda}])) + \langle b(\bar{x}), D_{x}\varphi \rangle - \langle b(\bar{y}), -D_{y}\varphi \rangle \\ \leq H(\bar{y}, -D_{y}\varphi) - H(\bar{x}, D_{x}\varphi) + f(\bar{x}) - f(\bar{y}),$$
(1)

Goal: Reach a contradiction in (1).

4□ → 4同 → 4 글 → 4 글 → 9 Q P

Ideas of proof (2). Estimate the different terms in (1)(local case)

- Local terms: $\mathcal{F}(\bar{x}, [u^{\lambda}]) \mathcal{F}(\bar{y}, [u^{\lambda}]) = \operatorname{tr}(A(\bar{x})X A(\bar{y})Y)$, using [Ishii-Lions-90]'s method.
- \triangleright Using the assumptions on the local diffusion matrix, (O-U), H, f to estimate the different terms in (1) we get

$$\begin{array}{l} \begin{array}{c} \begin{array}{c} >0 \text{ if } \psi \text{ strict.concave} \\ \hline \Phi(\bar{x},\bar{y})(\overbrace{-4\rho\psi''(|\bar{x}-\bar{y}|)} + \overbrace{\alpha\psi'(|\bar{x}-\bar{y}|)|\bar{x}-\bar{y}|}) \end{array} \\ \leq \begin{array}{c} \Phi(\bar{x},\bar{y})C\psi'(|\bar{x}-\bar{y}|) + C + C(\phi_{\mu}(\bar{x})+\phi_{\mu}(\bar{y}))|\bar{x}-\bar{y}| \\ + (\psi(|\bar{x}-\bar{y}|))\left(\operatorname{tr}(A(\bar{x})D^2\phi_{\mu}(\bar{x})) - \langle b(\bar{x}),D\phi_{\mu}(\bar{x})\rangle + C|D\phi_{\mu}(\bar{x})|\right) \\ + (\psi(|\bar{x}-\bar{y}|))\left(\operatorname{tr}(A(\bar{y})D^2\phi_{\mu}(\bar{y})) - \langle b(\bar{y}),D\phi_{\mu}(\bar{y})\rangle + C|D\phi_{\mu}(\bar{y})|\right). \end{array}$$

Ideas of proof (3). Reach a contradiction (local case).

- $r := |\bar{x} \bar{y}| \le r_0$. We take profit of the ellipticity of the equation which is related with the strictly concave property of ψ to control bad terms which come form the Hamiltonian the other terms.
- $r := |\bar{x} \bar{y}| \ge r_0$. Using the effect of the Ornstein-Uhlenbeck operator to control everything.
- \triangleright All of the parameters in two cases are chosen **independently** of λ .

Ideas of proof (4). Reach a contradiction (nonlocal case).

- The ideas follow the ones in the local case in order that we can apply [Ishii-Lions-90] method's ideas.
- Nonlocal terms:

$$\mathcal{F}(\bar{x}, [u^{\lambda}]) - \mathcal{F}(\bar{y}, [u^{\lambda}]) = \mathcal{I}(\bar{x}, u^{\lambda}, D_{x}\varphi) - \mathcal{I}(\bar{y}, u^{\lambda}, -D_{y}\varphi)$$
, inspired by [BCCI-12].

- The estimates for the nonlocal terms are more technical and complicated than those of the local ones because of nonlocal property of the operator and unbounded settings of solutions.
- We need to construct concave test functions which are different with the one in the local case.
- We can not obtain the result directly. We first establish τ -Hölder continuity for solutions, $\forall \tau \in (0,1)$, then we improve that Hölder regularity to Lipschitz regularity.

Ideas of proof (5). Concave test functions.

The concave test functions for $r \leq r_0$:

- Local case: $\psi_{local}(r) = 1 e^{-C_1 r}$.
- Nonlocal case: $\begin{cases} \psi_{nonlocal1}(r) = 1 e^{-C_1 r^{\tau}}, \ \tau \in (0,1), \\ \psi_{nonlocal2}(r) = r \varrho r^{1+\theta}, \ \theta \in (0,1), \varrho > 0. \end{cases}$

Well-posedness of solutions (1)

* Existence:

Using truncation arguments (inspired by [Barles-Souganidis-01) to build a continuous solution for problems. Let $m, n \ge 1$,

$$f_m(x) = \min\{f(x) + rac{1}{m}\phi_\mu(x), m\}, \ \phi_\mu \ ext{is the growth function},$$

$$H_m(x,p) = \begin{cases} H(x,p) & |x| \leq m \\ H(m\frac{x}{|x|},p) & |x| \geq m, \end{cases} H_{mn}(x,p) = \begin{cases} H_m(x,p) & |p| \leq n \\ H_m(x,n\frac{p}{|p|}) & |p| \geq n. \end{cases}$$

 $\triangleright f_m \in BUC(\mathbb{R}^N)$ and $H_{mn} \in BUC(\mathbb{R}^N \times \mathbb{R}^N)$ with modulus of continuity depending on $m, n \Rightarrow$ existence of BUC solution of

$$\lambda u - \mathcal{F}(x, [u]) + \langle b(x), Du \rangle + H_{mn}(x, Du) = f_m \text{ in } \mathbb{R}^N.$$

Well-posedness of solutions (2)

Using the local gradient bounds and applying Ascoli Theorem to get the convergence of the bounded solution to the truncation equation to the initial one when $n, m \to \infty$.

Uniqueness:

- It is a direct consequence of the comparison principle.
- In our case, the comparison principle only holds if either sub or supersolution is locally Lipschitz continuous.

Application to ergodic problem

Problem: Finding $(c, v) \in \mathbb{R} \times C(\mathbb{R}^N)$ which is the solution (HJErg)

$$c - \mathcal{F}(x, [v]) + \langle b(x), Dv(x) \rangle + H(x, Dv(x)) = f(x).$$

Let $u^{\lambda} \in C(\mathbb{R}^N)$, $\lambda \in (0,1)$ be a solution of (HJ λ). Then

$$w^{\lambda} := u^{\lambda}(x) - u^{\lambda}(0)$$
 is a solution of

$$\lambda w^{\lambda} - \mathcal{F}(x, [w^{\lambda}]) + \langle b(x), Dw^{\lambda}(x) \rangle + H(x, Dw^{\lambda}(x)) = f(x) - \lambda u^{\lambda}(0).$$

Main tools: using local uniform Lipschitz regularity of u^{λ} , Ascoli Theorem we get convergences, up to some subsequence,

$$w^{\lambda} \rightarrow v$$
, locally uniformly in \mathbb{R}^{N}
 $\lambda u^{\lambda}(0) \rightarrow c$, as $\lambda \rightarrow 0$.

Thanks to Stability results ([Crandall et al.- 92, Barles-Imbert-08]) we get a solution for (HJErg).

Application to long time behavior

Let $\mu > 0$, fix $\theta \in (0, \mu)$. Recall that

$$\phi_{\theta}(x) = e^{\theta \sqrt{|x|^2 + 1}},$$

$$\mathcal{E}_{ heta}(ar{Q}) = \{ v : ar{Q} o \mathbb{R} : \lim_{|x| o +\infty} \sup_{0 < t < T} rac{v(x,t)}{\phi_{ heta}(x)} = 0 \},$$

where $Q = \mathbb{R}^N \times [0, \infty)$.

Theorem 2 (Long time behavior of solution)

Let $u \in \mathcal{E}_{\theta}(Q)$ be the unique solution of (HJt) and $(c, v) \in \mathbb{R} \times \mathcal{E}_{\gamma}(\mathbb{R}^{N})$, $\gamma > \theta$, be a solution of (HJErg). Suppose that the equations are **nondegenerate** (in the both local and nonlocal case). Then there is a constant $a \in \mathbb{R}$ such that

$$\lim_{t\to\infty} \max_{B(0,R)} |u(x,t) - (ct + v(x) + a)| = 0 \quad \text{for all } R > 0.$$

Main ideas of proof (1) (inspired by [FIL-06]'s work).

- By the Lipschitz regularity of solutions of the (HJt) we have the compactness property of the set $\{u(\cdot,t)-ct,t\geq 0\}$.
- The functions

$$v^{+}(x) = \limsup_{t \to \infty} (u(x, t) - ct),$$

 $v^{-}(x) = \liminf_{t \to \infty} (u(x, t) - ct)$

are respectively a sub and supersolution of (HJErg).

By strong maximum principle ([Bardi-Da Lio-99, Ciomaga-12]), there are $a,b \in \mathbb{R}$ such that

$$v^+(x) = v(x) + a, \quad v^-(x) = v(x) + b, \quad \Rightarrow b \le a.$$

 \Rightarrow We only need to prove $a \leq b$.

→□→ →同→ → □→ → □ → ○○○

Main ideas of proof (2)

We prove $a \le b$: Let $T, \epsilon > 0, \gamma > \theta > 0, \phi_{\gamma}$ be the growth function, $K > e^{\gamma}$ be fixed so that

$$-\mathcal{F}(x, [\phi_{\gamma}]) + \langle b(x), D\phi_{\gamma} \rangle - C|D\phi_{\gamma}\rangle| \ge \phi_{\gamma}(x) - K, \quad \forall x \in \mathbb{R}^{N}.$$

Hence, the functions

$$\eta^{T}(x,t) = u(x,t+T) - ct - v(x) - b, \quad g_{\epsilon}(x,t) = \epsilon(\phi_{\gamma}(x) - K)e^{-t} + \epsilon(1+K)$$

are respectively a sub and supersolution of

$$\eta_t - \mathcal{F}(x, [\eta]) + \langle b(x), D\eta \rangle - L_H |D\eta| = 0 \text{ in } \mathbb{R}^N \times (0, \infty).$$

By comparison principle we get $\eta^T \leq g_{\epsilon}$. Taking x = 0 we have

$$u(0, t+T) \leq v(0) + b + \epsilon(\phi_{\gamma}(0) - K)e^{-t} + \epsilon(1+K)$$

$$\leq v(0) + b + \epsilon(1+K).$$

Sending $t \to \infty$ along a sequence yields $v^+(0) \le v(0) + b + \epsilon(1+K)$ which implies a < b, as $\epsilon > 0$ is arbitrary.

G. Barles, E. Chasseigne, A. Ciomaga and C. Imbert.

Lipschitz regularity of solutions for mixed integro-differential equations. Journal of differential equations, 252(11): 6012-6060, 2012.

E. Chasseigne, O. Ley, and T. T. Nguyen.

A priori lipschitz estimates for solutions of local and nonlocal Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Preprint. 2017.

Y. Fujita, H. Ishii, and P. Loreti.

Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator.

Comm. Partial Differential Equations, 31(4-6): 827-848, 2006.

H Ishii and P-I Lions

Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. Journal of differential equations, 26-78, 1990.

Thi-Tuyen Nguyen.

Long time behavior of solutions of some first and second order, local and nonlocal Hamilton-Jacobi equations in non-periodic settings.

Ph.D. thesis, University of Rennes 1, France, 2016.

September 18, 2017

Thank you for your attention!

