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The Benjamin-Bona-Mahony (BBM) equation

The BBM equation

ut + ux − uxxt + uux = 0, (1)

was proposed as an alternative model for the Korteweg-de Vries
equation (KdV)

ut + ux + uxxx + uux = 0, (2)

to describe the propagation of one-dimensional, unidirectional
small amplitude long waves in nonlinear dispersive media.

• u(x, t) is a real-valued functions of the real variables x and t.

In the context of shallow-water waves, u(x, t) represents the
displacement of the water surface at location x and time t.



The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).{
ηt + wx + (ηw)x + awxxx − bηxxt = 0

wt + ηx + wwx + cηxxx − dwxxt = 0,
(3)

The model describes the motion of small-amplitude long waves on the
surface of an ideal fluid under the gravity force and in situations where
the motion is sensibly two dimensional.

η is the elevation of the fluid surface from the equilibrium position;

w = wθ is the horizontal velocity in the flow at height θh, where h is the
undisturbed depth of the liquid;

a, b, c, d, are parameters required to fulfill the relations

a+ b =
1

2

(
θ2 − 1

3

)
, c+ d =

1

2
(1− θ2) ≥ 0,

where θ ∈ [0, 1] specifies which velocity the variable w represents.
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Stabilization Results: E(t) ≤ cE(0)e−ωt, ω > 0, c > 0

The Boussinesq system posed on a bounded interval:

A. Pazoto and L. Rosier, Stabilization of a Boussinesq system of
KdV-KdV type, System and Control Letters 57 (2008), 595-601.

R. Capistrano Filho, A. Pazoto and L. Rosier, Control of Boussinesq
system of KdV-KdV type on a bounded domain, Preprint.

The Boussinesq system posed on the whole real axis: (−ηxx,−wxx)

M. Chen and O. Goubet, Long-time asymptotic behavior of
dissipative Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. 17
(2007), 509-528.

The Boussinesq system posed on a periodic domain:

S. Micu, J. H. Ortega, L. Rosier and B.-Y. Zhang, Control and
stabilization of a family of Boussinesq systems, Discrete Contin.
Dyn. Syst. 24 (2009), 273-313.
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Controllability and Stabilization

• S. Micu, J. H. Ortega, L. Rosier, B.-Y. Zhang - Discrete Contin. Dyn.

Syst. 24 (2009).

b, d ≥ 0, a ≤ 0, c ≤ 0 or b, d ≥ 0, a = c > 0.

{
ηt + wx + (ηw)x + awxxx − bηxxt = f(x, t)
wt + ηx + wwx + cηxxx − dwxxt = g(x, t)

where 0 < x < 2π and t > 0, with boundary conditions

∂rη

∂xr
(0, t) =

∂rη

∂xr
(2π, t),

∂rw

∂xr
(0, t) =

∂rw

∂xr
(2π, t)

and initial conditions

η(x, 0) = η0(x), w(x, 0) = w0(x).

• f and g are locally supported forces.



Periodic boundary conditions

For b, d > 0 and β1, β2, α1, α2 ≥ 0, we consider the system

ηt + wx − bηtxx + (ηw)x + β1Mα1η = 0,
wt + ηx − dwtxx + wwx + β2Mα2w = 0,

(4)

with periodic boundary conditions

η(0, t) = η(2π, t); ηx(0, t) = ηx(2π, t),
w(0, t) = w(2π, t); wx(0, t) = wx(2π, t),

and initial conditions

η(x, 0) = η0(x), w(x, 0) = w0(x).

In (4), Mαj are Fourier multiplier operators given by

Mαj

(∑
k∈Z

vke
ikx

)
=
∑
k∈Z

(1 + k2)
αj
2 v̂ke

ikx.



The energy associated to the model is given by

E(t) =
1

2

∫ 2π

0
(η2 + bη2x + w2 + dw2

x)dx (5)

and we can (formally) deduce that

d

dt
E(t) = −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx

−
∫ 2π

0
(ηw)x η dx.

(6)

Since β1, β2 ≥ 0 and

(Mαjv, v)L2(0,2π) ≥ 0, j = 1, 2,

the terms Mα1η and Mα2w play the role of feedback damping
mechanisms, at least for the linearized system.



Assumptions on the Dissipation:

∫
T
Mαiϕ(x)ϕ(x)dx ≥ 0

•Applications and study of asymptotic behavior os solutions:

- J. L. Bona and J. Wu, M2AN Math. Model. Numer. Anal. (2000).

- J.-P. Chehab, P. Garnier and Y. Mammeri, J. Math. Chem. (2001).

- D. Dix, Comm. PDE (1992).

- C. J. Amick, J. L. Bona and M. Schonbek, Jr. Diff. Eq. (1989).

- P. Biler, Bull. Polish. Acad. Sci. Math. (1984).

- J.-C. Saut, J. Math. Pures et Appl. (1979).

• Fractional derivative (Weyl fractional derivative operator):

h(x) =
∑
k∈Z

ake
ikx ⇒Wα

x (h)(x) =
∑
k∈Z

(ik)αake
ikx, α ∈ (0, 1).
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Main results

The energy E(t) satisfies

dE

dt
= −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx−

∫ 2π

0
(ηw)x η dx,

where

Mαjv =
∑
k∈Z

(1 + k2)
αj
2 v̂ke

ikx.

Firstly, we analyze the linearized system:

α1 = α2 = 2 and β1, β2 > 0 =⇒ the exponential decay of solutions

in the Hs-setting, for any s ∈ R.

max{α1, α2} ∈ (0, 2), β1, β2 ≥ 0 and β2
1 + β2

2 > 0 =⇒ polynomial

decay rate of solutions in the Hs-setting, by considering more

regular initial data.

Exponential decay estimate and contraction mapping argument =⇒
global well-posedness and the exponential stability property of the

nonlinear system.
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For any k ∈ Z, we denote by v̂k the k−Fourier coefficient of v,

v̂k =
1

2π

∫ 2π

0
v(x)e−ikxdx,

and, for any s ∈ R, we define the space

Hs
p(0, 2π) =

{
v =

∑
k∈Z

v̂ke
ikx ∈ Hs(0, 2π)

∣∣∣∣∣∑
k∈Z
|v̂k|2(1 + k2)s <∞

}
,

which is a Hilbert space with the inner product defined by

(v, w)s =
∑
k∈Z

v̂kŵk(1 + k2)s. (7)

Then,
Mαj : H

αj
p (0, 2π)→ L2(0, 2π).

Mαjv =
∑
k∈Z

(1 + k2)
αj
2 v̂ke

ikx, j = 1, 2.



The Linearized System

Since
(I − b∂2x)ηt + wx + β1M1η = 0,
(I − d∂2x)wt + ηx + β2M2η = 0,

the linear system can be written as

Ut +AU = 0,
U(0) = U0,

where A is given by

A =

 β1
(
I − b∂2x

)−1
Mα1

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x β2
(
I − b∂2x

)−1
Mα2

 . (8)

For α > 0, the operator (I − α∂2x)−1 is defined in the following way:

(I − α∂2x)−1ϕ = v ⇔

 v − αvxx = ϕ in (0, 2π),

v(0) = v(2π), vx(0) = vx(2π).



Spectral Analysis

If we assume that

(η0, w0) =
∑
k∈Z

(η̂0k, ŵ
0
k)e

ikx,

the solution can be written as

(η, ω)(x, t) =
∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx,

where the pair (η̂k(t), ŵk(t)) fulfills

(1 + bk2)(η̂k)t + ikŵk + β1(1 + k2)
α1
2 η̂k = 0,

(1 + dk2)(ŵk)t + ikη̂k + β2(1 + k2)
α2
2 ŵk = 0,

η̂k(0) = η̂0k, ŵk(0) = ŵ0
k,

(9)

where t ∈ (0, T ).



We set

A(k) =


β1(1+k2)

α1
2

1+bk2
ik

1+bk2

ik
1+dk2

β2(1+k2)
α2
2

1+dk2

 .

Then system (9) is equivalent to η̂k

ŵk


t

(t) +A(k)

 η̂k

ŵk

 (t) =

 0

0

 ,

 η̂k

ŵk

 (0) =

 η̂0k

ŵ0
k

 .



Lemma

The eigenvalues of the matrix A are given by

λ±k =
1

2

β1(1 + k2)
α1
2

1 + bk2
+
β2(1 + k2)

α2
2

1 + dk2
±

2|k|
√
e2k − 1√

(1 + bk2)(1 + dk2)

 ,

where

ek =
1

2k

(
β1(1 + k2)

α1
2

√
1 + dk2

1 + bk2
− β2(1 + k2)

α2
2

√
1 + bk2

1 + dk2

)
,

and k ∈ Z∗.

Observe that

λ±k = λ±−k.

If ek < 1, the eigenvalues λ±k ∈ C.

If ek ≥ 1, the eigenvalues λ±k ∈ R.



Lemma

The solution (η̂k(t), ŵk(t)) of (9) is given by

η̂k(t) = 1
1−ζ2k

[(
η̂0k + iαkζkŵ

0
k

)
e−λ

+
k t −

(
ζ2k η̂

0
k + iαkζkŵ

0
k

)
e−λ

−
k t
]
,

ŵk(t) = 1
1−ζ2k

[(
iθkζkη̂

0
k − ζ2kŵ0

k

)
e−λ

+
k t −

(
iθkζkη̂

0
k − ŵ0

k

)
e−λ

−
k t
]
,

if |ek| 6= 1 and k 6= 0,

η̂k(t) =

[(
1− kζk√

(1+bk2)(1+dk2)
t

)
η̂0k − ikt

1+bk2 ŵ
0
k

]
e−λ

+
k t,

ŵk(t) =

[
− ikt

1+dk2 η̂
0
k +

(
1 + kζk√

(1+bk2)(1+dk2)
t

)
ŵ0
k

]
e−λ

+
k t,

if |ek| = 1 and k 6= 0, and finally,

η̂0(t) = η̂00e
−β1t, ŵ0(t) = ŵ0

0e
−β2t.

Here, αk =
√

1+dk2

1+bk2 , θk =
√

1+bk2

1+dk2 and ζk = ek −
√
e2k − 1.



The case s = 0

For any t ≥ 0 and k ∈ Z, we have that

b|η̂k(t)|2 + d|ŵk(t)|2 ≤M
(
b|η̂0k|2 + d|ŵ0

k|2
)
e−2tmin{|<(λ+

k )|, |<(λ−
k )|},

where
min{|<(λ+k )|, |<(λ−k )|} ≥ D > 0,

and D is a positive number, depending on the parameters β1, β2, α1, α2,
b and d.

Moreover,

If β1β2 = 0, then <(λ±k )→ 0, as |k| → ∞, and we cannot expect
uniform exponential decay of the solutions.

The fact that the decay of the solutions is not exponential is
equivalent to the non uniform decay rate: given any non increasing
positive function Θ, there is an initial data

(
η0, w0

)
such that the

Hs
p ×Hs

p−norm of the corresponding solution decays slower that Θ.
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Let us introduce the space

V s = Hs
p(0, 2π)×Hs

p(0, 2π).

Then, the following holds:

Theorem (Micu, P., Preprint, 2016)

The family of linear operators {S(t)}t≥0 defined by

S(t)(η0, w0) =
∑
k∈Z

(η̂k(t), ŵk(t))eikx, (η0, w0) ∈ V s, (10)

is an analytic semigroup in V s and verifies the following estimate

‖S(t)(η0, w0)‖V s ≤ C‖(η0, w0)‖V s , (11)

where C is a positive constant. Moreover, its infinitesimal generator is
the compact operator (D(A), A), where D(A) = V s and A is given by

A =

 β1
(
I − b∂2x

)−1
Mα1

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x β2
(
I − b∂2x

)−1
Mα2

 . (12)



Definition

The solutions decay exponentially in V s if there exist two positive
constants M and µ, such that

‖S(t)(η0, w0)‖V s ≤Me−µt‖(η0, w0)‖V s , (13)

∀t ≥ 0 and (η0, w0) ∈ V s.

We have the following result:

Theorem (Micu, P., Preprint, 2016)

The solutions decay exponentially in V s if and only if α1 = α2 = 2
and β1, β2 > 0. Moreover, µ from (13) is given by

µ = inf
k∈Z

{∣∣<(λ+k )
∣∣ , ∣∣<(λ−k )

∣∣} , (14)

where λ±k are the eigenvalues of the operator A.



Definition

The solutions decay exponentially in V s if there exist two positive
constants M and µ, such that

‖S(t)(η0, w0)‖V s ≤Me−µt‖(η0, w0)‖V s , (13)

∀t ≥ 0 and (η0, w0) ∈ V s.

We have the following result:

Theorem (Micu, P., Preprint, 2016)

The solutions decay exponentially in V s if and only if α1 = α2 = 2
and β1, β2 > 0. Moreover, µ from (13) is given by

µ = inf
k∈Z

{∣∣<(λ+k )
∣∣ , ∣∣<(λ−k )

∣∣} , (14)

where λ±k are the eigenvalues of the operator A.



Theorem (Micu, P., Preprint, 2016)

Suppose that β1, β2 ≥ 0, β21 + β22 > 0 and min{α1, α2} ∈ [0, 2).
Then, there exists δ and M > 0, such that

‖S(t)(η0, w0)||V s ≤
M

(1 + t)
1
δ
(q− 1

2
)
||(η0, w0)||V s+q , ∀t > 0,

where s ∈ R and q > 1
2 . Moreover, δ > 0 is defined by

δ =


2−max{α1, α2} if α1 + α2 ≤ 2, max{α1, α2} ≤ 1,

max{α1, α2} if α1 + α2 ≤ 2, max{α1, α2} > 1,

2−min{α1, α2} if α1 + α2 > 2.

Remark: If α1 = α2 = 2 and β1 = 0 or β2 = 0, then δ = 2.



The nonlinear problem

Theorem (Micu, P., Preprint, 2016)

Let s ≥ 0 and suppose that β1, β2 > 0 and α1 = α2 = 2. There
exist r > 0, C > 0 and µ > 0, such that, for any (η0, w0) ∈ V s,
satisfying

||(η0, w0)||V s ≤ r,

the system admits a unique solution (η, w) ∈ C([0,∞);V s) which
verifies

‖(η(t), w(t))‖V s ≤ Ce−µt‖(η0, w0)‖V s , t ≥ 0.

Moreover, µ may be taken as in the linearized problem.

The energy E(t) satisfies

dE

dt
= −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx−

∫ 2π

0
(ηw)x η dx.



We define the space

Ys,µ = {(η, w) ∈ Cb(R+;V s) : eµt(η, w) ∈ Cb(R+;V s)},

with the norm

||(η, w)||Ys,µ := sup
0≤t<∞

||eµt(η, w)(t)||V s ,

and the function Γ : Ys,µ → Ys,µ by

Γ(η, w)(t) = S(t)(η0, w0)−
∫ t

0
S(t− τ)N(η, w)(τ) dτ,

where N(η, w) = (−(I − b∂2x)−1(ηw)x,−(I − d∂2x)−1wwx) and
{S(t)}t≥0 is the semigroup associated to the linearized system.



Combining the estimates obtained for the linearized system we have

||Γ(η, w)(t)||V s ≤Me−µt||(η0, w0)||V s +MCe−µt sup
0≤τ≤t

||eµτ (η, w)||V s ,

for any t ≥ 0 and some positive constants M and C.

If we take (η, w) ∈ BR(0) ⊂ Ys,µ, the following estimate holds

||Γ(η, w)||Ys,µ ≤M ||(η0, w0)||V s+MC||(η, w)||2Ys,µ ≤MR+MCR2.

A similar calculations shows that,

||Γ(η1, w1)−Γ(η2, w2)||Ys,µ ≤ 2RMC||(η1, w1)−(η2, w2)||Ys,µ ,

for any (η1, w1), (η2, w2) ∈ BR(0).

A suitable choice of R guarantees that Γ is a contraction.
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Dirichlet boundary conditions

We consider the BBM-BBM system

ηt + wx − bηtxx + εa(x)η = 0, x ∈ (0, 2π), t > 0,
wt + ηx − dwtxx = 0, x ∈ (0, 2π), t > 0,

with boundary conditions

η(t, 0) = η(t, 2π) = w(t, 0) = w(t, 2π) = 0, t > 0,

and initial conditions

η(0, x) = η0(x), w(0, x) = w0(x), x ∈ (0, 2π).

We assume that

• b, d > 0 and ε > 0 are parameters.

• a = a(x) is a nonnegative real-valued function satisfying

a(x) ≥ a0 > 0, in Ω ⊂ (0, 2π).
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The energy associated to the model is given by

E(t) =
1

2

∫ 2π

0
(η2 + bη2x + w2 + dw2

x)dx (15)

and we can (formally) deduce that

d

dt
E(t) = −ε

∫ 2π

0
a(x)η2(t, x)dx. (16)

Does E(t) converges to zero as t→∞?

If yes, at which rates it decays?
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Lack of Compactness

There exist T > 0 and C > 0 such that

E(0) ≤ C
∫ T

0

[ ∫ 2π

0
εa(x)η2(x, t)dx

]
dt, (17)

for every finite energy solution. Indeed, from (17) and the energy
dissipation law, we have that

E(T ) ≤ C

C + 1
E(0). (18)

Since E(t) ≤ E(kT ) ≤ γkE(0), for 0 < γ < 1 and k > 0,

E(t) ≤ 1

γ
E(0)e

ln γ
T
t, where γ =

C

C + 1
. (19)

(17) does not hold for the BBM-BBM model.
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Main results

We assume that a = a(x) is nonnegative and

a(x) ≥ a0 > 0, in Ω ⊂ (0, 2π),

a ∈W 2,∞(0, 2π), with a(0) = a′(0) = 0.
(20)

Theorem (Micu, P., Journal d’Analyse Mathématique)

There exits ε0, such that, for any ε ∈ (0, ε0) and (η0, w0) in
(H1

0 (0, 2π))2, the solution (η, w) of the system verifies

lim
t→∞
‖(η(t), w(t))‖(H1

0 (0,2π))
2 = 0.

Moreover, the decay of the energy is not exponential, i. e., there
exists no positive constants M and ω, such that

‖(η(t), w(t))‖(H1
0 (0,2π))

2 ≤Me−ωt, t ≥ 0.



Spectral analysis and eigenvectors expansion of solutions

Since

(I − b∂2x)ηt + wx + εa(x)η = 0, x ∈ (0, 2π), t > 0,
(I − d∂2x)wt + ηx = 0, x ∈ (0, 2π), t > 0,

the system can be written as

Ut + AεU = 0,
U(0) = U0,

where Aε : (H1
0 (0, 2π))2 → (H1

0 (0, 2π))2 is given by

Aε =

 ε
(
I − b∂2x

)−1
a(·) I

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x 0

 . (21)

We have that

Aε ∈ L((H1
0 (0, 2π))2) and Aε is a compact operator.



The operator Aε has a family of eigenvalues (λn)n≥1, such that:

1. |<(λn)| ≤ c

|n|2
, ∀n ≥ n0, and <(λn) < 0, ∀n.

2. The corresponding eigenfunctions (Φn)n≥1 form a Riesz basis
in (H1

0 (0, 2π))2.

Then,
(η(t), w(t)) =

∑
n≥1

ane
λntΦn

and

c1
∑
n≥n0

|an|2e2<(λn)t ≤ ‖(η(t), w(t))‖2(H1
0 (0,2π))

2 ≤ c2
∑
n≥1
|an|2e2<(λn)t.
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Theorem (Micu, P., Journal d’Analyse Mathématique)

Let (η, w) be a finite energy solution of the system with a ≡ 0. If
there exist T > 0 and an open set Ω ⊂ (0, 2π), such that

η(x, t) = 0 , ∀ (t, x) ∈ (0, T )× Ω, (22)

then
η = w ≡ 0 in R× (0, 2π).

Idea of the proof:

Aε is a compact operator in (H1
0 (0, 2π))2 ⇒ analyticity in

time of solutions ⇒ property (22) holds for t ∈ R.

Fourier decomposition of solutions.

Unique continuation principle for each eigenfunction.
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Main steps of the proof

1. The spectrum of the differential operator corresponding Aε is located

in the left open half-plane of the complex plane. We also obtain the

asymptotic behavior (of the spectrum) .

2. There exists a Riesz basis (Φm)m≥1 ⊂ (H1
0 (0, 2π))2 consisting of

generalized eigenvectors of the differential operator Aε.

We obtain the asymptotic behavior of the high eigenfunctions and prove

that they are quadratically close to a Riesz basis (Ψm)m≥1 formed by

eigenvectors of a well chosen dissipative differential operator with

constant coefficients:∑
m≥N+1

||Φm −Ψm||2(H1
0 (0,2π))

2 ∼
1

m2
.

This is done by using less common two dimensional versions of the

Shooting Method and Rouché’s Theorem.
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To control the low frequencies we use a result originally proved for
a unbounded operator:

B. Z. Guo, Riesz basis approach to the stabilization of a flexible

beam with a tip mass, SIAM J. Control Optim. 39 (2001),

1736–1747.

B. Z. Guo and R. Yu, The Riesz basis property of discrete operators

and application to a Euler-Bernoulli beam equation with boundary

linear feedback control, IMA J. Math. Control Inform. 18 (2001),

241–251.

It was extended to the bounded case:

X. Zhang and E. Zuazua, Unique continuation for the linearized

Benjamin-Bona-Mahony equation with space-dependent potential,

Math. Ann. 325 (2003), 543-582.



We consider the spectral problem

Aε

(
η
w

)
= µ

(
η
w

)
,

where
Aε : (H1

0 (0, 2π))2 → (H1
0 (0, 2π))2,

which is equivalent to the BVP
η − bηxx + µwx + εa(x)µη = 0 for x ∈ (0, 2π)
w − dwxx + µηx = 0 for x ∈ (0, 2π)
η(0) = η(2π) = 0
w(0) = w(2π) = 0.

(23)

From (23) we obtain a family of eigenvalues and
eigenfunctions.......



A two dimensional “shooting method”

For each (µ, γ) ∈ C2, consider the IVP
η − bηxx + µwx + εa(x)µη = 0 for x ∈ (0, 2π)
w − dwxx + µηx = 0 for x ∈ (0, 2π)
η(0) = 0, ηx(0) = 1
w(0) = 0, wx(0) = γ.

(24)

and the map F : C2 → C2, given by F (µ, γ) =

(
η(µ, γ, 2π)
w(µ, γ, 2π)

)
.

Then, µ is an eigenvalue of (23) with corresponding eigenfunction(
η
w

)
, if and only if,

F (µ, γ) =

(
0
0

)
.

The spectrum of the differential operator with variable potential is given

by the zeros of the map F .
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Next, we define the map G = G(σ, β), associated to a spectral problem
with constant coefficients, for which the eigenfunctions form a Riesz
basis: 

−bψxx + σux + εa0σψ = 0 for x ∈ (0, 2π)
−duxx + σψx = 0 for x ∈ (0, 2π)
ψ(0) = 0, ψx(0) = 1
u(0) = 0, ux(0) = β.

(25)

The map G : C2 → C2 is given by G(σ, β) =

(
ψ(σ, β, 2π)
u(σ, β, 2π)

)
.

The corresponding BVP (ψ(0) = u(0) = ψ(2π) = u(2π) = 0)

has a double indexed family of complex eigenvalues
(σjn)n∈Z∗, j∈{1,2} and

the family of corresponding eigenfunctions (Ψj
n)n∈Z∗, j∈{1,2} forms a

Riesz basis in (H1
0 )2.
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Theorem (N. G. Lloyd, J. London Math. Soc. 2 (1979))

Let D be a bounded domain in CN and h, G holomorphic maps of
D into CN such that ‖h(z)‖ < ‖G(z)‖ for z ∈ ∂D. Then G has
finitely many zeros in D, and G and h+G have the same number
of zeros in D, counting multiplicity.

Given a zero (σjn, β
j
n) of the map G, we define the domain

Dj
n(δ) =

{
(µ, γ) ∈ C2 :

√
|µ− σjn|2 + |γ − βjn|2 ≤

δ

|n|

}
.

If h = F −G we obtain

‖G(µ, γ)‖ ≥ C

n2
,

‖F (µ, γ)−G(µ, γ)‖ ≤ C

n2
, ∀ (µ, γ) ∈ ∂Dj

n(δ).
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Finally, we obtain an ansatz

(
ϕ(µ, γ, x)
z(µ, γ, x)

)
for the solutions of

the IVP 
η − bηxx + µwx + εa(x)µη = 0 for x ∈ (0, 2π)
w − dwxx + µηx = 0 for x ∈ (0, 2π)
η(0) = 0, ηx(0) = 1
w(0) = 0, wx(0) = γ.

More precisely,

(
η(µ, γ, x)
w(µ, γ, x)

)
=

(
ϕ(µ, γ, x)
z(µ, γ, x)

)
+ O

(
1

µ2

)
, where


ϕ(µ, γ, x) =

√
bd

µ
sinh (α(x)) +

γd

µ
cosh (α(x))− γd

µ+ da(x)

z(µ, γ, x) =
b

µ
(cosh (α(x))− 1) +

γ
√
bd

µ
sinh (α(x)) +

γd

µ

∫ x

0

a(s)ds,

and α(x) = µx√
bd

+ 1
2

√
d
b

∫ x

0

a(s)ds.



‖F (µ, γ)−G(µ, γ)‖

≤
∥∥∥∥F (µ, γ)−

(
ϕ(µγ, 2π)
z(µ, γ, 2π)

)∥∥∥∥+

∥∥∥∥( ϕ(µγ, 2π)
z(µ, γ, 2π)

)
−G(µ, γ)

∥∥∥∥
≤ C1

|µ|2
(from the ansatz property)

+
C2

|µ|2
(by choosing conveniently the constant potential a0 =

1

2π

∫ 2π

0

a(s)ds)

≤ C

|µ|2
.
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0

a(s)ds)

≤ C

|µ|2
.
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Remarks and open problems

Dirichlet boundary conditions:

Less regularity for the potential a.

Stabilization results for the nonlinear problem.

Dissipative mechanisms, like −[a(x)ϕx]x, ensures the uniform
decay?

The mixed KdV-BBM system is exponentially stabilizable?

Periodic boundary conditions:

The decay of solutions of a nonlinear problem with a
linearized part that does not decay uniformly.

Unique Continuation Property for the BBM-BBM system.

Dissipative mechanisms, like a(x)ϕ or −[a(x)ϕx]x, ensures
the uniform decay?

• Boundary stabilization results.
• The 2-d Boussinesq system.....
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