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Chapter 1

Rezumat (Abstract)

Rezumat. In aceasta lucrare prezentam unele rezultate de existenta, unicitate
si multiplicitate pentru probleme la limita neliniare cu ϕ-Laplacieni. Aceste
probleme au aplicatii in geometria diferentiala si teoria relativitatii.

Primul capitol contine un rezumat a ceea ce se prezinta in lucrare iar in al
doilea capitol se gaseste o introducere a rezultatelor principale.

In capitolul 3, utilizand teorema de punct fix Schauder, demonstram rezul-
tate de existenta a solutiilor radiale pentru probleme Dirichlet in bila unitate si
in domenii circulare, asociate operatorilor curburii medii in spatii euclidieni si
Minkowski.

In capitolul 4 studiem existenta solutiilor radiale pentru probleme Neumann
pe bile sau domenii circulare, asociate operatorilor curburii medii in spatii eucli-
dieni si Minkowski. Instrumentul principal este gradul Leray - Schauder aplicat
unor operatori de punct fix asociati problemelor considerate.

In capitolul 5, studiem existenta si multiplicitate solutiilor radiale pentru
probleme Neumann in bile si domenii circulare, asociate unor perturbatii de tip
pendul fortat ale operatorilor curburii medii in spatii euclidieni si Minkowski.
Utilizam gradul Leray - Schauder si metoda sub - supra solutiilor.

In capitolul 6, aratam ca daca A ⊂ RN este un domeniu circular sau o bila
centrata in origine, atunci problema Neumann omogena pe A pentru ecuatia cu
date continue

div

(
∇v√

1− |∇v|2

)
= g(|x|, v) + h(|x|)

are cel putin o solutie radiala cand g(|x|, ·) are o primitiva periodica si
∫
A h(|x|) dx =

0. Se folosesc metoda directa a calculului variational, teoria gradului topologic
si unele inegalitati variationale.

In capitolul 7, motivati de existenta solutiilor radiale pentru probleme de
tipul

div

(
∇v√

1− |∇v|2

)
= g(|x|, v) in A, ∂v

∂ν
= 0 pe ∂A,
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6 CHAPTER 1. REZUMAT (ABSTRACT)

unde 0 ≤ R1 < R2, A = {x ∈ RN : R1 ≤ |x| ≤ R2} si g : [R1, R2]× R → R este
continua, studiem probleme mai generale de tipul

[rN−1ϕ(u′)]′ = rN−1g(r, u), u′(R1) = 0 = u′(R2),

unde ϕ := Φ′ : (−a, a) → R este un homeomorfism crescator cu ϕ(0) = 0 si
functia continua Φ : [−a, a] → R este de clasa C1 pe (−a, a). Functionala asoci-
ata problemei de mai sus este definita pe spatiul functiilor continue pe [R1, R2]
si este suma unei functionale de clasa C1 cu o functionala semicontinua inferior
si convexa. Utilizand teoria punctului critica Szulkin, obtinem diferite rezul-
tate de existenta pentru anumite clase de neliniaritati. Se discuta si problema
periodica.

In capitolul urmator, utilizam teoria punctului critic pentru perturbatii semi-
continue si convexe ale C1-functionalelor pentru a demonstra multiplicitatea so-
lutiilor radiale ale unor probleme Neumann cu parametru ce contin operatorul

v 7→ div

(
∇v√

1−|∇v|2

)
. Se demonstreaza si rezultate similare pentru problema

periodica.
In capitolul 9 analizam o clasa de functionale I pe un spatiu Banach X de

tipul I = Ψ+G, cu Ψ : X → (−∞,+∞] proprie, convexa, semicontinua inferior
si G : X → R de clasa C1. In plus, I este G-invarianta in raport cu un subgrup
discret G ⊂ X cu dim (span G) = N . Daca unele conditii aditionale sunt
satisfacute, atunci aratam ca I are N +1 orbite critice. In particular, rezulta ca
pendulul relativist N -dimensional are cel putin N +1 solutii periodice distincte
geometric.

In ultimul capitol indicam unele linii de cercetare ce pot fi dezvoltate in
conexiune cu rezultatele din capitolele anterioare.

Abstract. In this work we present some existence, uniqueness and multi-
plicity results for some nonlinear boundary value problems with ϕ-Laplacians.
Those problems originate from differential geometry or special relativity.

In the first chapter one has an abstract and in the second one an introduction.
In Chapter 3, using Schauder fixed point theorem, we prove existence results

of radial solutions for Dirichlet problems in the unit ball and in an annular
domain, associated to mean curvature operators in Euclidian and Minkowski
spaces.

In Chapter 4, we study the existence of radial solutions for Neumann prob-
lems in a ball and in an annular domain, associated to mean curvature op-
erators in Euclidian and Minkowski spaces. The main tool is Leray-Schuader
degree together with some fixed point reformulations of ours nonlinear Neumann
boundary value problems.

In Chapter 5, we study the existence and multiplicity of radial solutions for
Neumann problems in a ball and in an annular domain, associated to pendulum-
like perturbations of mean curvature operators in Euclidean and Minkowski
spaces and of the p-Laplacian operator. Our approach relies on the Leray-
Schauder degree and the upper and lower solutions method.



7

In Chapter 6, we show that if A ⊂ RN is an annulus or a ball centered at
0, the homogeneous Neumann problem on A for the equation with continuous
data

div

(
∇v√

1− |∇v|2

)
= g(|x|, v) + h(|x|)

has at least one radial solution when g(|x|, ·) has a periodic indefinite integral
and

∫
A h(|x|) dx = 0. The proof is based upon the direct method of the calculus

of variations, variational inequalities and degree theory.
In Chapter 7, motivated by the existence of radial solutions to the Neumann

problem involving the mean extrinsic curvature operator in Minkowski space

div

(
∇v√

1− |∇v|2

)
= g(|x|, v) in A, ∂v

∂ν
= 0 on ∂A,

where 0 ≤ R1 < R2, A = {x ∈ RN : R1 ≤ |x| ≤ R2} and g : [R1, R2] × R → R
is continuous, we study the more general problem

[rN−1ϕ(u′)]′ = rN−1g(r, u), u′(R1) = 0 = u′(R2),

where ϕ := Φ′ : (−a, a) → R is an increasing homeomorphism with ϕ(0) = 0
and the continuous function Φ : [−a, a] → R is of class C1 on (−a, a). The
associated functional in the space of continuous functions over [R1, R2] is the
sum of a convex lower semicontinuous functional and of a functional of class
C1. Using the critical point theory of Szulkin, we obtain various existence and
multiplicity results for several classes of nonlinearities. We also discuss the case
of the periodic problem.

In the next Chapter, we use the critical point theory for convex, lower semi-
continuous perturbations of C1−functionals to establish existence of multiple ra-
dial solutions for some one parameter Neumann problems involving the operator

v 7→ div

(
∇v√

1−|∇v|2

)
. Similar results for periodic problems are also provided.

In Chapter 9 we deal with a class of functionals I on a Banach space X,
having the structure I = Ψ+G, with Ψ : X → (−∞,+∞] proper, convex, lower
semicontinuous and G : X → R of class C1. Also, I is G-invariant with respect
to a discrete subgroup G ⊂ X with dim (span G) = N . Under some appropriate
additional assumptions we prove that I has at least N + 1 critical orbits. As
a consequence, we obtain that the periodically perturbed N -dimensional rela-
tivistic pendulum equation has at least N + 1 geometrically distinct periodic
solutions.

In the last Chapter we give some possible developments of the results given
in this work.

Notice that this is a collection of recent papers of the author jointly
with Petru Jebelean and Jean Mawhin. I thank both of them for our
fruitful collaboration.

This habilitation thesis is dedicated to Dana and Petru.
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Chapter 2

Introduction

The aim of this work is to present some existence and multiplicity results of
radial solutions for Dirichlet and Neumann problems in a ball or an annular
domain, associated to mean curvature operator in the flat Minkowski space

LN+1 := {(x, t) : x ∈ RN , t ∈ R}

endowed with the Lorentzian metric

N∑
j=1

(dxj)
2 − (dt)2,

where (x, t) are the canonical coordinates in RN+1. The Euclidean situation is
also considered.

Those problems originate from studying, in differential geometry or relativ-
ity, maximal or constant mean curvature hypersurfaces, i.e. spacelike submani-
folds of codimension one in LN+1, having the property that their mean extrinsic
curvature (trace of its second fundamental form) is respectively zero or constant
(see e.g. [2, 35, 117]). More specifically, let M be a spacelike hypersurfaces of
codimension one in LN+1 and assume that M is the graph of a smooth function
v : Ω → R with Ω a domain in {(x, t) : x ∈ RN , t = 0} ≃ RN . The spacelike
condition implies |∇v| < 1, and the mean curvature H at the point (x, v(x)),
x ∈ Ω verifies the equation

div

(
∇v√

1− |∇v|2

)
= NH(x, v) in Ω.

A first essential result concerning the above PDE was proved by E. Calabi [32] in
the case Ω = RN and N ≤ 4. This was later extended to arbitrary dimension by
S.Y. Cheng and S.T. Yau in [35]. In the Euclidian situation similar results have
been obtained trough the efforts of Bernstein, Federer, Fleming, de Giorgio,
Almgren, Simons, Bombieri and Giusti. On the other hand, if H ≡ c > 0

9



10 CHAPTER 2. INTRODUCTION

and Ω = RN , then A. Treibergs [117] obtained an existence result about entire
solutions for the above PDE in the presence of a pair of well ordered upper and
lower-solutions. If H is bounded, then it has been shown in [9] that the above
equation has at least one solution u ∈ C1(Ω) ∩W 2,2(Ω) and u = 0 on ∂Ω.

Chapter 2 [12]
The problems we consider here are of the type

div(ϕN (∇v)) = f(|x|, v, dv
dr

) in Ω, v = 0 on ∂Ω, (2.1)

where
ϕN (y) =

y√
1± |y|2

(y ∈ RN ),

with the + sign in the Euclidian case, the − sign in the Minkowski case, Ω
denotes the unit ball B ⊂ RN or an annular domainA = {x ∈ RN : 1 < |x| < 2},
the function f is continuous, |·| denotes the Euclidean norm in RN and dv

dr stands
for the radial derivative of v. Setting |x| = r and v(x) = u(r), the above Dirichlet
problem becomes

(rN−1ϕ1(u
′))′ = rN−1f(r, u, u′), b(u, u′) = 0, (2.2)

where b(u, u′) = 0 denotes the mixed boundary condition u′(0) = 0 = u(1) or
the Dirichlet boundary condition u(1) = 0 = u(2), according to Ω equals to B,
respectively A. Notice that (2.1) needs not to be Euler-Lagrange equations of a
variational problem.

For this reason, (2.2) is transformed into a fixed point problem to which
we apply Schauder fixed point theorem. Notice that in the Euclidian space
situation, the corresponding fixed point operator is not defined on the whole
space and we overcome this difficulty by using a cutting method introduced in
[25]. For other results concerning the Euclidian situation, see for example [33].
In the Minkowski setting, we prove that the problem is solvable for an arbitrary
continuous right-hand member f. The case where N = 1 was already considered
in [22].

Chapter 3 [15]
In Chapter 2 (see also [12]) we studied the existence of radial solutions for
nonlinear Dirichlet problems in the unit ball and in an annular domain from
RN , associated with the mean curvature operator in Euclidian space

Ev = div

(
∇v√

1 + |∇v|2

)

and with the mean extrinsic curvature operator in Minkowski space

Mv = div

(
∇v√

1− |∇v|2

)
.
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To formulate these problems, let R1, R2 ∈ R, 0 ≤ R1 < R2 and let us denote
by A the annular domain {x ∈ RN : R1 ≤ |x| ≤ R2}. For f : [R1, R2]×R2 → R
a given continuous function, we consider the following Neumann boundary-value
problems:

Mv = f(|x|, v, dv
dr

) in A, ∂v

∂ν
= 0 on ∂A (2.3)

and

Ev = f(|x|, v, dv
dr

) in A, ∂v

∂ν
= 0 on ∂A. (2.4)

As usual, we have denoted by
dv

dr
the radial derivative and by

∂v

∂ν
the outward

normal derivative of v. It should be noticed that for R1 = 0 one has Neumann
problems in the ball of radius R2.

Setting r = |x| and v(x) = u(r), the above problems (3.1) and (2.4) become(
rN−1 u′√

1− |u′|2

)′

= rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (2.5)

respectively,(
rN−1 u′√

1 + |u′|2

)′

= rN−1f(r, u, u′), u′(R1) = 0 = u′(R2). (2.6)

Clearly, the solutions of (2.5) and (2.6) are classical radial solutions of (3.1),
respectively (2.4).

Our approach for problem (2.5) relies upon a Leray-Schauder type contin-
uation theorem, that we recall here for the convenience of the reader (see e.g.
[92] and references therein). Let (X, ∥ · ∥) be a real normed space, Ω be a
bounded open subset of X and S : Ω → X be a compact operator such that
0 /∈ (I − S)(∂Ω). The Leray-Schauder degree of I − S with respect to Ω and 0
is denoted by dLS [I − S,Ω, 0] (see e.g. [47]). We set Bρ = {x ∈ X : ∥x∥ < ρ}.

Lemma 1 Let S : R×Bρ → X be a compact operator such that

x ̸= S(λ, x) for all (λ, x) ∈ R× ∂Bρ

and such that

dLS [I − S(λ0, ·), Bρ, 0] ̸= 0 for some λ0 ∈ R.

Then the set S of solutions (λ, x) ∈ R×Bρ of problem

x = S(λ, x)

contains a continuum (closed and connected) C whose projection on R is R.
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The existence result obtained for (3.1) is then employed, via a cutting
method, to derive the existence of solutions for problem (2.4). In particular,
we extend the method of (not necessarily ordered) lower and upper solutions to
problem of the type (3.1), and give some applications and several examples. In
the last section of this chapter we deal with pendulum-like nonlinearities.

For interesting results concerning radial solutions for Dirichlet boundary
value problems associated to some nonlinear perturbations of the operators E
and p-Laplacian the reader can consult [38, 60, 61, 69]. The Neumann problem
associated to some nonlinear perturbations of the p-Laplacian is considered for
example in papers [46, 118].

Chapter 4 [16]
In this Chapter we present existence and multiplicity results for the Neumann
problem

T (v) + µ sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (2.7)

where T is in one of the following situations:

T (v) = div

(
∇v√

1−|∇v|2

)
(mean extrinsic curvature in Minkowski space),

T (v) = div

(
∇v√

1+|∇v|2

)
(mean curvature in Euclidean space),

T (v) = div(|∇v|p−2∇v) (p-Laplacian).

Here, µ > 0 is a constant, A = {x ∈ RN : R1 < |x| < R2} (0 ≤ R1, < R2),
l : [R1, R2] → R is a given continuous function.

Our approach relies upon the idea that setting r = |x| and v(x) = u(r),
problem (2.7) reduces to

(rN−1ϕ(u′))′ + rN−1µ sinu = rN−1l(r), u′(R1) = 0 = u′(R2), (2.8)

where ϕ(v) = v√
1−v2

in the Minkowski case, ϕ(v) = v√
1+v2

in the Euclidean case

and ϕ(v) = |v|p−2v (p > 1) in the p-Laplacian case. Actually, in what follows ϕ
will be a general increasing homeomorphism with ϕ(0) = 0 and which is in one
of the following situations:

ϕ : (−a, a) → R (singular),

ϕ : R → (−a, a) (bounded),

ϕ : R → R (classical).

We prove (Corollary 8) using degree arguments that the problem

div

(
∇v√

1− |∇v|2

)
+ µ sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (2.9)
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has at least two classical radial solutions not differing by a a multiple of 2π if

2(R2 −R1) < π

and ∣∣∣∣∣ N

RN
2 −RN

1

∫ R2

R1

rN−1l(r)dr

∣∣∣∣∣ < µ cos (R2 −R1) .

Moreover, if
2(R2 −R1) = π,

then problem (2.9) has at least one classical radial solution provided that∫ R2

R1

rN−1l(r)dr = 0. (2.10)

Note that in Theorem 5.1 from [15] we have proved that if condition (2.10) is
fulfilled and if 2(R2 − R1) ≤ 1 then one has existence of at least one classical
radial solution. On the other hand for the p-Laplacian, we prove for example
(Corollary 9) that problem

div(|∇v|p−2∇v) + µ sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (2.11)

has at least two classical radial solutions not differing by a a multiple of 2π if
(2.10) holds and R2 is sufficiently small (or N sufficiently large). Moreover the
same type of result holds true for the Neumann problem

div

(
∇v√

1 + |∇v|2

)
+ µ sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A. (2.12)

In the case
R1 > 0

(i.e., A is an annular domain) we show (Corollary 10) using again degree argu-
ments and the upper and lower solutions method that (2.9) and (2.11) have at
least two classical radial solution not differing by a multiple of 2π if ||l||∞ < µ
and have at least one classical radial solution if ||l||∞ = µ. Moreover, if

2µR2

N
< 1

holds, then we prove (Corollary 10) that one has the same result for the Neu-
mann problem (2.12).

In is worth to point out that corresponding results for the periodic problem
and N = 1 have been proved in [17, 22]. For existence and multiplicity results
concerning periodic solutions of the classical pendulum equation see for exam-
ple [51, 56, 73, 100] and for other results concerning boundary value problems
associated to singular or bounded ϕ-Laplacians see [10] - [54], [93, 115, 116].
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The Chapter is organized as follows. In Section 2 we introduce the function
spaces and the operators which are needed in the sequel. Section 3 present a
fixed point operator and some degree computations in the singular case. Ex-
istence and multiplicity results for problem (2.8) are given in Sections 4 and 5
under conditions on the radius and the mean value of the forcing term or on the
norm of the forcing term.

Chapter 5 [20]
In Chapter 4 (see also [16]), we have used topological degree techniques to
obtain existence and multiplicity results for the radial solutions of the Neumann
problem

div

(
∇v√

1− |∇v|2

)
+ µ sin v = h(|x|) in A, ∂v

∂ν
= 0 on ∂A, (2.13)

on the ball or annulus

A = {x ∈ RN : R1 ≤ |x| ≤ R2} (0 ≤ R1 < R2)

i.e. for the equivalent one-dimensional problem(
rN−1 u′√

1− u′2

)′

+ rN−1µ sinu = rN−1h(r), u′(R1) = 0 = u′(R2).

We have proved the existence of at least two radial solutions not differing by a
multiple of 2π when

2(R2 −R1) < π and

∣∣∣∣∣ N

RN
2 −RN

1

∫ R2

R1

h(r) rN−1dr

∣∣∣∣∣ < µ cos(R2 −R1),

and the existence of at least one radial solution when 2(R2 −R1) = π and∫ R2

R1

h(r) rN−1dr = 0. (2.14)

Condition (2.14) is easily seen to be necessary for the existence of a radial
solution to (2.13) for any µ > 0 and a natural question is to know if condition

2(R2 −R1) ≤ π (2.15)

can be dropped.
In the analogous problem of the forced pendulum equation

u′′ + µ sinu = h(t)

with periodic or Neumann homogeneous boundary conditions on [0, T ], it has
been shown that the corresponding necessary condition∫ T

0

h(t) dt = 0 (2.16)



15

is also sufficient for the existence of at least two solutions not differing by a
multiple of 2π. But, in this case, all the known proofs are of variational or
symplectic nature (see e.g. the survey [92]).

Recently, it has been proved in [29] that the “relativistic forced pendulum
equation” (

u′√
1− u′2

)′

+ µ sinu = h(t)

has at least one T-periodic solution for any µ > 0 when the (necessary) condition
(2.16) is satisfied. The approach is essentially variational, but combined with
some topological arguments. The aim of this chapter is to adapt the method-
ology introduced in [29] to the radial Neumann problem for (2.13) and prove
that, for the existence part, condition (2.15) can be dropped.

Actually, in this chapter we consider problems of type

[rN−1ϕ(u′)]′ = rN−1[g(r, u) + h(r)], u′(R1) = 0 = u′(R2) (2.17)

where ϕ : (−a, a) → R is a suitable homeomorphism and g belongs to some class
of functions 2π-periodic with respect to its second variable.

Chapter 6 [18]
The study in this chapter is essentially motivated by the existence of radial solu-
tions to the Neumann problem involving the mean extrinsic curvature operator
in Minkowski space (see e.g. [15]) :

div

(
∇v√

1− |∇v|2

)
= g(|x|, v) in A, ∂v

∂ν
= 0 on ∂A, (2.18)

where 0 ≤ R1 < R2, A = {x ∈ RN : R1 ≤ |x| ≤ R2} and g : [R1, R2] × R → R
is a continuous function. Setting r = |x| and v(x) = u(r), the above problem
(2.18) becomes[

rN−1

(
u′√

1− u′2

)]′
= rN−1g(r, u), u′(R1) = 0 = u′(R2), (2.19)

and the solutions of (2.19) are classical radial solutions of (2.18).
In this chapter we obtain existence results for the more general problem

[rN−1ϕ(u′)]′ = rN−1g(r, u), u′(R1) = 0 = u′(R2), (2.20)

where ϕ := Φ′ : (−a, a) → R is an increasing homeomorphism with ϕ(0) = 0 and
the continuous function Φ : [−a, a] → R is of class C1 on (−a, a) and, without
loss of generality, we can assume that Φ(0) = 0. This kind of ϕ is called singular

ϕ-Laplacian. Note that for ϕ(s) =
s√

1− s2
one takes Φ(s) = 1−

√
1− s2.

Our approach is a variational one and relies on Szulkin’s critical point theory
[112]. Using a strategy inspired from [20, 29], we show in Proposition 8 that u
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is a solution of (2.20) provided that u is a critical point of the energy functional
I : C[R1, R2] → (−∞,+∞] defined by

I(u) =


∫ R2

R1

rN−1Φ(u′) dr +

∫ R2

R1

rN−1G(r, u) dr, if u ∈ K,

+∞, otherwise,

where G : [R1, R2]×R → R is the primitive of g with respect to the second vari-
able and K = {u ∈W 1,∞[R1, R2] : |u′| ≤ a a.e. on [R1, R2]}. The functional I
has the structure required by Szulkin’s critical point theory, i.e., it is the sum
of a proper convex, lower semicontinuous functional and of a C1 functional. In
this context, a critical point of I means a function u ∈ K such that∫ R2

R1

rN−1[Φ(v′)− Φ(u′)] dr +

∫ R2

R1

rN−1g(r, u)(v − u) dr ≥ 0

for all v ∈ K.

In Section 2 we introduce some notations and definitions and we prove the
above mentioned Proposition 8. Notice that, in contrast to [20], we replace some
auxiliary result based upon Leray-Schauder theory by an elementary argument
(Lemma 15) and obtain in this way a purely variational treatment of our prob-
lem. A similar methodology can be applied to obtain pure variational proofs of
the results on periodic solutions in [29, 30, 96].

Section 3 deals with minimization problems for I based upon the fact that
if there exists ρ > 0 such that

inf

{
I(u) : u ∈ K,

∣∣∣∣∣
∫ R2

R1

rN−1u dr

∣∣∣∣∣ ≤ ρ

}
= inf

K
I,

then I is bounded from below and attains its infimum at some u, which solves
problem (2.20) (Lemma 16). Theorem 1 from [20] is then an immediate conse-
quence of this result (Corrollary 13). We also prove (Theorem 22) that if g is
such that

lim inf
|x|→∞

G(r, x) > 0, uniformly in r ∈ [R1, R2],

then (2.20) has at least one solution u which minimizes I on C.
The same is also true if g is bounded and

lim
|x|→∞

∫ R2

R1

rN−1G(r, x) dr = +∞

(Theorem 23). On the other hand, if G(r, ·) is convex for any r ∈ [R1, R2], then
(2.20) has at least one solution if and only if the function

x 7→
∫ R2

R1

rN−1g(r, x) dr
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has at least one zero, or, equivalently, the real convex function

x 7→
∫ R2

R1

rN−1G(r, x) dr

has a minimum (Theorem 24).
In Section 4 we derive some properties of the (PS)–sequences (Lemma 17)

and we show that if g is bounded and

lim
|x|→∞

∫ R2

R1

rN−1G(r, x) dr = −∞,

then (2.20) has at least one solution u which is a saddle point of I (Theorem
25). As in Section 3, if g is not necessarily bounded but the above condition
upon G is replaced with the following more restrictive assumption

lim
|x|→∞

G(r, x) = −∞, uniformly in r ∈ [R1, R2],

then the same result holds true (Theorem 26).
In Section 5 we consider the problem

[rN−1ϕ(u′)]′ = rN−1[λ|u|m−2u− f(r, u)], u′(R1) = 0 = u′(R2), (2.21)

where λ > 0 and m ≥ 2 are fixed real numbers and f : [R1, R2] × R → R is a
continuous function satisfying the classical Ambrosetti–Rabinowitz condition :
there exists θ > m and x0 > 0 such that

0 < θF (r, x) ≤ xf(r, x) for all r ∈ [R1, R2] and |x| ≥ x0.

We also assume that

lim sup
|x|→0

mF (r, x)

|x|m
< λ uniformly in r ∈ [R1, R2],

and prove that under these assumptions, problem (2.21) has at least one solution
u which is a mountain pass critical point of the corresponding I (Theorem 27).

Section 6 is devoted to the periodic problem

[ϕ(u′)]′ = g(r, u), u(R1)− u(R2) = 0 = u′(R1)− u′(R2), (2.22)

Here we discuss the manner in which the above results for problems (2.20) and
(2.21) can be transposed for problem (2.22).

Chapter 7 [19]
This chapter is motivated by the existence of nontrivial solutions for the Neu-
mann problems:

−div

(
∇v√

1− |∇v|2

)
+ α|v|p−2v = f(|x|, v) + λb(|x|)|v|q−2v in A,

∂v

∂ν
= 0 on ∂A, (2.23)
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−div

(
∇v√

1− |∇v|2

)
+ λ|v|m−2v = f(|x|, v) + h(|x|) in A,

∂v

∂ν
= 0 on ∂A (2.24)

and for the periodic problems:

−

(
u′√

1− |u′|2

)′

+ α|u|p−2u = f(r, u) + λb(r)|u|q−2u in [R1, R2],

u(R1)− u(R2) = 0 = u′(R1)− u′(R2), (2.25)

−

(
u′√

1− |u′|2

)′

+ λ|u|m−2u = f(r, u) + h(r) in [R1, R2],

u(R1)− u(R2) = 0 = u′(R1)− u′(R2), (2.26)

where 0 ≤ R1 < R2 and A = {x ∈ IRN : R1 ≤ |x| ≤ R2}.
We assume the following hypothesis on the data.

(Hf ) The functions f : [R1, R2]× IR → IR, b, h : [R1, R2] → IR are continuous;
the constants α > 0, p > q ≥ 2, m ≥ 2 are fixed and λ is a real positive
parameter.

Viewing the radial symmetry, we shall look for radial solutions of problems
(2.23) and (2.24). So, letting r = |x| and v(x) = u(r), we reduce (2.23) and
(2.24) to the one-dimensional Neumann problems

[rN−1ϕ(u′)]′ = rN−1[α|u|p−2u−f(r, u)−λb(r)|u|q−2u] in [R1, R2],

u′(R1) = 0 = u′(R2), (2.27)

and

[rN−1ϕ(u′)]′ = rN−1[λ|u|m−2u−f(r, u)− h(r)] in [R1, R2],

u′(R1) = 0 = u′(R2), (2.28)

where ϕ(y) =
y√

1− y2
, ∀y ∈ (−1, 1). Also, it is clear that problems (2.25) and

(2.26) can be rewritten as

[ϕ(u′)]′ = α|u|p−2u− f(r, u)− λb(r)|u|q−2u in [R1, R2],

u(R1)− u(R2) = 0 = u′(R1)− u′(R2), (2.29)

and

[ϕ(u′)]′ = λ|u|m−2u− f(r, u)− h(r) in [R1, R2],

u(R1)− u(R2) = 0 = u′(R1)− u′(R2), (2.30)
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with the same choice of ϕ.
More generally, in this chapter the mapping ϕ : (−a, a) → IR entering in

the above boundary value problems will be an increasing homeomorphism with
ϕ(0) = 0. Following [22], this type of ϕ is called singular. Precisely, we assume
the following hypothesis on ϕ :

(HΦ) Φ : [−a, a] → R is continuous, of class C1 on (−a, a), Φ(0) = 0 and
ϕ := Φ′ : (−a, a) → IR is an increasing homeomorphism such that ϕ(0) = 0.

Denoting by F the indefinite integral of f with respect to the second variable,
it is easy to see that if F satisfies

lim sup
|x|→0

pF (r, x)

|x|p
< α uniformly in r ∈ [R1, R2], (2.31)

then f(r, 0) = 0 for all r ∈ [R1, R2], meaning that problems (2.27) – (2.30)
admit the trivial solution u = 0 provided that h ≡ 0. If, in addition, F satisfies
the Ambrosetti–Rabinowitz type condition [7] :

(AR) there exists θ > p and x0 > 0 such that

0 < θF (r, x) ≤ xf(r, x) for all r ∈ [R1, R2] and |x| ≥ x0, (2.32)

then problems (2.27) and (2.29) with λ = 0 or problems (2.28) and (2.30) with
h ≡ 0 have at least one nontrivial solution (see [18]).

We prove in Theorem 31 and Theorem 32 that if, in addition to (2.31) and
(2.32) we assume :

(i) either

lim inf
x→0−

F (r, x)

|x|p
≥ 0 uniformly in r ∈ [R1, R2] (2.33)

or

lim inf
x→0+

F (r, x)

xp
≥ 0 uniformly in r ∈ [R1, R2]; (2.34)

(ii) it holds ∫ R2

R1

rN−1b(r) dr > 0,

then problems (2.27) and (2.29) have at least two nontrivial solutions for suffi-
ciently small values of the parameter λ. It is easy to see that those assumptions
correspond to problems with convex-concave nonlinearities initiated in 1994 for
semilinear Dirichlet problems by Ambrosetti, Brezis and Cerami [5], extended
to quasilinear Dirichlet problems involving the p-Laplacian by Ambrosetti, Gar-
cia Azorero, Peral [6], Garcia Azorero, Peral, Manfredi [59]. Radial solutions
with Dirichlet conditions have been considered independently by Kormann [76],
using bifurcation theory and by Tang [114] using ordinary differential equations
methods.

One the other hand, under the hypotheses :
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(i)′ there exists k1, k2 > 0 and 0 < σ < m such that

−l(r) ≤ F (r, x) ≤ k1|x|σ + k2, for all (r, x) ∈ [R1, R2]× R, (2.35)

where l ≥ 0 is measurable and

∫ R2

R1

rN−1l(r)dr < +∞;

(ii)′ one has that either

lim
|x|→∞

∫ R2

R1

rN−1F (r, x)dr = +∞, (2.36)

or the limits F±(r) = lim
x→±∞

F (r, x) exist for all r ∈ [R1, R2] and

F (r, x) < F+(r), ∀r ∈ [R1, R2], x ≥ 0,

F (r, x) < F−(r), ∀r ∈ [R1, R2], x ≤ 0; (2.37)

(iii)′ it holds ∫ R2

R1

rN−1h(r)dr = 0,

we prove in Theorem 33 (see also Theorem 34 for the periodic case) that problem
(2.28) has at least three nontrivial solutions for sufficiently small values of the
parameter λ. Results of this type in the classical case, called multiplicity results
near resonance, have been initiated in [99] (for N = 1), using bifurcation from
infinity and Leray-Schauder degree theory. A variational approach was intro-
duced by Sanchez in [109] to attack such multiplicity problems, and conditions
of type (i)’ and (ii)’ were introduced by Ma, Ramos and Sanchez in [108, 83]
for semilinear and quasilinear Dirichlet problems involving the p-Laplacian. See
also [84, 82, 102, 44, 106] for a similar variational treatment of various semilin-
ear or quasilinear equations, systems or inequalities with Dirichlet bonditions,
[103] for perturbations of p-Laplacian with Neumann boundary conditions, and
[81] for periodic solutions of perturbations of the one-dimensional p-Laplacian.
The existence of at least two solutions near resonance at a non-principal eigen-
value have been first obtained in [98] using a topological approach and then for
semilinear or quasilinear problems using critical point theory in [45, 75, 111],
but this question seems to be meaningless for the singular ϕ considered here
because resonance only occurs at 0.

The main used tools are some abstract local minimization results combined
with mountain pass techniques in the frame of the Szulkin’s critical point theory
[112]. The rest of the paper is organized as follows. In Section 2 we give some
abstract results (Proposition 10 and Proposition 11) which we need in the sequel.
The concrete functional framework and the variational setting, employed in the
treatment of the above problems, are described in Section 3. Section 4 and
Section 5 are devoted to the proofs of the main multiplicity results.
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Chapter 8 [11]
In the recent paper [29], Brezis and Mawhin show that the forced pendulum like
problem

(ϕ(u′))′ = f(t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (2.38)

has at least one solution, provided that f : [0, T ] × R → R is a continuous
function for which there exists ω > 0 such that

F (t, u) = F (t, u+ ω), ∀(t, u) ∈ [0, T ]× R,

where F : [0, T ]× R → R is defined by

F (t, u) =

∫ u

0

f(t, ξ)dξ, ∀(t, u) ∈ [0, T ]× R,

h : [0, T ] → R is a continuous function satisfying∫ T

0

h(t)dt = 0,

and ϕ : (−a, a) → R (0 < a < ∞) is an increasing homeomorphism with
ϕ(0) = 0 and there exists Φ : [−a, a] → R a continuous function with Φ(0) = 0,
Φ of class C1 on (−a, a) and Φ′ = ϕ. They consider the action functional
I : K# → R associated to (2.38), given by

I(u) =
∫ T

0

{Φ(u′) + F (t, u) + hu}dt, (u ∈ K#),

where

K# = {u ∈ Lip(R) : |u′(t)| ≤ a for a.e. t ∈ R, u is T − periodic},

and prove that I has at least one minimizer u in K# satisfying the variational
inequality∫ T

0

[Φ(v′)− Φ(u′)] +

∫ T

0

[f(t, u) + h][v − u] ≥ 0, ∀v ∈ K#. (2.39)

Then, using (2.39) and a topological result from [22], they show that any mini-
mizer of I on K# is a solution of (2.38). Hence, (2.38) has at least one solution.
Notice that the corresponding classical result (ϕ = idR) was proved by Hamel
[70] and rediscovered independently by Dancer [41] and Willem [120]. Also,
Brezis and Mawhin extend their result from [29] to systems in their subsequent
paper [30].

In [18] it is emphasized that Szulkin’s critical point theory [112] is an appro-
priate functional framework for problems of this type. More precisely, set

K̂ = {u ∈W 1,∞(0, T ) : ∥u′∥∞ ≤ a, u(0) = u(T )}
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and let Ψ : C[0, T ] → (−∞,+∞],

Ψ(u) =

∫ T

0

Φ(u′) if u ∈ K̂, Ψ(u) = +∞ if u ∈ C[0, T ] \ K̂,

and F : C[0, T ] → R,

F(u) =

∫ T

0

{F (t, u) + hu}dt, (u ∈ C[0, T ]).

Then, Ψ is a lower semicontinuous, convex functional and F is of class C1.
Hence, the action Î : C[0, T ] → (−∞,+∞] defined by Î = Ψ + F , has the
structure required by Szulkin’s critical point theory. In this context, a critical
point of Î means a function u ∈ K̂ such that (2.39) holds true. Then, using

some ideas from [29], it is shown that any critical point of Î is a solution of
(2.38). Note that C[0, T ] is not reflexive, so the direct method in the calculus
of variations cannot be applied. Nevertheless, a substitute for this is provided,
namely, it is shown that if there exists ρ > 0 such that infK̂ρ

Î = infK̂ Î, where

K̂ρ = {u ∈ K̂ :

∣∣∣∣∣
∫ T

0

u

∣∣∣∣∣ ≤ ρ},

then Î is bounded from below on C[0, T ] and attains its infimum at some u ∈ K̂ρ

which solves (2.38). The Brezis-Mawhin result is an immediate consequence of
this result.

Another proof of Brezis-Mawhin result is given by Manásevich and Ward
in [85]. The main idea is to introduce the change of variable ϕ(u′) = v. Then,
problem (2.38) becomes

u′ = ϕ−1(v), v′ = f(t, u) + h(t), u(0)− u(T )− 0 = v(0)− v(T ). (2.40)

Letting

ϕ̂(v) =

∫ v

0

ϕ−1(s)ds, w = (u, v),

with the Hamiltonian function H(t, w) = −ϕ̂(v)+F (t, u)+h(t)u, system (2.40)
takes the Hamiltonian form

w′ = J∇wH(t, w), w(0) = w(T ),

where J is the standard symplectic matrix. The classical saddle point theorem of
Rabinowitz is then applied to a sequence of approximating problems, obtaining a
sequence of critical points. A subsequence of these critical points converges to a
solution. Notice that the action functional associated to the above Hamiltonian
system is strongly indefinite and the classical saddle point theorem does not
apply to it.

A second geometrically distinct solution of problem (2.38) is obtained in [27]
using the functional framework introduced in [18] and a mountain pass type
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argument (Corollary 3.3 from [112]). We note that the corresponding classical
result was proved by Mawhin and Willem in [100] using a modified version of the
Mountain Pass Theorem. Another proof of the Mawhin-Willem result was given
by Franks [58] using a generalization of the Poincaré -Birkhoff theorem. Very
recently Fonda and Toader [55] prove the results from [27, 100] in a unified way,
using Ding’s version of the Poincaré -Birkhoff theorem (see [50]). Using Franks’s
generalization of the Poincaré -Birkhoff theorem, Maró [86] give another proof
of the main result from [27].

In the very recent paper [95], Mawhin obtains multiplicity of solutions for
the N -dimensional analogous of (2.38):

(ϕ(u′))′ = ∇uF (t, u) + h(t), u(0)− u(T ) = 0 = u′(0)− u′(T ), (2.41)

under the following hypotheses:

(Hϕ) ϕ is a homeomorphism from B(a) ⊂ RN onto RN such that ϕ(0) = 0,

ϕ = ∇Φ, with Φ : B(a) → R of class C1 on B(a), continuous, strictly convex on
B(a), and such that Φ(0) = 0;

(HF ) F : [0, T ]×RN → R is continuous, ωi−periodic (ωi > 0) with respect
to each ui (1 ≤ i ≤ N) and ∇uF exists and is continuous on [0, T ]× RN ;

(Hh) h : [0, T ] → RN is continuous and∫ T

0

h(t)dt = 0.

Under the above assumptions, Mawhin shows that (2.41) has a Hamiltonian for-
mulation, then applies a generalized saddle point theorem for strongly indefinite
functionals due to Szulkin [113] (see also [53, 79]) in order to prove that (2.41)
has at least N + 1 geometrically distinct solutions. The corresponding classical
result has been proved independently, using Lusternik-Schnirelman theory in
Hilbert manifolds or variants of it, by Chang [34], Mawhin [90] and Rabinowitz
[107]. The case N = 2 has been discussed by Fournier and Willem in [57]. It is
interesting to note that the Hamiltonian system associated to (2.41) is spatially
periodic like in [53], but the results in [53] cannot be applied to it because the
superlinearity condition (H3) in [53] with respect to the spatial variable is not
satisfied in this relativistic case.

For a nice presentation of the classical forced pendulum equation we refer
the reader to the paper [89].

The aim of this chapter is to give a different proof of Mawhin’s result in
[95], based upon a Lusternik-Schnirelman type approach for Szulkin function-
als. More precisely, we will consider functionals I : X → (−∞,+∞] in a Banach
space X such that I = Ψ+ G, Ψ is proper, convex, lower semicontinuous and G
is of class C1. Also, I will be G-invariant with respect to a discrete subgroup
G with dim (span G) = N and bounded from below. Under some additional
assumptions, which are automatically satisfied by the Lagrangian action asso-
ciated to (2.41), we prove that I has N + 1 critical orbits (Theorem 35). With
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this aim, we use a Deformation Lemma (Proposition 16) together with Eke-
land’s variational principle and the classical Lusternik-Schnirelman category in
order to prove that one has critical value at the levels (introduced in [107] for
C1-functionals),

cj = inf
A∈Aj

sup
A
I (1 ≤ j ≤ N + 1),

where

Aj = {A ⊂ X : A is compact and catπ(X)(π(A)) ≥ j},

and π : X → X/G denotes the canonical projection. The corresponding abstract
result for C1-functionals is proved in [101]. We point out that we use also some
ideas from the proof of Theorem 4.3 in [112], but the deformation obtained in
Proposition 2.3 from [112] can not be employed in our case because it is not
“G-invariant” (see Proposition 16 (ii)).

The chapter is organized as follows. In Section 2 we show that the action
functional associated to problem (2.41) has the structure required by Szulkin’s
critical point theory and present the main properties involved in the proof of
the existence of at least N + 1 geometrically distinct solutions for (2.41). In
Section 3 we introduce some notations and the hypotheses. In Section 4 we
prove a technical result (Proposition 15); this is the key ingredient in the proof
of the deformation lemma (Proposition 16) which is given in Section 5. The next
Section is a resume of the main tools of the proof of the main result: Ekeland’s
variational principle and the classical Lusternik-Schnirelman category. In the
last Section we prove the main result of the paper (Theorem 35).



Chapter 3

Dirichlet problems with
ϕ-Laplacians

3.1 Radial solutions in the unit ball

In this Section, B denotes the open unit ball in RN and f : [0, 1] × R2 → R is
a continuous function. The first main result concerns the existence of classical
radial solutions of the nonlinear Dirichlet problem associated with the mean
extrinsic curvature operator in Minkowski space

div

(
∇v√

1− |∇v|2

)
= f(|x|, v, dv

dr
) in B, v = 0 on ∂B. (3.1)

We have for (3.1) the following ‘universal’ existence result.

Theorem 1 Problem (3.1) has at least one classical radial solution for any
continuous right-hand member f.

Notice that, when f(r, u, v) = H (case of constant mean extrinsic curvature),
the radial solution of (3.1) is unique and explicitely given, for any H ∈ R, by

u(r) = 0 (H = 0), u(r) =
N

H

[√
1 +

H2

N2
r2 −

√
1 +

H2

N2

]
(H ̸= 0).

The second main result of the section deals with the existence of classical
radial solutions of the nonlinear Dirichlet problem associated with the mean
curvature operator in Euclidian space

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v, dv

dr
) in B, v = 0 on ∂B. (3.2)

25
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Theorem 2 Assume that there exists α > 0 such that α
N < 1 and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [0, 1]×Rα,

where Rα is the square given by Rα =

[
− α/N√

1−(α/N)2
, α/N√

1−(α/N)2

]2
. Then, prob-

lem (3.2) has at least one classical radial solution.

Notice that, when f(r, u, v) = H (case of constant mean curvature), the radial
solution of (3.2) only exists if |H| < N, is unique and is explicitely given by

u(r) = 0 (H = 0), u(r) =
N

H

[√
1− H2

N2
−
√
1− H2

N2
r2

]
(0 < |H| < N).

Hence condition α
N < 1 in Theorem 2 is sharp.

When dealing with the radial solutions for (3.1) or (3.2), one is led to study
(setting |x| = r and v(x) = u(r)) the mixed boundary-value problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(0) = 0 = u(1), (3.3)

where ϕ(y) = y√
1−y2

in the Minkowski case and ϕ(y) = y√
1+y2

in the Euclidian

case (y ∈ R).

We first reformulate (3.3) as a fixed point problem, for a general class of ϕ
containing the two examples above as special cases, namely ϕ : (−a, a) → R an
increasing homeomorphism such that ϕ(0) = 0 and 0 < a ≤ ∞. In this section
C stands for the Banach space of continuous functions defined on [0, 1] endowed
with the usual sup-norm ||·||∞ and C1 denotes the Banach space of continuously
differentiable functions on [0, 1] equipped with the norm ||u|| = ||u||∞ + ||u′||∞.
The subspaces of C1 defined by

C1
M = {u ∈ C1 : u′(0) = 0 = u(1)}

and
C0 = {u ∈ C : u(0) = 0}

are closed. Then, setting

γ(r) =
1

rN−1
(r > 0),

consider the linear operators

S : C → C0, Su(r) = γ(r)

∫ r

0

tN−1u(t)dt (r ∈ (0, 1]),

K : C → C1, Ku(r) =

∫ r

1

u(t)dt (r ∈ [0, 1]).
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It is easy to see that K is a bounded operator and standard arguments, invoking
the Arzela-Ascoli theorem, show that S is compact. Now, let Nf : C1 → C be
the Nemytskii operator associated to f , defined by

Nf (u) = f(·, u(·), u′(·)) ∀u ∈ C1.

Note that Nf is continuous and takes bounded sets into bounded sets. The
following result has been proved in [63] if a = ∞. The proof for the case a <∞
is completely similar to the one given in [63] and, actually, can be easily deduced
from the properties of the above operators.

Lemma 2 The nonlinear operator

M : C1
M → C1

M , M = K ◦ ϕ−1 ◦ S ◦Nf .

is well defined, compact, and u ∈ C1
M is a solution of (3.3) if and only if

M(u) = u.

Proposition 1 Assume that 0 < a < ∞ and ϕ : (−a, a) → R is an increasing
homeomorphism such that ϕ(0) = 0. Then, problem (3.3) has at least one
solution.

Proof. Let u ∈ C1
M and v = M(u). It follows that

||v′||∞ = ||ϕ−1 ◦ S ◦Nf (u)||∞ < a. (3.4)

From (3.4) and

||v||∞ = ||K(v′)||∞,

it follows that

||v||∞ < a.

Hence,

||v|| < 2a.

From the above estimate and Schauder fixed point theorem, we deduce that
there exist u ∈ C1

M such that u = M(u). Using Lemma 2, it follows that u is
also a solution of (3.3).

Proposition 2 Let 0 < a ≤ ∞ and ϕ : R → (−a, a) be an increasing homeo-
morphism such that ϕ(0) = 0. If there exists α > 0 such that α

N < a and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [0, 1]×Rα(ϕ), (3.5)

where Rα(ϕ) is the rectangle given by

Rα(ϕ) = [−ϕ−1(α/N)),−ϕ−1(−α/N)]× [ϕ−1(−α/N), ϕ−1(α/N)],

then problem (3.3) has at least one solution u ∈ Ωα(ϕ), where

Ωα(ϕ) = {u ∈ C1
M : (u(r), u′(r)) ∈ Rα(ϕ), ∀r ∈ [0, 1]}.
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Proof. We distinguish two cases.
The case a = ∞. We show that

M(Ωα(ϕ)) ⊂ Ωα(ϕ), (3.6)

where M is the fixed point operator associated to (3.3) (see Lemma 2). Let
u ∈ Ωα(ϕ) and v = M(u). Using (3.5), it results that

|ϕ(v′(r))| =
∣∣∣∣ 1

rN−1

∫ r

0

tN−1f(t, u(t), u′(t))dt

∣∣∣∣ ≤ α

N

for all r ∈ (0, 1], and because ϕ(v′(0)) = 0, the homeomorphic character of ϕ
implies that

v′(r) ∈ [ϕ−1(−α/N), ϕ−1(α/N)] for all r ∈ [0, 1].

Hence, using v = K(v′), we deduce that

v(r) ∈ [−ϕ−1(α/N)),−ϕ−1(−α/N)] for all r ∈ [0, 1].

Consequently, v ∈ Ωα(ϕ) and (3.6) is proved. Now, using the fact that Ωα(ϕ)
is a closed convex set in C1

M invariant for the compact operator M, it follows
by Schauder fixed point theorem that that there exists u ∈ Ωα(ϕ) such that
M(u) = u, which is also a solution of (3.3).

The case a < ∞. Since α
N < a, we can construct an increasing homeomor-

phism ψ : R → R such that

ψ(u) = ϕ(u) for all u ∈ [ϕ−1(−α/N), ϕ−1(α/N)].

It is clear that Rα(ϕ) = Rα(ψ) and Ωα(ϕ) = Ωα(ψ). Hence, by the first step,
problem

(rN−1ψ(u′))′ = rN−1f(r, u, u′), u′(0) = 0 = u(1),

has at least one solution u ∈ Ωα(ψ), which is also a solution of (3.3).

The proofs of Theorem 1 and 2. Taking v(x) = u(|x|) for all x ∈ B,
we have that Theorem 1 follows from Proposition 1 (with ϕ(u) = u√

1−u2
) and

Theorem 2 follows from Proposition 2 (with ϕ(u) = u√
1+u2

).

Remark 1 Taking in Proposition 2, ϕ(u) = |u|p−2u (p > 1) and v(x) = u(|x|)
for all x ∈ B, we recover an existence result already proved in [48].

When f is independent of du
dr , it is easy to formulate simple uniqueness

conditions for the solution of (3.3), and hence for the radial solution of (3.1)
and of (3.2).



3.2. RADIAL SOLUTIONS IN AN ANNULAR DOMAIN 29

Theorem 3 If f : [0, 1]×R → R is such that f(r, ·) is non decreasing for each
fixed r ∈ [0, 1], then problem

(rN−1ϕ(u′))′ = rN−1f(r, u), u′(0) = 0 = u(1)

has at most one solution, and the same is true for the radial solutions of problems

div

(
∇v√

1− |∇v|2

)
= f(|x|, v) in B, v = 0 on ∂B

and

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v) in B, v = 0 on ∂B

Proof. Assume that u and w are solutions of (3.3), and that u ̸= w. It follows
from the boundary conditions that E := {r ∈ [0, 1] : u′(r) ̸= w′(r)} has positive
measure. Now, multiplying identity[

rN−1(ϕ(u′)− ϕ(w′))
]′
= rN−1[f(r, u)− f(r, w)]

by u − w, integrating over [0, 1], integrating by parts and using the boundary
conditions and the increasing character of ϕ, we get

0 > −
∫
E

[ϕ(u′(r))− ϕ(w′(r))][u′(r)− w′(r)]rN−1 dr

=

∫ 1

0

[f(r, u(r))− f(r, w(r))][u(r)− w(r)] dr ≥ 0, (3.7)

a contradiction.

3.2 Radial solutions in an annular domain

In this section, A denotes the annular domain {x ∈ RN : 1 < |x| < 2} and
f : [1, 2] × R2 → R is a continuous function. The first main result concerns
the existence of classical radial solutions of the nonlinear Dirichlet problem
associated with the mean extrinsic curvature operator in Minkowski space

div

(
∇v√

1− |∇v|2

)
= f(|x|, v, dv

dr
) in A, v = 0 on ∂A. (3.8)

We have the following ‘universal’ existence result.

Theorem 4 Problem (3.8) has at least one classical radial solution for any
continuous right-hand member f.
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The following result concerns the existence of radial solutions for the nonlin-
ear Dirichlet problem associated with the mean curvature operator in Euclidian
space

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v, dv

dr
) in A, v = 0 on ∂A. (3.9)

Theorem 5 Assume that there exists α > 0 such that αN := 2α(2N−1)
N2N−1 < 1 and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [1, 2]× Pα,

where Pα is the square given by Pα =

[
− αN√

1−α2
N

, αN√
1−α2

N

]2
. Then, problem

(3.9) has at least one classical radial solution.

When dealing with the radial solutions for problems (3.8) or (3.9), we are
led to consider the nonlinear Dirichlet problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u(1) = 0 = u(2), (3.10)

where ϕ(u) = u√
1−u2

or ϕ(u) = u√
1+u2

, respectively.

As in the preceding section we start with the case where ϕ : (−a, a) → R
is an increasing homeomorphism such that ϕ(0) = 0 and 0 < a ≤ ∞. In this
situation we reformulate (3.10) as a fixed point problem.

In this section C stands for the Banach space of continuous functions defined
on [1, 2] endowed with the norm || · ||∞. On the other hand, C1 denotes the
Banach space of continuously differentiable functions on [1, 2] equipped with
the norm ||u|| = ||u||∞ + ||u′||∞ and C1

D denotes the closed subspace of C1

defined by
C1

D = {u ∈ C1 : u(1) = 0 = u(2)}.

Consider the linear operators

L : C → C, Lu(r) = γ(r)

∫ r

1

tN−1u(t)dt (r ∈ [1, 2]),

H : C → C1, Hu(r) =

∫ r

1

u(t)dt (r ∈ [1, 2]).

It is not difficult to prove thatK is a bounded operator and L is compact. Then,
let Nf be the Nemitskii operator associated to f defined like in the previous
section. The following lemma is the key ingredient used in the construction of
the fixed point operator associated to (3.10).

Lemma 3 For each h ∈ C there exists an unique α := Qϕ(h) ∈ R such that∫ 2

1

ϕ−1(h(r)−Qϕ(h)γ(r))dr = 0. (3.11)
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Moreover, the function Qϕ : C → R is continuous and satisfies

|Qϕ(h)| ≤ ||h/γ||∞ for all h ∈ C. (3.12)

Proof. Let h ∈ C. We first prove uniqueness. Let αi ∈ R be such that∫ 2

1

ϕ−1(h(r)− αiγ(r))dr = 0 (i = 1, 2).

It follows that there exists r0 ∈ [1, 2] such that

ϕ−1(h(r0)− α1γ(r0)) = ϕ−1(h(r0)− α2γ(r0)),

and using the injectivity of ϕ−1 we deduce that α1 = α2. For the existence, it
is clear that the function

F : [−||h/γ||∞, ||h/γ||∞] → R, t 7→
∫ 2

1

ϕ−1(h(r)− tγ(r))dr

is continuous and F (−||h/γ||∞)F (||h/γ||∞) ≤ 0. Hence, there exists an unique
α := Qϕ(h) ∈ [−||h/γ||∞, ||h/γ||∞] such that F (α) = 0, which means that (3.11)
and (3.12) hold. The continuity of Qϕ follows immediately from the dominated
convergence theorem.

The following result is a fixed point reformulation of (3.10) when ϕ : (−a, a) →
R is an increasing homeomorphism such that ϕ(0) = 0 and 0 < a ≤ ∞. In the
case a = ∞, a different fixed point operator associated to (3.10) has been used
in [62] in order to obtain a multiplicity result.

Lemma 4 Consider the nonlinear operator

D : C1
D → C1

D, D = H ◦ ϕ−1 ◦ (I − γQϕ) ◦ L ◦Nf .

Then, D is well defined, compact and u ∈ C1
D is a solution of (3.10) if and only

if D(u) = u.

Proof. Let u ∈ C1
D. It is clear that D(u)(1) = 0. On the other hand, applying

Lemma 3 with h = (L ◦ Nf )(u), it follows that D(u)(2) = 0. Hence, D is well
defined. Now, we know that the operators which compose D are continuous
and take bounded sets into bounded sets. Moreover, the linear operator H is
compact. This implies the compactness of D.

Let u ∈ C1
D be such that D(u) = u. This implies that u satisfies the Dirichlet

boundary condition on [1, 2], ||u′||∞ < a and

ϕ(u′)(r) =
1

rN−1

∫ r

1

tN−1Nf (u)(t)dt−
1

rN−1
Qϕ[(L ◦Nf )(u))]

for all r ∈ [1, 2]. This implies that u satisfies the differential equation in (3.10).
The remaining part of the proof is obvious.
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The following result is an immediate consequence of the above fixed point
reduction and Schauder fixed point theorem.

Proposition 3 Assume that 0 < a < ∞ and ϕ : (−a, a) → R is an increasing
homeomorphism such that ϕ(0) = 0. Then, problem (3.10) has at least one
solution.

Proof. See the proof of Proposition 1.

Proposition 4 Let ϕ : R → (−a, a) be an increasing homeomorphism such that

ϕ(0) = 0 and 0 < a ≤ ∞. If there exists α > 0 such that αN := 2α(2N−1)
N2N−1 < a

and

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [1, 2]×Rα(ϕ), (3.13)

where Rα(ϕ) is the square given by

Rα(ϕ) = [ϕ−1(−αN ), ϕ−1(αN )]2,

then problem (3.10) has at least one solution u ∈ Ωα(ϕ), where

Ωα(ϕ) = {u ∈ C1
D : (u(r), u′(r)) ∈ Rα(ϕ) ∀r ∈ [1, 2]}.

Proof. We distinguish two cases.

The case a = ∞. We show that

D(Ωα(ϕ)) ⊂ Ωα(ϕ), (3.14)

where D is the fixed point operator associated to (3.10) (see Lemma 4). Let
u ∈ Ωα(ϕ) and v = D(u). It follows that

ϕ(v′) = (L ◦Nf )(u)− γQϕ[(L ◦Nf )(u)].

Using Lemma 3 and (3.13), we infer

||γQϕ[(L ◦Nf )(u)]||∞ ≤ ||(L ◦Nf )(u)||∞ ≤ αN

2
.

Hence

||ϕ(v′)||∞ ≤ αN .

This implies that v ∈ Ωα(ϕ) and (3.14) holds. The result follows now from
Schauder fixed point theorem.

The case a < ∞. To prove the result in this case, use the first step and
similar arguments as in the proof of Proposition 2.
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The proofs of Theorem 4 and 5. Taking v(x) = u(|x|) for all x ∈ A,
we have that Theorem 4 follows from Proposition 3 (with ϕ(u) = u√

1−u2
) and

Theorem 5 follows from Proposition 4 (with ϕ(u) = u√
1+u2

).

When f is independent of du
dr , proceeding exactly like in Section 2, we can

prove the following simple uniqueness conditions for the solution of (3.10), and
hence for the radial solution of (3.8) and of (3.9).

Theorem 6 If f : [1, 2]×R → R is such that f(r, ·) is non decreasing for each
fixed r ∈ [1, 2], then problem

(rN−1ϕ(u′))′ = rN−1f(r, u), u(1) = 0 = u(2)

has at most one solution, and the same is true for the radial solutions in A of
problems

div

(
∇v√

1− |∇v|2

)
= f(|x|, v) in A, v = 0 on ∂A

and

div

(
∇v√

1 + |∇v|2

)
= f(|x|, v) in A, v = 0 on ∂A
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Chapter 4

Neumann problems with
ϕ-Laplacians

4.1 A class of Neumann boundary-value prob-
lems

Consider the Neumann boundary-value problem (BVP)

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (4.1)

where ϕ is a homeomorphism such that ϕ(0) = 0, belonging to one of the
following classes (0 < a <∞):

ϕ : (−a, a) → R (singular),

ϕ : R → R (classical),

ϕ : R → (−a, a) (bounded),

and f : [R1, R2] × R2 → R is continuous. By a solution of (4.1) we mean a
continuously differentiable function u such that u′ ∈ dom(ϕ), r 7→ rN−1ϕ(u′) is
differentiable and (4.1) is satisfied.

We denote by C the Banach space of continuous functions defined on [R1, R2]
endowed with the usual norm || · ||∞, by C1 the Banach space of continuously
differentiable functions defined on [R1, R2] endowed with the norm

||u|| = ||u||∞ + ||u′||∞,

and by C1
† the closed subspace of C1 defined by

C1
† = {u ∈ C1 : u′(R1) = 0 = u′(R2)}.

The corresponding open ball with center in 0 and radius ρ is denoted by Bρ.
For any continuous function w : [R1, R2] → R, we write

wL := min
[R1,R2]

w, wM := max
[R1,R2]

w.

35
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Let us introduce the continuous projector

Q : C → C, Qu =
N

RN
2 −RN

1

∫ R2

R1

rN−1u(r)dr,

the continuous function

γ : (0,∞) → R, γ(r) =
1

rN−1
,

and the linear operators

L : C → C, Lu(r) = γ(r)

∫ r

R1

tN−1u(t)dt (r ∈ (R1, R2]),

H : C → C1, Hu(r) =

∫ r

R1

u(t)dt (r ∈ [R1, R2]).

It is not difficult to prove that L is compact (Arzelà-Ascoli) and H is bounded.
Finally, we associate to f its Nemytskii operator

Nf : C1 → C, Nf (u) = f(·, u(·), u′(·)).

It is known that Nf is continuous and takes bounded sets into bounded sets.

Let us decompose any function u ∈ C1
† in the form

u = u+ ũ (u = u(R1), ũ(R1) = 0),

and let

C̃1
† = {u ∈ C1

† : u(R1) = 0}.

We first study an associated modified problem.

Lemma 5 If ϕ is singular, the set S of the solutions (u, ũ) ∈ R× C̃1
† of problem

(rN−1ϕ(ũ′))′ = rN−1[Nf (u+ ũ)−Q ◦Nf (u+ ũ)] (4.2)

contains a continuum C whose projection on R is R and whose projection on C̃1
†

is contained in the ball Bρ(a) where ρ(a) = a(1 +R2 −R1).

Proof. Consider the nonlinear operator

M̃ : R× C̃1
† → C̃1

† , M̃(u, ũ) = [H ◦ ϕ−1 ◦ L ◦ (I −Q) ◦Nf ](u+ ũ).

Let (u, ũ) ∈ R × C̃1
† and ṽ = M̃(u, ũ). It follows that ṽ ∈ C1, ṽ(R1) = 0,

||ṽ′||∞ < a and

ϕ(ṽ′(r)) = γ(r)

∫ r

R1

tN−1[Nf (u+ ũ)(t)−QNf (u+ ũ)]dt (r ∈ (R1, R2]). (4.3)
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Moreover ϕ(ṽ′(R1)) = 0 and

ϕ(ṽ′(R2)) = γ(R2)

∫ R2

R1

tN−1[Nf (u+ ũ)(t)−QNf (u+ ũ)]dt

= γ(R2)

[∫ R2

R1

tN−1Nf (u+ ũ)(t)dt−QNf (u+ ũ)

∫ R2

R1

tN−1dt

]
= 0.

Hence, M̃ is well defined and it is clear that M̃ is compact. Now, using (4.3)

we infer that (u, ũ) ∈ R× C̃1
† is a solution of (4.2) if and only if

ũ = M̃(u, ũ). (4.4)

So, it suffices to prove that the set of solution of the above problem contains a
continuum of solutions whose projection on R is R and whose projection on C̃1

†

is contained in the ball Bρ(a). Note that if (u, ũ) ∈ R× C̃1
† satisfies (4.4), then

||ũ′||∞ < a, ||ũ||∞ < a(R2 −R1).

We deduce that

ũ ̸= M̃(u, ũ) for all (u, ũ) ∈ R× ∂Bρ(a). (4.5)

Consider the compact homotopy

M̃ : [0, 1]× C̃1
† → C̃1

† , M̃(λ, ũ) = [H ◦ ϕ−1 ◦ λL ◦ (I −Q) ◦Nf ](ũ).

Note that
M̃(0, ·) = 0, M̃(1, ·) = M̃(0, ·).

It is clear that

ũ ̸= M̃(λ, ũ) for all (λ, ũ) ∈ [0, 1]× ∂Bρ(a).

Hence from the invariance under a homotopy of the Leray-Schauder degree [47]
we deduce that

dLS [I − M̃(0, ·), Bρ(a), 0] = dLS [I,Bρ(a), 0] = 1. (4.6)

The result follows now from Lemma 1, (4.5) and (4.6).

Remark 2 Assume that ϕ is classical or singular and let us consider the non-
linear operator

N : C1
† → C1

† , N = P +QNf +H ◦ ϕ−1 ◦ L ◦ (I −Q) ◦Nf ,

where P : C → C is the continuous projector defined by Pu = u(R1). Using
the same strategy as above, it is not difficult to prove that N is well defined,
compact and for any u ∈ C1

† one has that u is a solution of (4.1) iff u is a fixed
point of N .



38 CHAPTER 4. NEUMANN PROBLEMS WITH ϕ-LAPLACIANS

In the singular case we have the following existence result.

Theorem 7 Assume that ϕ is singular and there exist ε ∈ {−1, 1} and ρ > 0
such that

ε (sgn u)QNf (u) ≥ 0 (4.7)

for any u ∈ C1
† satisfying |u|L ≥ ρ and ||u′||∞ < a. Then the BVP (4.1) has at

least one solution.

Proof. Let C be the continuum given in Lemma 5 and ũ1 ∈ C̃1
† be such that

(ρ + ρ(a), ũ1) ∈ C. Taking u1 = ρ + ρ(a) + ũ1, one has that u1 ≥ 0, |u1|L > ρ
and ||u′1||∞ < a. Hence, from (4.7) it follows that εQNf (u1) ≥ 0. On the other

hand, let ũ2 ∈ C̃1
† be such that (−ρ−ρ(a), ũ2) ∈ C. Taking u2 = −ρ−ρ(a)+ ũ2,

one has that u2 ≤ 0, |u2|L > ρ and ||u′2||∞ < a. Hence, from (4.7) it follows
that εQNf (u2) ≤ 0. Using the intermediate value theorem, we infer that there
exists (u, ũ) ∈ C such that QNf (u + ũ) = 0. This implies that u = u + ũ is a
solution of (4.1).

The following very useful result is a direct consequence of the above theorem.

Corollary 1 Assume that ϕ is singular and let h : [R1, R2] × R2 → R and
g : [R1, R2]× R → R be continuous, with h bounded on [R1, R2]× R× (−a, a),
and g such that

lim
u→−∞

g(r, u) = +∞, lim
u→+∞

g(r, u) = −∞

(resp. lim
u→−∞

g(r, u) = −∞, lim
u→+∞

g(r, u) = +∞) (4.8)

uniformly in r ∈ [R1, R2]. Then the BVP

(rN−1ϕ(u′))′ + rN−1g(r, u) = rN−1h(r, u, u′), u′(R1) = 0 = u′(R2)

has at least one solution.
In particular, the problem

(rN−1ϕ(u′))′ + µrN−1u = rN−1h(r, u, u′), u′(R1) = 0 = u′(R2)

has at least one solution for each µ ̸= 0.

Remark 3 Consider the non-homogeneous Neumann problem with a singular
ϕ-Laplacian(

ru′√
1− u′2

)′

= r(κu+ λ), u′(0) = 0, u′(R) = γ,

where R > 0, κ, λ ∈ R and γ ∈ (−1, 1). If κ ̸= 0 (the case κ = 0 follows
immediately by a direct integration), then it is proved, by a shooting argument,
in Theorem 4.2 and Theorem 6.9 from [80] that the above Neumann problem has
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at least one solution. Now, it follows from Corollary 6 [14] that the Neumann
problem(

rN−1u′√
1− u′2

)′

= rN−1(κu+ h(r, u, u′)), u′(0) = 0, u′(R) = γ,

has at least one solution if N ≥ 1 is an integer and the continuous perturbation
h : [0, R] × R2 → R is bounded on [0, R] × R × (−1, 1). For the geometric
motivation of the above problems see the paper [80].

We now consider the bounded and classical cases.

Lemma 6 Let ψ : (−a, a) → (−b, b) be a homeomorphism such that ψ(0) = 0
and 0 < a, b ≤ ∞. Assume that there exists a constant k ≥ 0 such that kR2

N < b
and

|f(r, u, v)| ≤ k for all (r, u, v) ∈ [R1, R2]× R2. (4.9)

If u is a possible solution of the Neumann BVP

(rN−1ψ(u′))′ = rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (4.10)

then

||u′||∞ ≤ max(|ψ−1(±kR2/N)|) =: ρ1(ψ). (4.11)

Proof. If u ∈ C1
† solves (4.10) then

u′(r) = ψ−1

(
γ(r)

∫ r

R1

tN−1f(t, u(t), u′(t))dt

)
(r ∈ [R1, R2]). (4.12)

Using (4.9) we get∣∣∣∣γ(r) ∫ r

R1

tN−1f(t, u(t), u′(t))dt

∣∣∣∣ ≤ kR2

N
,

which, together with (4.12), gives (4.11).

Theorem 8 Let ϕ : R → (−b, b) be a homeomorphism such that ϕ(0) = 0 with
0 < b ≤ ∞ and let f be like in Lemma 6. Assume that there exist a ∈ (ρ1(ϕ),∞),
ε ∈ {−1, 1} and ρ > 0 such that (4.7) holds for any u ∈ C1

† satisfying |u|L ≥ ρ
and ||u′||∞ < a. Then the BVP (4.1) has at least one solution.

Proof. Let d ∈ (ρ1(ϕ), a) and ψ : (−a, a) → R be a homeomorphism which
coincides with ϕ on [−d, d]. Then, ρ1(ϕ) = ρ1(ψ) and using Lemma 6 one has
that the solutions of (4.10) coincide with the solutions of (4.1). Now the result
follows from Theorem 7.
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Lemma 7 Let R1 > 0 and ψ : (−a, a) → (−b, b) be a homeomorphism such
that ψ(0) = 0 and 0 < a, b ≤ ∞. Assume that there exists c ∈ C such that
2R1−N

1 ||c−/γ||L1 < b and

f(r, u, v) ≥ c(r), for all (r, u, v) ∈ [R1, R2]× R2. (4.13)

If u is a possible solution of the Neumann BVP (4.10) then

||u′||∞ ≤ max(|ψ−1(±2R1−N
1 ||c−/γ||L1)|) =: ρ2(ψ). (4.14)

Proof. First of all, let us note that

|rN−1f(r, u, v)| ≤ rN−1f(r, u, v) + 2
c−(r)

γ(r)
(4.15)

for all (r, u, v) ∈ [R1, R2]× R2. If u solves (4.10) then

QNf (u) = 0. (4.16)

From (4.15) and (4.16) we get∫ R2

R1

|rN−1f(r, u(r), u′(r))|dr ≤ 2||c−/γ||L1 . (4.17)

Now the result follows from (4.12) and (4.17).

Theorem 9 Let R1 > 0 and ϕ : R → (−b, b) be a homeomorphism such that
ϕ(0) = 0 with 0 < b ≤ ∞ and f be like in Lemma 7. Assume that there
exist a ∈ (ρ2(ϕ),∞), ε ∈ {−1, 1} and ρ > 0 such that (4.7) holds for any
u ∈ C1

† satisfying |u|L ≥ ρ and ||u′||∞ < a. Then the BVP (4.1) has at least
one solution.

Proof. See the proof of Theorem 8.

Remark 4 In the particular case N = 1 Theorem 7 was proved in [93], while
Theorems 8 and 9 were obtained in [21].

4.2 Existence of radial solutions

The results of the previous section can be used to derive the existence of radial
solutions for the Neumann problems (3.1) and (2.4).

Theorem 10 Assume that there exist ε ∈ {−1, 1} and ρ > 0 such that

ε(sgn u)

∫ R2

R1

rN−1f(r, u(r), u′(r))dr ≥ 0 (4.18)

for all u ∈ C1
† such that |u|L ≥ ρ and ∥u′∥∞ < 1. Then problem (3.1) has at

least one classical radial solution.
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Proof. Theorem 7 applies with

ϕ : (−1, 1) → R, ϕ(y) =
y√

1− y2
. (4.19)

Corollary 2 Let h : [R1, R2]×R2 → R and g : [R1, R2]×R → R be continuous,
with h bounded on [R1, R2]×R× (−1, 1), and g such that condition (4.8) holds.
Then the Neumann BVP

Mv + g(|x|, v) = h(|x|, v, dv
dr

) in A, ∂v

∂ν
= 0 on ∂A

has at least one radial solution.

Example 1 For any p > 1 and any l ∈ C, the Neumann problems

Mv ± |v|p−1v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

have at least one radial solution.

As another example of application, let us consider the Neumann problem

Mv + g(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (4.20)

where g : R → R is continuous and l ∈ C. It is not difficult to check that
Theorem 10 with f(r, u, u′) = l(r)−g(u) yields the following Landesman-Lazer-
type existence condition.

Corollary 3 If either

lim sup
v→−∞

g(v) <
N

RN
2 −RN

1

∫ R2

R1

rN−1l(r)dr < lim inf
v→+∞

g(v)

or

lim sup
v→+∞

g(v) <
N

RN
2 −RN

1

∫ R2

R1

rN−1l(r)dr < lim inf
v→−∞

g(v),

then problem (4.20) has at least one classical radial solution.
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Example 2 The Neumann problem

Mv + arctan v + sin v = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

has a radial solution if l ∈ C is such that

1− π

2
<

N

RN
2 −RN

1

∫ R2

R1

rN−1l(r)dr <
π

2
− 1.

Let ϕ be defined by (4.19). For a constant q ∈ [0, 1), we set

ρ̃(q) := ϕ(q).

Theorem 11 Assume that there is some k ≥ 0 such that kR2 < N and (4.9)
holds true. If there exist constants a > ρ̃(kR2/N), ε ∈ {−1, 1} and ρ > 0 such
that the sign conditions condition (4.18) are fulfilled for all u ∈ C1

† such that
|u|L ≥ ρ and ∥u′∥∞ < a, then problem (2.4) has at leat one classical radial
solution.

Proof. Theorem 8 applies with

ϕ : R → (−1, 1), ϕ(y) =
y√

1 + y2
.

Theorem 12 Let R1 > 0 and assume that there is some c ∈ C such that k :=
2R1−N

1 ||c−/γ||L1 < 1 and (4.13) holds true. If there exist constants a > ρ̃(k),
ε ∈ {−1, 1} and ρ > 0 such that the sign conditions (4.18) are fulfilled for all
u ∈ C1

† such that |u|L ≥ ρ and ∥u′∥∞ < a, then problem (2.4) has at leat one
classical radial solution.

Proof. It follows from Theorem 9.

Remark 5 It is worth to point out that Theorems 8 and 9 also can be em-
ployed to derive existence results of radial solutions for Neumann problems in
an annular domain, associated to p-Laplacian operator.

4.3 Upper and lower solutions in the singular
case

In this section, we extend the method of upper and lower solutions (see e.g.
[43]) to the Neumann boundary value problem (4.1).
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Definition 1 A lower solution α (resp. upper solution β) of (4.1) is a function
α ∈ C1 such that ∥α′∥∞ < a, rN−1ϕ(α′) ∈ C1, α′(R1) ≥ 0 ≥ α′(R2) (resp.
β ∈ C1, ∥β′∥∞ < a, rN−1ϕ(β′) ∈ C1, β′(R1) ≤ 0 ≤ β′(R2)) and

(rN−1ϕ(α′(r)))′ ≥ rN−1f(r, α(r), α′(r)) (4.21)

(resp. (rN−1ϕ(β′(r)))′ ≤ rN−1f(r, β(r), β′(r)))

for all r ∈ [R1, R2].

Below we shall invoke the hypothesis:

(H) R1 > 0 and ϕ : (−a, a) → R is an increasing homeomorphism such that
ϕ(0) = 0 with 0 < a <∞.

Theorem 13 Assume that (H) holds true. If (4.1) has a lower solution α and
a upper solution β such that α(r) ≤ β(r) for all r ∈ [R1, R2], then problem (4.1)
has a solution u such that α(r) ≤ u(r) ≤ β(r) for all r ∈ [R1, R2].

Proof. Let γ : [R1, R2]× R → R be the continuous function defined by

γ(r, u) =

 β(r) if u > β(r)
u if α(r) ≤ u ≤ β(r)
α(r) if u < α(r),

and define F : [R1, R2] × R2 → R by F (r, u, v) = f(r, γ(r, u), v). We consider
the modified problem

(rN−1ϕ(u′))′ = rN−1(F (r, u, u′) + u− γ(r, u)), u′(R1) = 0 = u′(R2) (4.22)

and first show that if u is a solution of (4.22) then α(r) ≤ u(r) ≤ β(r) for all
r ∈ [R1, R2], so that u is a solution of (4.1). Suppose by contradiction that there
is some r0 ∈ [R1, R2] such that [α − u]M = α(r0)− u(r0) > 0. If r0 ∈ (R1, R2)
then α′(r0) = u′(r0) and there are sequences (rk) in [r0 − ε, r0) and (r′k) in
(r0, t0+ε] converging to r0 such that α′(rk)−u′(rk) ≥ 0 and α′(r′k)−u′(r′k) ≤ 0.
As ϕ is an increasing homeomorphism, this implies

rN−1
k ϕ(α′(rk))− rN−1

0 ϕ(α′(r0)) ≥ rN−1
k ϕ(u′(rk))− rN−1

0 ϕ(u′(r0))

r′
N−1
k ϕ(α′(r′k))− rN−1

0 ϕ(α′(r0)) ≤ r′
N−1
k ϕ(u′(r′k))− rN−1

0 ϕ(u′(r0))

and hence

(rN−1ϕ(α′(r)))′r=r0 ≤ (rN−1ϕ(u′(r)))′r=r0 .

Hence, because α is a lower solution of (4.1) we obtain

(rN−1ϕ(α′(r)))′r=r0 ≤ (rN−1ϕ(u′(r)))′r=r0

= rN−1
0 (f(r0, α(r0), α

′(r0)) + u(r0)− α(r0))

< rN−1
0 f(r0, α(r0), α

′(r0))

≤ (rN−1ϕ(α′(r)))′r=r0 ,
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a contradiction. If [α − u]M = α(R1) − u(R1) > 0, then α′(R1) − u′(R1) =
α′(R1) ≤ 0. Using the fact that α′(R1) ≥ 0, we deduce that α′(R1) = α′(R1)−
u′(R1) = 0. This implies that ϕ(α′(R1)) = ϕ(u′(R1)). On the other hand, [α −
u]M = α(R1) − u(R1) implies, reasoning in a similar way as for r0 ∈ (R1, R2),
that

(rN−1ϕ(α′(r)))′r=R1
≤ (rN−1ϕ(u′(r)))′r=R1

.

Using the inequality above and α′(R1) = u′(R1), since R1 > 0, we can proceed
as in the case r0 ∈ (R1, R2) to obtain again a contradiction. The case where
r0 = R2 is similar. In consequence we have that α(r) ≤ u(r) for all r ∈ [R1, R2].
Analogously, using the fact that β is a upper solution of (4.1), we can show that
u(r) ≤ β(r) for all r ∈ [R1, R2].

We now apply Corollary 1 to the modified problem (4.22) to obtain the
existence of a solution.

Remark 6 (i) We remark that if in theorem above α, β are strict, then α(r) <
u(r) < β(r) for all r ∈ [R1, R2]. Moreover, let us consider the open set

Ωα,β = {u ∈ C1
† : α(r) < u(r) < β(r) for all r ∈ [R1, R2], ||u′||∞ < a}.

Then, arguing as in the proof of Lemma 3 [22] one has that

dLS [I −N ,Ωα,β , 0] = −1,

where N is the fixed point operator associated to (4.1) introduced in Remark
(2)

(ii) In contrast to the classical p-Laplacian or Euclidean mean curvature
cases, no Nagumo-type condition is required upon f in Theorem 13.

We now show, adapting an argument introduced by Amann-Ambrosetti-
Mancini [4] in semilinear elliptic problems, that the existence conclusion in
Theorem 13 also holds when the lower and upper solutions are not ordered. See
[22] for the case where N = 1.

Theorem 14 Assume that (H) holds true. If (4.1) has a lower solution α and
an upper solution β, then problem (4.1) has at least one solution.

Proof. Let C be given by Lemma 5. If there is some (u, ũ) ∈ C such that∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr = 0,

then u+ ũ solves (4.1). If∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr > 0



4.3. UPPER AND LOWER SOLUTIONS IN THE SINGULAR CASE 45

for all (u, ũ) ∈ C, then, using (4.2), u+ ũ is an upper solution for (4.1) for each
(u, ũ) ∈ C. Then, for (αM +a(1+R2−R1), ũ) ∈ C, αM +a(1+R2−R1)+ ũ(r) ≥
α(r) for all r ∈ [R1, R2] is an upper solution and the existence of a solution to
(4.1) follows from Theorem 13. Similarly, if∫ R2

R1

rN−1f(r, u+ ũ(r), ũ′(r)) dr < 0

for all (u, ũ) ∈ C, then (βL − a(1 + R2 − R1), ũ) ∈ C gives the lower solution
βL − a(1 + R2 − R1) + ũ(r) ≤ β(r) for all r ∈ [R1, R2] and the existence of a
solution.

Remark 7 Assume that ϕ : R → R is a increasing homeomorphism with ϕ(0) =
0 and the nonlinearity f is bounded from below by a continuous function c ∈ C,
that is (4.13) holds. Using Lemma 6 and the same strategy as in the proof of
Theorem 8, it follows that Theorem 14 holds also for classical homeomorphisms
under the additional condition (4.13).

The choice of constant lower and upper solutions in Theorems 13 and 14
leads to the following simple existence condition.

Corollary 4 If (H) holds true then problem (4.1) has at least one solution if
there exist constants A and B such that

f(r,A, 0) · f(r,B, 0) ≤ 0

for all r ∈ [R1, R2].

A simple application of Theorem 14 provides a necessary and sufficient condi-
tion of existence of a solution of (4.1) when f = f(r, u) and f(r, ·) is monotone.
We adapt an argument first introduced for semilinear Dirichlet problems by
Kazdan-Warner [74].

Corollary 5 Assume that (H) holds true. If f : [R1, R2]×R → R is continuous
and f(r, ·) is either non decreasing or non increasing for every r ∈ [R1, R2], then
problem

(rN−1ϕ(u′))′ = rN−1f(r, u), u′(R1) = 0 = u′(R2) (4.23)

is solvable if and only if there exists c ∈ R such that∫ R2

R1

rN−1f(r, c) dr = 0. (4.24)
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Proof. Necessity. If problem (4.23) has a solution u, then, integrating both
members of the differential equation in (4.23) and using the boundary condition,
it follows that ∫ R2

R1

rN−1f(r, u(r)) dr = 0. (4.25)

Assuming for example that f(r, ·) is non decreasing for every r ∈ [R1, R2],, we
deduce from (4.25) that∫ R2

R1

rN−1f(r, uL) dr ≤ 0 ≤
∫ R2

R1

rN−1f(r, uM ) dr,

so that, by the intermediate value theorem, there exists some c ∈ [uL, uM ]
satisfying (4.24). The reasoning is similar when f(r, ·) is non decreasing for
every r ∈ [R1, R2],.

Sufficiency. If c ∈ R satisfies (4.24), then the problem

(rN−1ϕ(u′))′ = rN−1f(r, c), u′(R1) = 0 = u′(R2) (4.26)

has a one-parameter family of solutions of the form d+w̃(r) with w̃ ∈ C̃1
† . There

exists d1 ≤ d2 such that, for all r ∈ [R1, R2],

α(r) := d1 + w̃(r) ≤ c ≤ d2 + w̃(r) =: β(r).

Hence, if f(r, ·) is non decreasing for each r ∈ [R1, R2], then

(rN−1ϕ(α′(r)))′ = (rN−1ϕ(w̃′(r)))′ = rN−1f(r, c) ≥ rN−1f(r, α(r))

and α is a lower solution for (4.23). Similarly β is an upper solution for (4.23).
A similar argument shows that, if f(r, ·) is non increasing for every r ∈ [R1, R2],
α is an upper solution and β a lower solution for (4.23). So the result follows
from Theorem 14.

The results above can be applied to classical radial solutions of the Neumann
problem (3.1).

Corollary 6 Let R1 > 0. Problem (3.1) has at least one classical radial solution
if there exist constants A and B such that

f(r,A, 0) · f(r,B, 0) ≤ 0

for all r ∈ [R1, R2].

Corollary 7 Let R1 > 0. If f : [R1, R2] × R → R is continuous and f(r, ·) is
either non decreasing or non increasing for every r ∈ [R1, R2], then problem

Mv = f(|x|, v) in A, ∂v

∂ν
= 0 on ∂A

has a classical radial solution if and only if there exists c ∈ R such that (4.24)
holds.
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Example 3 Let f(v) = ev or f(v) = |v|p−1v+ with p > 1. If R1 > 0 then the
Neumann problem

Mv + f(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A

(resp. Mv − f(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A)

has a classical radial solution if and only if l ∈ C is such that∫ R2

R1

rN−1l(r) dr > 0 (resp.

∫ R2

R1

rN−1l(r) dr < 0).

The same result holds true if we replace the operator M by the p-Laplacian
operator.

Remark 8 Multiplicity results of the Ambrosetti-Prodi type similar to the ones
obtained in [?] for N = 1 can be deduced in a similar way from Theorem 13
and Remark 6 (i).

4.4 Pendulum-like nonlinearities

Consider the Neumann problem

Mv + b sin(v) = l(|x|) in A, ∂v

∂ν
= 0 on ∂A, (4.27)

where b > 0 and l ∈ C.
Let us suppose also that R1 > 0. Then, using Theorem 13, Remark 6 (i)

and the method introduced in [100], one can prove that (4.27) has at least one
radial solution if ||l||∞ ≤ b and at least two radial solutions if ||l||∞ < b.

The following result shows that one has existence even in the case R1 = 0
for any l with Ql = 0, under an additional condition concerning the distance
between R1 and R2. We adapt to our situation an argument used in [115].

Theorem 15 If Ql = 0 and 2(R2 − R1) ≤ 1, then (4.27) has at least one
classical radial solution.

Proof. It is clear that it is sufficient to prove the existence of at least one solution
for the Neumann problem

(rN−1ϕ(u′))′ + rN−1b sin(u) = rN−1l(r), u′(R1) = 0 = u′(R2), (4.28)

with ϕ given in (4.19). Let us make the change of variable

u = arcsin(w).

Then, we obtain the Neumann problem(
rN−1ϕ

(
w′

√
1− w2

))′

+ rN−1bw = rN−1l(r), w′(R1) = 0 = w′(R2). (4.29)
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Consider the closed subspace of C defined by

Ĉ = {w ∈ C : Qw = 0}

and denotes by N the Nemytskii operator Nf associated to f(r, w) = l(r)− bw.
Consider also the nonlinear operator

T : K̂ → Ĉ, T (w) = (I −Q) ◦H ◦
√
1− w2ϕ−1 ◦ L ◦N(w),

where
K̂ = {w ∈ Ĉ : ||w||∞ ≤ 2(R2 −R1)}.

One has that T is well defined and compact. It is clear that

||T (w)||∞ < 2(R2 −R1) ≤ 1 for all w ∈ K̂.

Using the Schauder’s fixed point theorem, we infer that there exist w ∈ K̂ such
that w = T (w), and because ||w||∞ < 1, it follows that w is a solution of (4.29)
and u = arcsin(w) is a solution of (4.28).



Chapter 5

Pendulum-like
nonlinearities - 1

5.1 Notation, function spaces and operators

Let 0 ≤ R1 < R2. We denote by C the Banach space of continuous functions
defined on [R1, R2] endowed with the usual norm || · ||∞, by C1 the Banach
space of continuously differentiable functions defined on [R1, R2] endowed with
the norm

||u|| = ||u||∞ + ||u′||∞,

and by C1
† the closed subspace of C1 defined by

C1
† = {u ∈ C1 : u′(R1) = 0 = u′(R2)}.

The corresponding open ball with center in 0 and radius ρ is denoted by Bρ.
For any continuous function w : [R1, R2] → R, we write

wL = min
[R1,R2]

w, wM = max
[R1,R2]

w.

Let us introduce the continuous projectors

Q : C → C, u = Qu =
N

RN
2 −RN

1

∫ R2

R1

rN−1u(r)dr,

P : C → C, Pu = u(R1),

the continuous function

γ : (0,∞) → R, γ(r) =
1

rN−1
,

49
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and the linear operators

L : C → C, Lu(r) = γ(r)

∫ r

R1

tN−1u(t)dt (r ∈ (R1, R2]), Lu(0) = 0,

H : C → C1, Hu(r) =

∫ r

R1

u(t)dt (r ∈ [R1, R2]).

It is not difficult to prove that L is compact (Arzelà-Ascoli) and H is bounded.

Finally, we denote by Ĉ1
† the closed subspace of C1

† defined by

Ĉ1
† = {u ∈ C1

† : u = 0},

and note that
C1

† = R⊕ Ĉ1
† ,

so, any u ∈ C1
† can be uniquely written as u = u+ û, with u ∈ R, û ∈ Ĉ1

† .

5.2 A fixed point operator and degree compu-
tations

Throughout this section we assume that ϕ is singular. We note that the case
where N = 1 and R1 = 0 in the results of this section is considered in [93].

Proposition 5 Assume that F : C1
† → C is continuous and takes bounded sets

into bounded sets. The function u ∈ C1
† is a solution of the abstract Neumann

problem

(rN−1ϕ(u′))′ = rN−1F (u), u′(R1) = 0 = u′(R2) (5.1)

if and only if it is a fixed point of the compact operator MF defined on C1
† by

MF = P +QF +H ◦ ϕ−1 ◦ L ◦ (I −Q) ◦ F.

Furthermore, one has ∥(MF (u))
′∥∞ < a for all u ∈ C1

† .

Proof. Let u ∈ C1
† and v =MF (u). One has that v ∈ C1 and

ϕ(v′) = L ◦ (I −Q) ◦ F (u).

So, ϕ(v′(R1)) = 0 and because QF (u) is constant,

ϕ(v′(R2)) =
1

RN−1
2

∫ R2

R1

tN−1F (u)(t)dt− 1

RN−1
2

QF (u)

∫ R2

R1

tN−1dt = 0.

It follows that MF is well defined. Its compactness follows very easily taking
into account the properties of the operators composing MF . From the above
computation and since ϕ is singular, we get ||v′||∞ < a.
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Now, let u ∈ C1
† be such that u =MF (u). It follows

QF (u) = 0, (5.2)

implying that

u = Pu+H ◦ ϕ−1 ◦ L ◦ F (u), u′ = ϕ−1 ◦ L ◦ F (u).

Then

ϕ(u′(r)) = γ(r)

∫ r

R1

tN−1F (u)(t)dt (r ∈ (R1, R2]),

and u verifies the differential equation in (5.1).
Reciprocally, let u be a solution of (5.1). Then, taking into account the fact

that u verifies (5.2), after two integrations we deduce that u is a fixed point of
MF .

Lemma 8 Let the continuous function h : [R1, R2] × R2 → R be bounded on
[R1, R2]× R× (−a, a), µ ̸= 0 and consider the Neumann problem

(rN−1ϕ(u′))′ + µrN−1u = rN−1h(r, u, u′), u′(R1) = 0 = u′(R2). (5.3)

If Mµ is the fixed point operator associated to (5.3), then there exists ρ > 0 such
that any possible fixed point of Mµ is contained in Bρ and

dLS [I −Mµ, Bρ, 0] = sign(µ).

Proof. Let us consider say, the case where µ > 0, the other one being similar.
We can find a constant R > 0 such that

sign(u)[−µu+ h(r, u, v)] < 0 (5.4)

for all r ∈ [R1, R2], v ∈ (−a, a) and |u| ≥ R.
One the other hand, consider the compact homotopy

M : [0, 1]× C1
† → C1

† , M(λ, ·) = P +QFµ +H ◦ ϕ−1 ◦ λL ◦ (I −Q) ◦ Fµ,

where
Fµ : C1

† → C, Fµ(u) = −µu+ h(·, u, u′).

Let (λ, u) ∈ [0, 1]× C1
† be such that

u = M(λ, u).

It follows that
u′ = ϕ−1 ◦ λL ◦ (I −Q) ◦ Fµ(u)

and

||u′||∞ < a. (5.5)
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Note also that

QFµ(u) = 0. (5.6)

Assume that uL ≥ R. Then, using (5.4) and (5.5) we have

Fµ(u)(r) < 0 for all r ∈ [R1, R2].

This implies that
QFµ(u) < Q(0) = 0,

contradiction with (5.6). It follows that uL < R, and analogously uM > −R.
Then, from

uM ≤ uL +

∫ R2

R1

|u′(r)|dr

and (5.5), we deduce that

−R− a(R2 −R1) < uL ≤ uM < R+ a(R2 −R1),

which together with (5.5) give

||u|| < R+ a(R2 −R1 + 1) =: ρ0.

Since
M(1, ·) =Mµ and M(0, ·) = P +QFµ,

the homotopy invariance of the Leray-Schauder degree implies that

dLS [I −Mµ, Bρ, 0] = dLS [I − (P +QFµ), Bρ, 0],

for any ρ ≥ ρ0. The range of P +QFµ is contained in the subspace of constant
functions. Using the reduction property of the Leray Schauder degree we have

dLS [I − (P +QFµ), Bρ, 0] = dB [I − (P +QFµ)|R, (−ρ, ρ), 0],

where dB denotes the Brouwer degree. But,

I − (P +QFµ)|R = −QFµ|R,

and we can take ρ sufficiently large such that

QFµ(−ρ) > 0 > QFµ(ρ),

implying that
dB [−QFµ|R, (−ρ, ρ), 0] = 1 = sign(µ).

Consequently,

dLS [I −Mµ, Bρ, 0] = sign(µ).
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Now, consider the Neumann boundary-value problem (BVP)

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(R1) = 0 = u′(R2), (5.7)

where f : [R1, R2]× R2 → R is continuous.

Definition 2 A strict lower solution α (resp. strict upper solution β) of (5.7) is
a function α ∈ C1 such that ∥α′∥∞ < a, rN−1ϕ(α′) ∈ C1, α′(R1) ≥ 0 ≥ α′(R2)
(resp. β ∈ C1, ∥β′∥∞ < a, rN−1ϕ(β′) ∈ C1, β′(R1) ≤ 0 ≤ β′(R2)) and

(rN−1ϕ(α′(r)))′ > rN−1f(r, α(r), α′(r)) (5.8)

(resp. (rN−1ϕ(β′(r)))′ < rN−1f(r, β(r), β′(r)))

for all r ∈ [R1, R2].

Lemma 9 Assume that (5.7) has a strict lower solution α and a strict upper
solution β such that

α(r) < β(r) for all r ∈ [R1, R2],

and if N ≥ 2 assume also that R1 > 0. Then

dLS [I −Mf ,Ωα,β , 0] = −1,

where

Ωα,β = {u ∈ C1
† : α(r) < u(r) < β(r) for all r ∈ [R1, R2], ||u′||∞ < a}

and Mf is the fixed point operator associated to (5.7).

Proof. Let γ : [R1, R2]× R → R be the continuous function given by

γ(r, u) =

 β(r) if u > β(r)
u if α(r) ≤ u ≤ β(r)
α(r) if u < α(r),

and define f1 : [R1, R2] × R2 → R by f1(r, u, v) = f(r, γ(r, u), v). We consider
the modified problem

(rN−1ϕ(u′))′ = rN−1(f1(r, u, u
′) + u− γ(r, u)), u′(R1) = 0 = u′(R2), (5.9)

and let Mf1 be the associated fixed point operator of (5.9). Then, arguing
exactly as in the proof of Theorem 4.2 from [15], one has that if u is a solution
of (5.9) then α(r) < u(r) < β(r) for all r ∈ [R1, R2]. It follows that any fixed
point of Mf1 is contained in Ωα,β , and using the excision property of the Leray-
Schauder degree and Lemma 8 we infer that

dLS [I −Mf1 ,Ωα,β , 0] = dLS [I −Mf1 , Bρ, 0] = −1,

for any ρ sufficiently large. On the other hand

Mf (u) =Mf1(u) for all u ∈ Ωα,β .

Consequently,

dLS [I −Mf ,Ωα,β , 0] = −1.
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5.3 Conditions on the mean value of the forcing
term

We consider the Neumann boundary value problem

(rN−1ϕ(u′))′ + rN−1g(u) =rN−1l(r), u′(R1) = 0 = u′(R2), (5.10)

where g : R → R is continuous and l ∈ C.

The idea of the following lemma comes from Theorem 2 in [100].

Lemma 10 Assume that ϕ is singular and that there exist t < s and A < B
such that either

Qg(t+ û) ≤ A and Qg(s+ û) ≥ B (5.11)

or

Qg(t+ û) ≥ B and Qg(s+ û) ≤ A (5.12)

for any û ∈ Ĉ1
† satisfying ||û||∞ < a(R2 −R1). If

A < l < B, (5.13)

then problem (5.10) has at least one solution u such that t < u < s.

Proof. Let us assume that (5.11) holds true and let ε > 0 be fixed. For any
λ ∈ [0, 1], consider the Neumann problem

(rN−1ϕ(u′))′ + λrN−1g(u) + (1− λ)εrN−1

(
u− t+ s

2

)
= λrN−1l(r)

u′(R1) = 0 = u′(R2). (5.14)

Let also

M(λ, ·) : C1
† → C1

† (λ ∈ [0, 1])

be the fixed point operator associated to (5.14) (see Proposition 5). We will
show that

u−M(λ, u) ̸= 0 for any (λ, u) ∈ (0, 1]× ∂Ω, (5.15)

and

u−M(0, u) = 0 implies u ∈ Ω, (5.16)

where

Ω = {u ∈ C1
† : t < u < s, ||û||∞ < a(R2 −R1), ||u′||∞ < a}.
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Then, using the invariance by homotopy, the excision property of the Leray-
Schauder degree and Lemma 8, one has that

dLS [I −M(1, ·),Ω, 0] = dLS [I −M(0, ·),Ω, 0] = 1.

Hence, the existence property of the Leray-Schauder degree implies the existence
of some u ∈ Ω (in particular t < u < s) with u = M(1, u) which is also a solution
of (5.10).

So, let us consider (λ, u) ∈ (0, 1]×C1
† such that u = M(λ, u). It follows that

(5.5) holds true and u = u + û ∈ R ⊕ Ĉ1
† is a solution of (5.14). As Qû = 0,

there exists r0 ∈ [R1, R2] such that û(r0) = 0, yielding

||û||∞ ≤
∫ R2

r0

|û′(r)|dr < a(R2 −R1). (5.17)

Integrating (5.14) over [R1, R2] we obtain

(1− λ)ε

(
u− t+ s

2

)
+ λ(Qg(u+ û)− l) = 0. (5.18)

On the other hand, from (5.11), (5.13) and (5.17) it follows that

(1− λ)ε

(
t− t+ s

2

)
+ λ(Qg(t+ û)− l) ≤ (1− λ)ε

t− s

2
+ λ(A− l) < 0;

(1− λ)ε

(
s− t+ s

2

)
+ λ(Qg(s+ û)− l) ≥ (1− λ)ε

s− t

2
+ λ(B − l) > 0.

(5.19)

Moreover, if u ∈ ∂Ω, from (5.5) and (5.17) one has u = t or u = s. But u verifies
(5.18), contradiction with (5.19). Consequently, (5.15) is proved.

Now, let u ∈ C1
† be such that u = M(0, u). We deduce that u verifies (5.5),

(5.17) and (5.14) with λ = 0. Hence, u =
t+ s

2
and u ∈ Ω.

If (5.12) holds true then one takes ε < 0.

Remark 9 From the proof above it can be seen that if the assumption “A < B”
is replaced by “A ≤ B” then problem (5.10) has at least one solution u such
that t ≤ u ≤ s, provided that A ≤ l ≤ B.

Theorem 16 If ϕ is singular, l ∈ C, µ > 0 and

2a(R2 −R1) < π,

then, the Neumann problem (2.8) has at least two solutions not differing by a
multiple of 2π, provided that

|l| < µ cos [a(R2 −R1)] .
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Proof. We apply Lemma 10 with g(u) = µ sin(u) and

A = −µ cos [a(R2 −R1)] = −B.

Taking t = −π/2, s = π/2, condition (5.11) is fulfilled and so, we get the
existence of a solution u1 which satisfies −π/2 < u1 < π/2. Then, setting
t = π/2, s = 3π/2, condition (5.12) is accomplished and we obtain a second
solution u2 with π/2 < u2 < 3π/2.

If we assume that there is some j ∈ Z such that u2 = u1+2jπ then necessarily
one has 0 < 2jπ < 2π, a contradiction.

Remark 10 On account of Remark 9, if in Theorem 16 one has 2a(R2−R1) =
π, then problem (2.8) has at least one solution for any l ∈ C with l = 0.

Corollary 8 Let µ > 0 and l ∈ C. If 2(R2 − R1) < π, then the Neumann
problem (2.9) has at least two classical radial solutions not differing by a multiple
of 2π, provided that |l| < µ cos (R2 −R1) . Moreover, if 2(R2 − R1) = π, then
(2.9) has at least one classical radial solution for any l ∈ C with l = 0.

Bellow we give a second proof of the Theorem 16 and we consider also the
classical case. The main idea of our proof comes from [4] and has been used for
the classical forced pendulum in [51].

Let f : [R1, R2] × R2 be a continuous function and Nf : C1 → C be the
Nemytskii operator associated to f. We first consider the modified problem of
finding (u, û) ∈ R× Ĉ1

† such that

(rN−1ϕ(û′))′ = rN−1[Nf (u+ û)−Q ◦Nf (u+ û)]. (5.20)

Lemma 11 If ϕ is singular or classical and there exists α > 0 such that

|f(r, u, v)| ≤ α for all (r, u, v) ∈ [R1, R2]× R2,

then the set of the solutions of problem (5.20) contains a continuum C whose

projection on R is R and whose projection on Ĉ1
† is contained in Bϕ = {û ∈

Ĉ1
† : ||û′||∞ ≤ cϕ, ||û||∞ ≤ cϕ(R2 −R1)}, where cϕ = max(|ϕ−1(±2αR2/N)|).

Proof. Let us consider

M̂ : R× Ĉ1
† → Ĉ1

† , M̂(u, û) = (I −Q) ◦H ◦ ϕ−1 ◦ L ◦ (I −Q) ◦Nf (u+ û).

It is not difficult to prove that M̂ is well defined and compact. Moreover, if
(u, û) ∈ R× Ĉ1

† satisfies û = M̂(u, û), then (u, û) is a solution of (5.20). On the

other hand a simple computation shows that the range of M̂ is contained in Bϕ

(in both of the two cases) and the proof follows now exactly like the proof of
Lemma 2.1 in [15].
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Remark 11 The assumption concerning the boundedness of f can be dropped
in the singular case but then Bϕ = {û ∈ Ĉ1

† : ||û′||∞ < a, ||û||∞ < a(R2 −R1)}.

Let ψ : (−b, b) → (−c, c) be a homeomorphism such that ψ(0) = 0 and
0 < b, c ≤ ∞. For l ∈ C and µ > 0 such that 2(||l||∞ + µ)R2/N < c we
introduce the notation

ρ(ψ) = max(|ψ−1(±2(||l||∞ + µ)R2/N)|).

Theorem 17 Assume that ϕ is singular or classical, l ∈ C, µ > 0 and

2ρ(ϕ)(R2 −R1) < π, (5.21)

then, the Neumann problem (2.8) has at least two solutions not differing by a
multiple of 2π, provided that |l| < µ cos[ρ(ϕ)(R2 −R1)].

Proof. Consider the continuous function

Γ : R× C → R, Γ(u, û) = Q ◦Nf (u+ û).

For any û1, û2 such that (−π
2 , û1), (

π
2 , û2) ∈ C, one has that

Γ(−π
2
, û1) > 0 > Γ(

π

2
, û2).

Hence, using that C is a continuum and the continuity of Γ, we deduce the
existence of (u, û) ∈ C such that −π

2 < u < π
2 and Γ(u, û) = 0. Then, u = u+ û

is a solution of (2.8). Analogously, (2.8) has a solution w satisfying π
2 < w < 3π

2 .
Clearly, u− w is not a multiple of 2π.

Remark 12 (i) If in (5.21) one has equality, then in the above theorem we have
only existence.

(ii) In the above theorem, if ϕ is singular, then ρ(ϕ) < a and Theorem 16
follows from Theorem 17.

The following result is a direct consequence of Lemma 2.5 from [15].

Lemma 12 Let ψ : (−b, b) → (−c, c) be a homeomorphism such that ψ(0) = 0
and 0 < b, c ≤ ∞. Let µ > 0 and l ∈ C be such that (||l||∞ + µ)R2/N < c. If u
is a possible solution of the Neumann problem

(rN−1ψ(u′))′ + rN−1µ sinu = rN−1l(r), u′(R1) = 0 = u′(R2) (5.22)

then

||u′||∞ ≤ max(|ψ−1(±(||l||∞ + µ)R2/N)|).



58 CHAPTER 5. PENDULUM-LIKE NONLINEARITIES - 1

Theorem 18 Assume that ψ : R → (−c, c) is a homeomorphism such that
ψ(0) = 0 and 0 < c ≤ ∞. If l ∈ C, µ > 0, 2(||l||∞ + µ)R2/N < c and

2ρ(ψ)(R2 −R1) < π,

then, the Neumann problem (5.22) has at least two solutions not differing by a
multiple of 2π, provided that

|l| < µ cos[ρ(ψ)(R2 −R1)]

is satisfied.

Proof. Let d = ρ(ψ)+1 and b = ρ(ψ)+2. Consider ϕ : (−b, b) → R a singular
homeomorphism which coincides with ψ on [−d, d]. Then ρ(ψ) = ρ(ϕ), so using
Lemma 12 we infer that the solutions of (2.8) coincide with the solutions of
(5.22). Now the result follows from Theorem 17 (the singular case).

Corollary 9 If (5.21) is satisfied with ϕ(u) = |u|p−2u (p > 1), (resp. ϕ(u) =
u√

1+u2
) then the Neumann problem (2.11) (resp. (2.12)) has at least two clas-

sical radial solutions not differing by a multiple of 2π for any l ∈ C with l = 0
(resp. l ∈ C with l = 0 and 2(||l||∞ + µ)R2/N < 1).

5.4 Norm conditions on the forcing term

In the proof of the following theorem we adapt to our situation a strategy
introduced in Theorem 3 from [100].

Theorem 19 Assume that ϕ is singular and let µ > 0, R1 > 0 in the case
N ≥ 2 and assume that l ∈ C satisfies

||l||∞ < µ.

Then problem (2.8) has at least two solutions not differing by a multiple of 2π.
Moreover, if

||l||∞ = µ,

then problem (2.8) has at least one solution.

Proof. Assume that ||l||∞ ≤ µ. Then α = −3π
2 is a constant lower solution

for (2.8) and β = −π
2 is a constant upper solution for (2.8) such that α < β.

Hence, using Theorem 4.2 from [15], it follows that (2.8) has a solution u1 such
that α ≤ u1 ≤ β. Note that if ||l||∞ < µ, then α, β are strict and α < u1 < β.

Now, let us assume that ||l||∞ < µ, let Mµ be the fixed point operator
associated to (2.8), and let

Ω = Ω− 3π
2 , 3π2

\ (Ω− 3π
2 ,−π

2
∪ Ωπ

2 , 3π2
). (see Lemma 9)
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Then using the additivity property of the Leray-Schauder degree and Lemma
9, we deduce that

dLS [I −Mµ,Ω, 0] = 1.

Hence, the existence property of the Leray-Schauder degree yields the existence
of a solution u2 ∈ Ω of (2.8). If we assume that u2 = u1 + 2jπ for some j ∈ Z
then, as −3π/2 < u1 < −π/2, one has

−3π

2
+ 2jπ < u2 = u1 + 2jπ < −π

2
+ 2jπ.

This leads to one of the contradictions: u2 ∈ Ωπ
2 , 3π2

if j = 1 or u2 = u1 ∈
Ω− 3π

2 ,−π
2
for j = 0.

Using Lemma 12, Theorem 19 and arguing exactly as in the proof of Theorem
18 with ρ(ψ) replaced by max(|ψ−1(±2µR2/N)|) we obtain the following result.

Theorem 20 Let ψ : R → (−c, c) be an increasing homeomorphism such that
ψ(0) = 0 and 0 < c ≤ ∞. Let also µ > 0, R1 > 0 in the case N ≥ 2 and l ∈ C
be such that 2µR2

N < c. If ||l||∞ < µ, then (5.22) has at least two solutions not
differing by a multiple of 2π. If ||l||∞ = µ, then (5.22) has at least one solution.

Corollary 10 Let µ > 0, R1 > 0 and l ∈ C be such that 2µR2

N < 1. If ||l||∞ < µ,
then the Neumann problem (2.12) has at least two classical radial solutions not
differing by a multiple of 2π. Moreover, if ||l||∞ = µ, then (2.12) has at least one
classical radial solution. The same conclusion holds also for (2.9) and (2.11)
without the assumption 2µR2

N < 1.
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Chapter 6

Pendulum-like
nonlinearities - 2

6.1 Hypotheses and function spaces

In what follows, we assume that Φ : [−a, a] → R satisfies the following hypoth-
esis :

(HΦ) Φ is continuous, of class C1 on (−a, a), with ϕ := Φ′ : (−a, a) → R an
increasing homeomorphism such that ϕ(0) = 0.

Consequently, Φ : [−a, a] → R is strictly convex.

Given 0 ≤ R1 < R2, the function g : [R1, R2]×R → R satisfies the following
hypothesis :
(Hg) g is continuous and its indefinite integral

G(r, x) :=

∫ x

0

g(r, ξ)dξ, (r, x) ∈ [R1, R2]× R

is 2π–periodic for each r ∈ [R1, R2].

We set C := C[R1, R2], L
1 := L1(R1, R2), L

∞ := L∞(R1, R2) and W
1,∞ :=

W 1,∞(R1, R2). The usual norm ∥·∥∞ is considered on L∞ andW 1,∞ is endowed
with the norm

∥v∥ = ∥v∥∞ + ∥v′∥∞ (v ∈W 1,∞).

Each v ∈ L1 can be written v(r) = v + ṽ(r), with

v :=
N

RN
2 −RN

1

∫ R2

R1

v(r) rN−1dr,

∫ R2

R1

ṽ(r) rN−1dr = 0.

If v ∈W 1,∞ then ṽ vanishes at some r0 ∈ (R1, R2) and

|ṽ(r)| = |ṽ(r)− ṽ(r0)| ≤
∫ R2

R1

|v′(t)|dt ≤ (R2 −R1)∥v′∥∞. (6.1)

61
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We set
K = {v ∈W 1,∞ : ∥v′∥∞ ≤ a}.

K is closed in W 1,∞ and convex.

Lemma 13 If {un} ⊂ K and u ∈ C are such that un(r) → u(r) for all r ∈
[R1, R2], then

(i) u ∈ K;

(ii) u′n → u′ in the w∗–topology σ(L∞, L1).

Proof. From the relation

|un(r1)− un(r2)| =
∣∣∣∣∫ r1

r2

u′n(r) dr

∣∣∣∣ ≤ a|r1 − r2|,

letting n→ ∞, we get

|u(r1)− u(r2)| ≤ a|r1 − r2| (r1, r2 ∈ [R1, R2]),

which yields u ∈ K.

Next, we show that that if {u′k} is a subsequence of {u′n} with u′k → v ∈ L∞

in the w∗–topology σ(L∞, L1) then

v = u′ a.e. on [R1, R2]. (6.2)

Indeed, as ∫ R2

R1

u′k(r)f(r) dr →
∫ R2

R1

v(r)f(r) dr for all f ∈ L1,

taking f ≡ χr1,r2 , the characteristic function of the interval having the endpoints
r1, r2 ∈ [R1, R2], it follows∫ r2

r1

u′k(r) dr →
∫ r2

r1

v(r) dr (r1, r2 ∈ [R1, R2]).

Then, letting k → ∞ in

uk(r2)− uk(r1) =

∫ r2

r1

u′k(r) dr

we obtain

u(r2)− u(r1) =

∫ r2

r1

v(r) dr (r1, r2 ∈ [R1, R2])

which, clearly implies (6.2).

Now, to prove (ii) it suffices to show that if {u′j} is an arbitrary subsequence
of {u′n}, then it contains itself a subsequence {u′k} such that u′k → u′ in the w∗–
topology σ(L∞, L1). Since L1 is separable and {u′j} is bounded in L∞ = (L1)∗,
we know that it has a subsequence {u′k} convergent to some v ∈ L∞ in the
w∗–topology σ(L∞, L1). Then, as shown before (see (6.2)), we have v = u′.
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6.2 A minimization problem

Let h ∈ C and F : K → R be given by

F(v) =

∫ R2

R1

{Φ[v′(r)] +G(r, v(r)) + h(r)v(r)} rN−1dr (v ∈ K).

On account of hypotheses (HΦ) and (Hg) the functional F is well defined.

Proposition 6 If h = 0 then F has a minimum over K.

Proof. Step I. We prove that if {un} ⊂ K is a sequence which converges uni-
formly on [R1, R2] to some u ∈ K, then

lim inf
n→∞

∫ R2

R1

Φ[u′n(r)] r
N−1dr ≥

∫ R2

R1

Φ[u′(r)] rN−1dr. (6.3)

By virtue of (HΦ) the function Φ is convex, hence for all y ∈ [−a, a] and z ∈
(−a, a) one has

Φ(y)− Φ(z) ≥ ϕ(z)(y − z). (6.4)

This implies that for any λ ∈ [0, 1) it holds∫ R2

R1

Φ[u′n(r)] r
N−1dr ≥

∫ R2

R1

Φ[λu′(r)] rN−1dr (6.5)

+

∫ R2

R1

ϕ[λu′(r)][u′n(r)− λu′(r)] rN−1dr.

From Lemma 13 we have that u′n → u′ in the w∗–topology σ(L∞, L1). Since
the map r 7→ rN−1ϕ[λu′(r)] belongs to L∞ ⊂ L1, using (6.5) we infer that

lim inf
n→∞

∫ R2

R1

Φ[u′n(r)] r
N−1dr ≥

∫ R2

R1

Φ[λu′(r)] rN−1dr

+ (1− λ)

∫ R2

R1

ϕ[λu′(r)]u′(r) rN−1dr.

As ϕ(t)t ≥ 0, for all t ∈ (−a, a), we get

lim inf
n→∞

∫ R2

R1

Φ[u′n(r)] r
N−1dr ≥

∫ R2

R1

Φ[λu′(r)] rN−1dr,

which, using Lebesgue’s dominated convergence theorem, gives (6.3) by letting
λ→ 1.

Step II. Due to the 2π–periodicity of G(r, ·) (see (Hg)) and because of h = 0,
we have

F(v + 2π) = F(v), ∀v ∈ K.
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Therefore, if u minimizes F over K, then the same is true for u + 2kπ for any
k ∈ Z. This means that we can search, without loss of generality, a minimizer
u ∈ K with u ∈ [0, 2π]. Thus, the problem reduces to minimize F over

K̂ = {v ∈ K : v ∈ [0, 2π]} .

If v ∈ K̂ then, using (6.1) we obtain

|v(r)| ≤ |v|+ |ṽ(r)| ≤ 2π + (R2 −R1)a.

This, together with ∥v′∥∞ ≤ a shows that K̂ is bounded in W 1,∞ and, by the
compactness of the embedding W 1,∞ ⊂ C, the set K̂ is relatively compact in
C. Let {un} ⊂ K̂ be a minimizing sequence for F . Passing to a subsequence if
necessary and using Lemma 13, we may assume that {un} converges uniformly
to some u ∈ K. It is easily seen that actually u ∈ K̂. By Step I we obtain

inf
K̂

F = lim
n→∞

F(un) ≥ F(u),

showing that u minimizes F over K̂.

Remark 13 If {un} ⊂ K and u ∈ C are such that un(r) → u(r) for all
r ∈ [R1, R2], then by Lemma 13 and the reasoning in Step I of the above proof
we have that u ∈ K and (6.3) still holds true.

Lemma 14 If u minimizes F over K then u satisfies the variational inequality∫ R2

R1

(Φ[v′(r)]− Φ[u′(r)] + {g[r, u(r)] + h(r)}[v(r)− u(r)]) rN−1dr ≥ 0

for all v ∈ K.

Proof. The argument is standard. See for example Lemma 2 in [29].

6.3 An existence result

We show that the minimizers of F provide classical solutions for the Neumann
boundary value problem

[rN−1ϕ(u′)]′ = rN−1[g(r, u) + h(r)], u′(R1) = 0 = u′(R2), (6.6)

under the basic assumptions (HΦ) and (Hg). Recall that by a solution of (6.6)
we mean a function u ∈ C1[R1, R2], such that ∥u′∥∞ < a, r 7→ rN−1ϕ(u′) is
differentiable and (6.6) is satisfied.

Let us begin with the simpler problem

[rN−1ϕ(u′)]′ = rN−1[u+ f(r)], u′(R1) = 0 = u′(R2). (6.7)
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Proposition 7 For any f ∈ C, problem (6.7) has a unique solution ûf and ûf
satisfies the variational inequality∫ R2

R1

(
Φ[v′(r)]− Φ[û′f (r)] + {ûf (r) + f(r)}[v(r)− ûf (r)]

)
rN−1dr ≥ 0 (6.8)

for all v ∈ K.

Proof. The existence part follows from Corollary 2.4 in [15]. If u and v are two
solutions of (6.7), then∫ R2

R1

{rN−1[ϕ(u′(r))− ϕ(v′(r))]}′[u(r)− v(r)] dr =

∫ R2

R1

[u(r)− v(r)]2 rN−1dr

and hence, integrating the first term by parts and using the boundary conditions
we obtain∫ R2

R1

{[ϕ(u′(r))− ϕ(v′(r))][u′(r)− v′(r)] + [u(r)− v(r)]2} rN−1dr = 0.

The monotonicity of ϕ yields u = v.

From (6.4) we have∫ R2

R1

{Φ[v′(r)]− Φ[û′f (r)]} rN−1dr

≥
∫ R2

R1

ϕ[û′f (r)][v
′(r)− û′f (r)] r

N−1dr

= −
∫ R2

R1

{rN−1ϕ[û′f (r)]}′[v(r)− ûf (r)] dr

= −
∫ R2

R1

[ûf (r) + f(r)][v(r)− ûf (r)] r
N−1dr,

showing that (6.8) holds for all v ∈ K.

Theorem 21 If hypotheses (HΦ) and (Hg) hold true, then, for any h ∈ C with
h = 0, problem (6.6) has at least one solution which minimizes F over K.

Proof. For any w ∈ K we set

fw := g(·, w) + h− w ∈ C.

By Proposition 7, the unique solution ûfw of problem (6.7) with f = fw satisfies
the variational inequality∫ R2

R1

{Φ[v′(r)]− Φ[û′fw(r)] + [ûfw(r) + fw(r)][v(r)− ûfw(r)]} rN−1dr ≥ 0 (6.9)
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for all v ∈ K. Let u ∈ K be a minimizer of F over K; we know that it exists by
Proposition 6. From Lemma 14, u satisfies the variational inequality∫ R2

R1

{Φ[v′(r)]− Φ[u′(r)] + [u(r) + fu(r)][v(r)− u(r)]} rN−1dr ≥ 0 (6.10)

for all v ∈ K. Taking v = ûfu in (6.10) and w = v = u in (6.9) and adding the
resulting inequalities, we get∫ R2

R1

[u(r)− ûfu(r)]
2 rN−1dr ≤ 0.

It follows that u = ûfu . Consequently, the minimizer u solves (6.6).

Corollary 11 For any µ ∈ R and h ∈ C with h = 0 the problem(
rN−1 u′√

1− u′2

)′

+ rN−1µ sinu = rN−1h(r), u′(R1) = 0 = u′(R2)

has at least one solution.

Corollary 12 For any µ ∈ R and h ∈ C such that∫
A
h(|x|) dx = 0,

the problem

div

(
∇v√

1− |∇v|2

)
+ µ sin v = h(|x|) in A, ∂νv = 0 on ∂A

has at least one classical radial solution.

Proof. Indeed, going to spherical coordinates, we have∫
A
h(|x|) dx =

2πn/2

Γ(n/2)

∫ R2

R1

h(r) rN−1dr.

Remark 14 If D is a bounded domain with sufficiently smooth boundary, a
necessary condition for the existence of at least one solution to the Neumann
problem

div

(
∇v√

1− |∇v|2

)
+ µ sin v = h(x) in D, ∂νv = 0 on ∂D (6.11)
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for any µ > 0 is that condition∫
D
h(x) dx = 0 (6.12)

holds, as it is easily seen by integrating both members of (6.11) over D and
using divergence theorem and the boundary conditions. It is an open problem
to know if condition (6.12) is sufficient. A proof of the existence of a minimum
for the functional

G(u) =
∫
D

[
−
√

1− |∇v(x)|2 + µ cos v(x) + h(x)v(x)
]
dx

on the closed convex set

K := {v ∈W 1,∞(D) : |∇v(x)| ≤ 1 a.e. on D}

can be done following the lines of the proof of Proposition 6, but our way to go
from the variational inequality to the differential equation seems to be specific
to a one-dimensional situation, i.e. to the radial case.
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Chapter 7

Variational methods

7.1 The functional framework

In what follows, we assume that Φ : [−a, a] → R satisfies the following hypoth-
esis :

(HΦ) Φ(0) = 0, Φ is continuous, of class C1 on (−a, a), with ϕ := Φ′ :
(−a, a) → R an increasing homeomorphism such that ϕ(0) = 0.

Clearly, Φ is strictly convex and Φ(x) ≥ 0 for all x ∈ [−a, a] .
Given 0 ≤ R1 < R2 and g : [R1, R2] × R → R a continuous function, we

denote by G : [R1, R2]× R → R the indefinite integral of g, i.e.,

G(r, x) :=

∫ x

0

g(r, ξ) dξ, (r, x) ∈ [R1, R2]× R.

We set C := C[R1, R2], L
1 := L1(R1, R2), L

∞ := L∞(R1, R2) and W
1,∞ :=

W 1,∞(R1, R2). The usual norm ∥ · ∥∞ is considered on C and L∞. The space
W 1,∞ is endowed with the norm

∥v∥ = ∥v∥∞ + ∥v′∥∞, v ∈W 1,∞.

Denoting

L1
N−1 := {v : (R1, R2) → R measurable :

∫ R2

R1

rN−1|v(r)| dr < +∞},

each v ∈ L1
N−1 can be written v(r) = v + ṽ(r), with

v :=
N

RN
2 −RN

1

∫ R2

R1

v(r) rN−1 dr,

∫ R2

R1

ṽ(r) rN−1 dr = 0.

If v ∈W 1,∞ then ṽ vanishes at some r0 ∈ (R1, R2) and

|ṽ(r)| = |ṽ(r)− ṽ(r0)| ≤
∫ R2

R1

|v′(t)| dt ≤ (R2 −R1)∥v′∥∞,

69
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so, one has that

||ṽ||∞ ≤ (R2 −R1)∥v′∥∞. (7.1)

Putting

K := {v ∈W 1,∞ : ∥v′∥∞ ≤ a},

it is clear that K is a convex subset of W 1,∞.

Let Ψ : C → (−∞,+∞] be defined by

Ψ(v) =

 φ(v), if v ∈ K,

+∞, otherwise,

where φ : K → R is given by

φ(v) =

∫ R2

R1

rN−1Φ(v′) dr, v ∈ K.

Obviously, Ψ is proper and convex. On the other hand, as shown in [20], we
have that if {un} ⊂ K and u ∈ C are such that un(r) → u(r) for all r ∈ [R1, R2],
then u ∈ K and

φ(u) ≤ lim inf
n→∞

φ(un). (7.2)

This implies that Ψ is lower semicontinuous on C. Also, note that K is closed
in C.

Next, let G : C → R be defined by

G(u) =
∫ R2

R1

rN−1G(r, u) dr, u ∈ C.

A standard reasoning (also see [72, Remark 2.7]) shows that G is of class C1 on
C and its derivative is given by

⟨G′(u), v⟩ =
∫ R2

R1

rN−1g(r, u)v dr, u, v ∈ C.

The functional I : C → (−∞,+∞] defined by

I = Ψ+ G (7.3)

has the structure required by Szulkin’s critical point theory [112]. Accordingly,
a function u ∈ C is a critical point of I if u ∈ K and it satisfies the inequality

Ψ(v)−Ψ(u) + ⟨G′(u), v − u⟩ ≥ 0 for all v ∈ C,
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or, equivalently∫ R2

R1

rN−1[Φ(v′)− Φ(u′)] dr +

∫ R2

R1

rN−1g(r, u)(v − u) dr ≥ 0

for all v ∈ K.

Now, we consider the Neumann boundary value problem (2.20) under the
basic hypothesis (HΦ). Recall that by a solution of (2.20) we mean a function
u ∈ C1[R1, R2], such that ∥u′∥∞ < a, r 7→ rN−1ϕ(u′) is differentiable and (2.20)
is satisfied.

Lemma 15 For every f ∈ C, problem

[rN−1ϕ(u′)]′ = rN−1[u+ f ], u′(R1) = 0 = u′(R2) (7.4)

has a unique solution uf , which is also the unique solution of the variational
inequality∫ R2

R1

rN−1[Φ(v′)− Φ(u′) + u(v − u) + f(v − u)] dr ≥ 0 for all v ∈ K, (7.5)

and the unique minimum over K of the strictly convex functional J defined by

J(u) =

∫ R2

R1

rN−1

[
Φ(u′) +

u2

2
+ fu

]
dr. (7.6)

Proof. Problem (7.4) is equivalent to finding u = u+ ũ with u and ũ solutions
of


[rN−1ϕ(ũ′)]′ = rN−1f̃ , ũ′(R1) = 0 = ũ′(R2),

u = −f,
∫ R2

R1

rN−1ũ(r) dr = 0.
(7.7)

Now the first equation gives, using the first boundary condition,

ũ′(r) = ϕ−1

[
r1−N

∫ r

R1

sN−1f̃(s) ds

]
. (7.8)

From (7.8) we get

∥ũ′∥∞ < a, ũ′(R2) = ϕ−1

[
R1−N

2

∫ R2

R1

sN−1f̃(s) ds

]
= ϕ−1(0) = 0.

Then the unique solution of (7.8) is given by

ũ(r) = c+

∫ r

R1

ϕ−1

[
t1−N

∫ t

R1

sN−1f̃(s) ds

]
dt, (7.9)
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where

c = − N

RN
2 −RN

1

∫ R2

R1

rN−1

∫ r

R1

ϕ−1

[
t1−N

∫ t

R1

sN−1f̃(s) ds

]
dt dr. (7.10)

The unique solution uf = u+ ũ of (7.4) follows from (7.7), (7.9) and (7.10).
Now, if u is a solution of (7.4), then, taking v ∈ K, multiplying each mem-

ber of the differential equation by v − u, integrating over [R1, R2], and using
integration by parts and the boundary conditions, we get∫ R2

R1

rN−1[ϕ(u′)(v′ − u′) + u(v − u) + f(v − u)] dr = 0,

which gives (7.5) if we use the convexity inequality for Φ

Φ(v′)− Φ(u′) ≥ ϕ(u′)(v′ − u′).

The inequality
v2

2
− u2

2
≥ u(v − u) introduced in (7.5) implies that

∫ R2

R1

rN−1

[
Φ(v′)− Φ(u′) +

v2

2
+ fv − u2

2
− fu

]
dr ≥ 0 for all v ∈ K,

which shows that J has a minimum on K at u. Conversely if it is the case, then,
for all λ ∈ (0, 1] and all v ∈ K, we get∫ R2

R1

rN−1{Φ[(1− λ)u′ + λv′] +
[(1− λ)u+ λv]2

2
+ f [(1− λ)u+ λv]} dr

≥
∫ R2

R1

rN−1[Φ(u′) +
u2

2
+ fu] dr,

which, using the convexity of Φ, simplifying, dividing both members by λ and
letting λ → 0+, gives the variational inequality (7.5). Thus solving (7.5) is
equivalent to minimizing (7.6) over K. Now, it is straightforward to check that
J is strictly convex over K and therefore has a unique minimum there, which
gives the required uniqueness conclusions of Lemma 15.

Proposition 8 If u is a critical point of I, then u is a solution of problem
(2.20).

Proof. We set

fu := g(·, u)− u ∈ C

and consider the problem

[rN−1ϕ(w′)]′ = rN−1[w + fu(r)], w′(R1) = 0 = w′(R2). (7.11)
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By virtue of Lemma 15, problem (7.11) has an unique solution û and it is also
the unique solution of∫ R2

R1

rN−1[Φ(v′)− Φ(û′) + û(v − û) + fu(r)(v − û)] dr ≥ 0

for all v ∈ K. (7.12)

Since u is a critical point of I, we infer that∫ R2

R1

rN−1[Φ(v′)− Φ(u′) + u(v − u) + fu(r)(v − u)] dr ≥ 0

for all v ∈ K. (7.13)

It follows by uniqueness that u = û. Hence, u solves problem (2.20).

7.2 Ground state solutions

We begin by a lemma which is the main tool for the minimization problems in
this section. With this aim, for any ρ > 0, set

K̂ρ := {u ∈ K : |u| ≤ ρ}.

Lemma 16 Assume that there is some ρ > 0 such that

inf
K̂ρ

I = inf
K
I. (7.14)

Then I is bounded from below on C and attains its infimum at some u ∈ K̂ρ,
which solves problem (2.20).

Proof. By virtue of (7.14) and inf
C
I = inf

K
I, it suffices to prove that there is

some u ∈ K̂ρ such that

I(u) = inf
K̂ρ

I. (7.15)

Then, we get that u is a minimum point of I on C and, on account of [112,
Proposition 1.1], is a critical point of I. The proof will be accomplished by
virtue of Proposition 8.

If v ∈ K̂ρ then, using (7.1) we obtain

|v(r)| ≤ |v|+ |ṽ(r)| ≤ ρ+ (R2 −R1)a.

This, together with ∥v′∥∞ ≤ a show that K̂ρ is bounded in W 1,∞ and, by the

compactness of the embedding W 1,∞ ⊂ C, the set K̂ρ is relatively compact in

C. Let {un} ⊂ K̂ρ be a minimizing sequence for I. Passing to a subsequence
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if necessary and using [?, Lemma 1], we may assume that {un} converges uni-

formly to some u ∈ K. It is easily seen that actually u ∈ K̂ρ. From (7.2) and
the continuity of G on C, we obtain

I(u) ≤ lim inf
n→∞

I(un) = lim
n→∞

I(un) = inf
K̂ρ

I,

showing that (7.15) holds true.

The following result is proved in [20, Theorem 1].

Corollary 13 Let f : [R1, R2]×R → R be continuous and F : [R1, R2]×R → R
be defined by

F (r, x) :=

∫ x

0

f(r, ξ) dξ, (r, x) ∈ [R1, R2]× R.

If there is some ω > 0 such that F (r, x) = F (r, x+ω) for all (r, x) ∈ [R1, R2]×R,
then, for any h ∈ C with h = 0, the problem

[rN−1ϕ(u′)]′ = rN−1[f(r, u) + h(r)], u′(R1) = 0 = u′(R2).

has at least one solution u ∈ K̂ω which is a minimizer of the corresponding
energy functional I on C.

Proof. We have

G(r, x) = F (r, x) + h(r)x, (r, x) ∈ [R1, R2]× R.

Due to the ω–periodicity of F (r, ·) and because of h = 0, it holds

I(v + jω) = I(v) for all v ∈ K and j ∈ Z.

Then, the conclusion follows from the equality

{I(v) : v ∈ K} = {I(v) : v ∈ K̂ω}

and Lemma 16.

Theorem 22 If g : [R1, R2]× R → R is a continuous function such that

lim inf
|x|→∞

G(r, x) > 0, uniformly in r ∈ [R1, R2], (7.16)

then (2.20) has at least one solution which minimizes I on C.

Proof. Using (7.1) and (7.16) it follows that there exists ρ > 0 such that

G(r, u) > 0

for any u ∈ K such that |u| > ρ. It follows that I(u) > 0 provided that u ∈ K
and |u| > ρ. The proof follows from Lemma 16, as I(0) = 0.
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Remark 15 An easy adaptation of the techniques in Section 2.3 of [49] shows
that the Neumann problem for the p-Laplacian (p > 1) on a bounded domain
Ω ⊂ RN

div(|∇v|p−2∇v) = g(x, v) in Ω,
∂u

∂ν
= 0 on ∂Ω

with g : Ω× R → R continuous has at least one strong solution if

lim inf
|u|→∞

G(x, u)

|u|p
> 0, uniformly in x ∈ Ω,

a condition of the type already introduced by Hammerstein [71] for the Laplacian
with Dirichlet conditions. For the radial solutions of (2.18), Theorem 22 shows
that it is sufficient that such a condition holds with p = 0.

Example 4 The Neumann problem

div

(
∇v√

1− |∇v|2

)
=

v + h(|x|)
1 + [v + h(|x|)]2

+ cos v in A,

∂v

∂ν
= 0 on ∂A,

has at least one radial solution for all h ∈ C.

Theorem 23 Let g : [R1, R2]×R → R be a continuous function and l ∈ L1
N−1

be such that

|g(r, x)| ≤ l(r) (7.17)

for a.e. r ∈ (R1, R2) and all x ∈ R. If

lim
|x|→∞

∫ R2

R1

rN−1G(r, x) dr = +∞, (7.18)

then (2.20) has at least one solution which minimizes I on C.

Proof. We shall apply Lemma 16. For arbitrary u ∈ K, using (7.1) and (7.17),
we estimate I as follows.

I(u) =

∫ R2

R1

rN−1Φ(u′) dr +

∫ R2

R1

rN−1G(r, u) dr

≥
∫ R2

R1

rN−1G(r, u) dr +

∫ R2

R1

rN−1[G(r, u)−G(r, u)] dr

=

∫ R2

R1

rN−1G(r, u) dr +

∫ R2

R1

rN−1

∫ 1

0

g(r, u+ sũ)ũ ds dr

≥
∫ R2

R1

rN−1G(r, u) dr − a(R2 −R1)

∫ R2

R1

rN−1l(r) dr.

From (7.18) we can find ρ > 0 such that I(u) > 0 provided that |u| > ρ. As
by (HΦ) we know that Φ(0) = 0, one has I(0) = 0. Therefore, (7.14) is fulfilled
and the proof is complete.
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Remark 16 Condition (7.18) is of the type introduced by Ahmad-Lazer-Paul
[1] for the Laplacian with Dirichlet conditions. The reader will observe that the
conclusion of Theorem 23 still remains true if (7.18) is replaced by the weaker
but more technical condition

lim inf
|x|→∞

∫ R2

R1

rN−1G(r, x) dr > a(R2 −R1)

∫ R2

R1

rN−1l(r) dr.

Example 5 For every h ∈ C such that −π
2
< h <

π

2
, the Neumann problem

div

(
∇v√

1− |∇v|2

)
− arctan v − cos v = h(|x|) in A,

∂v

∂ν
= 0 on ∂A,

has at least one radial solution.

Theorem 24 Let g : [R1, R2] × R → R be a continuous function such that
G(r, ·) is convex for all r ∈ [R1, R2]. Then, problem (2.20) has at least one
solution if and only if there is some c ∈ R such that∫ R2

R1

rN−1g(r, c) dr = 0. (7.19)

Proof. Define

Γ : R → R, x 7→
∫ R2

R1

rN−1G(r, x) dr

and note that

Γ′(x) =

∫ R2

R1

rN−1g(r, x) dr for all x ∈ R.

Let us assume that (2.20) has a solution u. Clearly, we have∫ R2

R1

rN−1g(r, u) dr = 0. (7.20)

On account of the convexity of G(r, ·), the function g(r, ·) : R → R is nonde-
creasing for any r ∈ [R1, R2]. Hence,

g(r,−||u||∞) ≤ g(r, u(r)) ≤ g(r, ||u||∞) for all r ∈ [R1, R2]. (7.21)

From (7.20) and (7.21) we infer

Γ′(−||u||∞) ≤ 0 ≤ Γ′(||u||∞).
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Then, by the continuity of Γ′ there exists c ∈ R such that (7.19) holds true.

Reciprocally, assume that there exists c ∈ R such that Γ′(c) = 0. Using the
fact that Γ′ is nondecreasing, we have to consider the following three cases.

(i) It holds

Γ′(x) = Γ′(c) = 0 for all x ≥ c.

This implies that

g(r, x) = g(r, c) for all r ∈ [R1, R2] and x ≥ c.

Let v be a solution of the problem

[rN−1ϕ(w′)]′ = rN−1g(r, c), w′(R1) = 0 = w′(R2);

we know that this exists by Theorem 2.3 in [?]. Setting u = c + ||v||∞ + v, we
get that u solves problem (2.20).

(ii) One has that

Γ′(x) = Γ′(c) = 0 for all x ≤ c.

In this case the reasoning is similar to that in the case (i).

(iii) There are x1, x2 ∈ R with x1 < c < x2 and Γ′(x1) < 0 < Γ′(x2). If x ≥ x2,
then

Γ(x) = Γ(x2) +

∫ R2

R1

rN−1

(∫ x

x2

g(r, t) dt

)
dr

≥ Γ(x2) + (x− x2)Γ
′(x2).

It follows that Γ(x) → +∞ when x → +∞. Analogously Γ(x) → +∞ when
x→ −∞. Hence,

lim
|x|→∞

Γ(x) = +∞. (7.22)

On the other hand, by the convexity of G(r, ·), we have

G(r, u) ≥ 2G(r,
u

2
)−G(r,−ũ) for all r ∈ [R1, R2],

which gives

I(u) ≥
∫ R2

R1

rN−1Φ(u′) dr + 2Γ(
u

2
)−

∫ R2

R1

rN−1G(r, ũ) dr for all u ∈ K.(7.23)

The estimate (7.23) together with (7.1) and (7.22) show that we can find ρ > 0
such that I(u) > 0 provided that u ∈ K and |u| > ρ. Then, the proof follows
from Lemma 16 as in the proof of Theorem 23.
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Remark 17 Theorem 24 can be stated equivalently as : Let g : [R1, R2]×R →
R be a continuous function such that G(r, ·) is convex for all r ∈ [R1, R2].
Then, problem (2.20) has at least one solution if and only if the real convex

function x 7→
∫ R2

R1
rN−1G(r, x) dr has a minimum. Corresponding results for

the Laplacian with Neumann or Dirichlet boundary conditions have been given
in [88] and [87].

Example 6 The Neumann problem with h ∈ C

div

(
∇v√

1− |∇v|2

)
= arctan v − h(|x|) in A, ∂v

∂ν
= 0 on ∂A,

has at least one radial solution if and only if −π
2
< h <

π

2
.

Example 7 The Neumann problem with h ∈ C

div

(
∇v√

1− |∇v|2

)
= arctan v+ − h(|x|) in A, ∂v

∂ν
= 0 on ∂A,

has at least one radial solution if and only if 0 ≤ h <
π

2
.

Example 8 The Neumann problem with h ∈ C

div

(
∇v√

1− |∇v|2

)
= ev − h(|x|) in A, ∂v

∂ν
= 0 on ∂A,

has at least one radial solution if and only if h > 0.

7.3 (PS)–sequences and Saddle Point solutions

Towards the application of the minimax results obtained in Szulkin [112] to the
functional I defined by (7.3) we have to know when I satisfies the compactness
Palais-Smale (in short, (PS)) condition.

Viewing our functional framework from Section 2, we say that a sequence
{un} ⊂ K is a (PS)–sequence if I(un) → c ∈ R and∫ R2

R1

rN−1[Φ(v′)−Φ(u′n) + g(r, un)(v − un)] dr ≥ −εn∥v − un∥∞

for all v ∈ K, (7.24)

where εn → 0+. According to [112], the functional I is said to satisfy the (PS)
condition if any (PS)–sequence has a convergent subsequence in C.

The lemma below provides useful properties of the (PS)–sequences.
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Lemma 17 Let {un} be a (PS)–sequence. Then the following hold true :

(i) the sequence

{∫ R2

R1

rN−1G(r, un) dr

}
is bounded;

(ii) if {un} is bounded, then {un} has a convergent subsequence in C;

(iii) one has that

−εn ≤
∫ R2

R1

rN−1g(r, un) dr ≤ εn for all n ∈ N. (7.25)

Proof. (i) This is immediate from the fact that {I(un)} and Φ are bounded.

(ii) From (7.1) and un ∈ K, the sequence {ũn} is bounded in W 1,∞. By the
compactness of the embedding W 1,∞ ⊂ C, we deduce that {ũn} has a conver-
gent subsequence in C. Using then the boundedness of {un} ⊂ R it follows that
{un} has a convergent subsequence in C.

(iii) Taking v = un ± 1 in (7.24) one obtains (7.25).

Theorem 25 Let g : [R1, R2]×R → R be a continuous function and l ∈ L1
N−1

be such that (7.17) is satisfied for a.e. r ∈ (R1, R2) and all x ∈ R. If

lim
|x|→∞

∫ R2

R1

rN−1G(r, x) dr = −∞, (7.26)

then (2.20) has at least one solution.

Proof. We shall apply the Saddle Point Theorem [112, Theorem 3.5].

From (7.26) the functional I is not bounded from below. Indeed, if v = c ∈ R
is a constant function then

I(c) =

∫ R2

R1

rN−1G(r, c) dr → −∞ as |c| → ∞. (7.27)

We split C = R
⊕
X, where X = {v ∈ C : v = 0}. Note that

I(v) ≥
∫ R2

R1

rN−1G(r, ṽ) dr for all v ∈ K ∩X,

which together with (7.1) imply that there is a constant α ∈ R such that

I(v) ≥ α for all v ∈ X. (7.28)

Using (7.27) and (7.28) we can find some R > 0 so that

sup
SR

I < inf
X
I,
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where SR = {c ∈ R : |c| = R}.
It remains to show that I satisfies the (PS) condition. Let {un} ⊂ K be a

(PS)–sequence. Since {I(un)}, {φ(un)} are bounded and, by (7.17) we have∣∣∣∣∣
∫ R2

R1

rN−1[G(r, un)−G(r, un)] dr

∣∣∣∣∣
≤

∫ R2

R1

rN−1

∫ 1

0

|g(r, un + sũn)ũn| ds dr

≤ a(R2 −R1)

∫ R2

R1

rN−1l(r) dr,

from

I(un) = φ(un) +

∫ R2

R1

rN−1G(r, un) dr +

∫ R2

R1

rN−1[G(r, un)−G(r, un)] dr

it follows that there exists a constant β ∈ R such that∫ R2

R1

rN−1G(r, un) dr ≥ β.

Then by (7.26) the sequence {un} is bounded and Lemma 17 (ii) ensures that
{un} has a convergent subsequence in C. Consequently, I satisfies the (PS)
condition and the conclusion follows from [112, Theorem 3.5] and Proposition
8.

Remark 18 Condition (7.26), also of the Ahmad-Lazer-Paul type [1] is, in
some sense, ‘dual’ to condition (7.18).

Example 9 For every h ∈ C such that −π
2
< h <

π

2
, the Neumann problem

div

(
∇v√

1− |∇v|2

)
+ arctan v + cos v = h(|x|) in A,

∂v

∂ν
= 0 on ∂A,

has at least one radial solution.

Theorem 26 If g : [R1, R2]× R → R is a continuous function such that

lim
|x|→∞

G(r, x) = −∞, uniformly in r ∈ [R1, R2], (7.29)

then (2.20) has at least one solution.
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Proof. We keep the notations introduced in the proof of Theorem 25. Clearly,
(7.29) implies (7.26) and from the proof of Theorem 25 it follows that I has the
geometry required by the Saddle Point Theorem. To show that I satisfies the
(PS) condition, let {un} ⊂ K be a (PS)–sequence. If {|un|} is not bounded,
we may assume going if necessary to a subsequence, that |un| → ∞. Using (7.1)
and (7.29) we deduce that

G(r, un(r)) → −∞, uniformly in r ∈ [R1, R2].

This implies ∫ R2

R1

rN−1G(r, un) dr → −∞,

contradicting Lemma 17 (i). Hence, {un} is bounded and by Lemma 17 (ii),
the sequence {un} has a convergent subsequence in C. Therefore, I satisfies the
(PS) condition. The proof is complete.

Remark 19 No result corresponding to Theorem 26 holds for the Laplacian
with Neumann (or Dirichlet) boundary conditions. Indeed, if λk is a positive
eigenvalue of −∆ on some bounded domain Ω ⊂ RN with Neumann boundary
conditions, and φk a corresponding eigenfunction, the problem

∆v = −λkv + φk(x) in Ω,
∂v

∂ν
= 0 on ∂Ω

has no solution, but −λk
u2

2
+ φk(x)u→ −∞ uniformly in Ω when |u| → ∞.

Example 10 The Neumann problem

div

(
∇v√

1− |∇v|2

)
+

v + h(|x|)
1 + [v + h(|x|)]2

= cos v in A,

∂v

∂ν
= 0 on ∂A,

has at least one radial solution for all h ∈ C.

7.4 Mountain Pass solutions

In this section we consider problem (2.21) with λ > 0 and m ≥ 2 fixed real num-
bers, and f : [R1, R2]×R → R a continuous function satisfying the Ambrosetti–
Rabinowitz condition [7] :

(AR) There exists θ > m and x0 > 0 such that

0 < θF (r, x) ≤ xf(r, x) for all r ∈ [R1, R2] and |x| ≥ x0.
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Note that for problem (2.21) the function g from the general functional
framework in Section 2 is now defined in terms of f by

g(r, x) = λ|x|m−2x− f(r, x) for all (r, x) ∈ [R1, R2]× R

and accordingly, G entering in the definition of the energy functional I becomes

G(r, x) = λ
|x|m

m
− F (r, x) for all (r, x) ∈ [R1, R2]× R.

Lemma 18 Let p ≥ 1 be a real number. Then

|u(r)|p ≥ |u|p − pa(R2 −R1)|u|p−1, ∀u ∈ K, ∀r ∈ [R1, R2] (7.30)

and there are constants α1, α2 ≥ 0 such that

|u(r)|p ≤ |u|p + α1|u|p−1 + α2, ∀u ∈ K with |u| ≥ 1, ∀r ∈ [R1, R2]. (7.31)

Proof. The result is trivial for p = 1. If p > 1, u ∈ K and r ∈ [R1, R2], then,
using the convexity of the differentiable function s 7→ |s|p, we get

|u(r)|p = |u+ ũ(r)|p ≥ |u|p + p|u|p−2uũ(r)

≥ |u|p − p|u|p−1(R2 −R1)a.

On the other hand, denoting by p̃ the smallest integer larger or equal to p
and letting M := a(R2 −R1), we have, for all r ∈ [R1, R2],

|u(r)|p = |u+ ũ(r)|p ≤ (|u|+M)p = |u|p
(
1 +

M

|u|

)p

≤ |u|p
(
1 +

M

|u|

)p̃

= |u|p
(
1 +

p̃∑
k=1

p̃!

k!(p̃− k)!

Mk

|u|k

)

= |u|p +
p̃∑

k=1

p̃!

k!(p̃− k)!
Mk|u|p−k,

and (7.31) follows easily.

Lemma 19 If (AR) holds, then I satisfies the (PS) condition.

Proof. Let {un} ⊂ K be a (PS)–sequence. From Lemma 17 (i) and (7.30) there
are constants c1, d ∈ R such that

λ
RN

2 −RN
1

N

|un|m

m
− c1|un|m−1 −

∫ R2

R1

rN−1F (r, un) dr ≤ d ∀n ∈ N. (7.32)
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Using Lemma 17 (iii) and εn → 0, we may assume that

−1 ≤ λ

∫ R2

R1

rN−1|un|m−2un dr −
∫ R2

R1

rN−1f(r, un) dr ≤ 1 ∀n ∈ N. (7.33)

Suppose, by contradiction, that {|un|} is not bounded. Then, there is a
subsequence of {|un|}, still denoted by {|un|}, with |un| → ∞. Let n0 ∈ N be
such that |un| ≥ max{1, x0 + a(R2 −R1)} for all n ≥ n0. By virtue of (7.1) we
have

|un(r)| ≥ x0 for all r ∈ [R1, R2] and n ≥ n0.

The (AR) condition ensures that

sign un = sign un(r) = sign f(r, un(r)) for all r ∈ [R1, R2] and n ≥ n0 (7.34)

and

−
∫ R2

R1

rN−1F (r, un) dr

≥ −un
θ

∫ R2

R1

rN−1f(r, un) dr −
1

θ

∫ R2

R1

rN−1f(r, un)ũn dr

for all n ≥ n0. (7.35)

From (7.33) and (7.31) there are constants c2, c3 ≥ 0 such that

− un
θ

∫ R2

R1

rN−1f(r, un) dr ≥ −λR
N
2 −RN

1

θN
|un|m − c2|un|m−1 − c3

for all n ≥ n0. (7.36)

Also, using (7.1), (7.31), (7.33) and (7.34) we can find constants c4, c5, c6 ≥ 0
so that

− 1

θ

∫ R2

R1

rN−1f(r, un)ũn dr ≥ −c4|un|m−1 − c5|un|m−2 − c6,

for all n ≥ n0. (7.37)

From (7.35), (7.36) and (7.37) we obtain

−
∫ R2

R1

rN−1F (r, un) dr

≥ −λR
N
2 −RN

1

N

|un|m

θ
− (c2 + c4)|un|m−1 − c5|un|m−2 − c3 − c6

for all n ≥ n0. (7.38)

Then, (7.38) together with θ > m imply

λ
RN

2 −RN
1

N

|un|m

m
− c1|un|m−1 −

∫ R2

R1

rN−1F (r, un) dr → +∞ as n→ ∞,

contradicting (7.32). Consequently, {un} is bounded and the proof follows from
Lemma 17 (ii).
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Lemma 20 If (AR) holds and c ∈ R, then I(c) → −∞ as |c| → ∞.

Proof. The (AR) condition implies (see [49]) that there exists γ ∈ C, γ > 0,
such that

F (r, x) ≥ γ(r)|x|θ for all r ∈ [R1, R2] and |x| ≥ x0. (7.39)

From (7.39) we infer

I(c) = λ
RN

2 −RN
1

mN
|c|m −

∫ R2

R1

rN−1F (r, c) dr

≤ λ
RN

2 −RN
1

mN
|c|m − |c|θ

∫ R2

R1

rN−1γ(r) dr,

for all c ∈ R with |c| ≥ x0. Then, the conclusion follows from θ > m and γ > 0.

Lemma 21 Assume that F satisfies

lim sup
x→0

mF (r, x)

|x|m
< λ uniformly in r ∈ [R1, R2]. (7.40)

Then there exist α, ρ > 0 such that∫ R2

R1

rN−1

[
λ
|u|m

m
− F (r, u)

]
dr ≥ α for all u ∈ K ∩ ∂Bρ, (7.41)

where ∂Bρ := {u ∈ C : ||u||∞ = ρ}.

Proof. Assumption (7.40) ensures that there are constants b < λ and ρ > 0 such
that

F (r, x) ≤ b

m
|x|m for all r ∈ [R1, R2] and |x| ≤ ρ. (7.42)

We claim that:

inf
u∈K∩∂Bρ

∫ R2

R1

rN−1|u|m dr > 0. (7.43)

Then, by virtue of (7.42) we have∫ R2

R1

rN−1

[
λ
|u|m

m
− F (r, u)

]
dr

≥ λ− b

m

∫ R2

R1

rN−1|u|m dr =: α for all u ∈ K ∩ ∂Bρ,
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and (7.43) implies (7.41). In order to prove (7.43), suppose by contradiction
that there exists a sequence {un} ⊂ K ∩ ∂Bρ such that∫ R2

R1

rN−1|un|m dr → 0 as n→ ∞.

It is clear that {un} is bounded in W 1,∞. Passing to a subsequence if necessary,
we may assume a that {un} is convergent in C to some u. This implies that
||u||∞ = ρ and∫ R2

R1

rN−1|un|m dr →
∫ R2

R1

rN−1|u|m dr as n→ ∞.

It follows that u = 0, contradiction with ||u||∞ = ρ > 0. Therefore, (7.43) holds
true and the proof is complete.

Theorem 27 Assume that the (AR) condition holds true. If F satisfies (7.40),
then problem (2.21) has at least one nontrivial solution.

Proof. The proof follows immediately from Lemmas 19, 20 and 21 and the
Mountain Pass Theorem [112, Theorem 3.2]) applied to the functional I.

Remark 20 Theorem 27 is of the type introduced by Ambrosetti and Rabi-
nowitz [7] for nonlinear perturbations of the Laplacian with Dirichlet boundary
conditions.

Example 11 If θ > m ≥ 2, λ > 0 are given real numbers and µ ∈ C is a
positive function, then the Neumann problem

div

(
∇v√

1− |∇v|2

)
= λ|v|m−2v − µ(|x|)|v|θ−2v in A, ∂v

∂ν
= 0 on ∂A,

has at least one nontrivial radial solution.

7.5 The periodic case

Let Φ : [−a, a] → R and g : [R1, R2]×R → R be as above, i.e., Φ satisfies (HΦ)
and g is continuous. The periodic problem (2.22) can be treated quite similarly
to problem (2.20) with the following modifications. Taking N = 1, one works
with

KP := {v ∈W 1,∞ : ∥v′∥∞ ≤ a, v(R1) = v(R2)}
instead of K, and ΨP : C → (−∞,+∞] given by

ΨP (v) =


∫ R2

R1

Φ(v′), if v ∈ KP ,

+∞, otherwise,
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instead of Ψ. With GP : C → R defined by

GP (u) =

∫ R2

R1

G(r, u) dr, u ∈ C,

the energy functional IP : C → (−∞,+∞] will be now IP = ΨP + GP .

The references from [20] are replaced by the similar ones from [29].

We only state the following existence results which are obtained as the cor-
responding ones for problems (2.20) and (2.21) by no longer than “mutatis
mutandis” arguments.

Proposition 9 If u ∈ KP is a critical point of IP , then u is a solution of
problem (2.22).

Denoting

K̂P,ρ := {u ∈ KP : |u| ≤ ρ},

we have the following

Lemma 22 Assume that there is some ρ > 0 such that

inf
K̂P,ρ

IP = inf
KP

IP .

Then IP is bounded from below and attains its infimum at some u ∈ K̂P,ρ, which
solves problem (2.22).

By means of Lemma 22 we can easily reformulate Corollary 13, Theorem 22
and Theorem 26 for the periodic problem (2.22). Also we note the following
versions of the other theorems.

Theorem 28 Assume that there exists l ∈ L1 such that

|g(r, x)| ≤ l(r)

for a.e. r ∈ (R1, R2) and all x ∈ R. If either

lim inf
|x|→∞

∫ R2

R1

G(r, x) dr > (R2 −R1)

(
a

∫ R2

R1

l(r) dr

)
(7.44)

or

lim
|x|→∞

∫ R2

R1

G(r, x) dr = −∞,

then problem (2.22) has at least one solution u. Moreover, if (7.44) holds true
then u minimizes IP on C.
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Theorem 29 Let g : [R1, R2] × R → R be a continuous function such that
G(r, ·) is convex for all r ∈ [R1, R2]. Then, problem (2.22) has at least one
solution if and only if there is some c ∈ R such that∫ R2

R1

g(r, c) dr = 0.

Theorem 30 Let f : [R1, R2]× R → R be a continuous function such that the
(AR) condition is fulfilled. If F satisfies (7.40), then the problem

[ϕ(u′)]′ = λ|u|m−2u− f(r, u), u(R1)− u(R2) = 0 = u′(R1)− u′(R2),

has at least one nontrivial solution for any λ > 0 and m ≥ 2.



88 CHAPTER 7. VARIATIONAL METHODS



Chapter 8

One parameter Neumann
problems

8.1 Preliminaries

Let (X, ∥ · ∥) be a real Banach space and I be a functional of the type

I = F + ψ,

where ψ : X → (−∞,+∞] is proper (i.e., D(ψ) := {v ∈ X; : ψ(v) < +∞} ̸= ∅),
convex, lower semicontinuous (in short, l.s.c.) and F ∈ C1(X;R).

According to Szulkin [112], a point u ∈ X is said to be a critical point of I
if it satisfies the inequality

⟨F ′(u), v − u⟩+ ψ(v)− ψ(u) ≥ 0, ∀v ∈ X.

A number c ∈ R such that I−1(c) contains a critical point is called a critical
value of I.

The functional I is said to satisfy the Palais-Smale (in short, (PS)) condition
if every sequence {un} ⊂ X for which I(un) → c ∈ R and

⟨F ′(un), v − un⟩+ ψ(v)− ψ(un) ≥ −εn∥v − un∥, ∀v ∈ X,

where εn → 0 (called (PS)-sequence), possesses a convergent subsequence.

Proposition 10 Suppose that I satisfies the (PS) condition and there exists an
open set U such that

−∞ < inf
U
I < inf

∂U
I. (8.1)

Then I has at least one critical point u ∈ U such that I(u) = inf
U
I.

89
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Proof. Let

c0 = inf
U
I (8.2)

and {εn} be a sequence with εn → 0 and

0 < εn < inf
∂U

I − c0 for all n ∈ IN. (8.3)

Using Ekeland’s variational principle, applied to I|U , for each n ∈ IN, we can
find vn ∈ U such that

I(vn) ≤ c0 + εn (8.4)

and

I(v) ≥ I(vn)− εn∥v − vn∥ for all v ∈ U. (8.5)

From (8.3) and (8.4) it follows I(vn) < inf
∂U

I, which ensures that vn ∈ U , for all

n ∈ IN. Let v ∈ X, n ∈ IN be arbitrarily chosen and t0 := t0(v, n) ∈ (0, 1) be so
that vn + t(v − vn) ∈ U , for all t ∈ (0, t0). Using (8.5) and the convexity of ψ,
we get

F(vn + t(v − vn))−F(vn)

t
+ ψ(v)− ψ(vn) ≥ −εn∥v − vn∥

and, letting t→ 0+, one obtains

⟨F ′(vn), v − vn⟩+ ψ(v)− ψ(vn) ≥ −εn∥v − vn∥ for all v ∈ X. (8.6)

On the other hand, from (8.4) it is clear that

I(vn) → c0. (8.7)

Since I satisfies the (PS) condition, (8.6) and (8.7) ensure that {vn} contains a
subsequence, still denoted by {vn}, convergent to some u ∈ U .

By the lower semicontinuity of ψ it holds

ψ(u) ≤ lim inf
n→∞

ψ(vn) (8.8)

and, on account of F ∈ C1(X; IR), one obtains

lim
n→∞

⟨F ′(vn), v − vn⟩ = ⟨F ′(u), v − u⟩ for all v ∈ X. (8.9)

From (8.6), (8.8) and (8.9) we deduce

⟨F ′(u), v − u⟩+ ψ(v)− ψ(u) ≥ 0 for all v ∈ X. (8.10)

Also, from (8.2), (8.7) and (8.8) we have

c0 ≤ I(u) ≤ lim
n→∞

F(vn) + lim inf
n→∞

ψ(vn) = lim inf
n→∞

I(vn) = c0,

hence I(u) = c0 and from (8.1), u ∈ U . This together with (8.10) shows that c0
is a critical value of I.
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For σ > 0, we shall denote Bσ = {v ∈ X : ∥v∥ < σ} and by Bσ its closure.

Proposition 11 Suppose that I satisfies the (PS) condition together with

(i) I(0) = 0 and there exists ρ > 0 such that

−∞ < inf
Bρ

I < 0 < inf
∂Bρ

I; (8.11)

(ii) I(e) ≤ 0 for some e ∈ X \Bρ.

Then I has at least two nontrivial critical points.

Proof. From the Mountain Pass Theorem [112, Theorem 3.2] there exists a
first nontrivial critical point u0 ∈ X with I(u0) > 0. On the other hand, using
Proposition 10 with U = Bρ and (8.11), it follows that inf

Bρ

I is a critical value of

I. This implies the existence of a second critical point u1 with I(u1) < 0. We
have that u1 is nontrivial and different from u0 because I(0) = 0 and I(u0) > 0.

Remark 21 (i) It is a simple matter to check that if, in addition ψ and F are
even, then I has at least four nontrivial critical points.

(ii) If the operator F ′ : X → X∗ maps bounded sets into bounded sets, then
condition −∞ < inf

Bρ

I in (8.11) is automatically satisfied. Indeed, in this case,

by the mean value theorem one has

|F(u)−F(0)| ≤ ρ sup
v∈Bρ

∥F ′(v)∥ for all u ∈ Bρ,

showing that F is bounded on Bρ. On the other hand, we know that the
proper, convex and l.s.c. function ψ is bounded from below by a continuous
affine function.

(iii) Proposition 11 is implicitly employed in [77] to derive the existence of
at least two nontrivial solutions for a variational inequality on the half line.

8.2 Hypotheses and the functional framework

Throughout this paper we assume that hypotheses (Hf ) and (HΦ) from Section
1 hold true. Clearly, from (HΦ) we have that Φ is strictly convex and Φ(x) ≥ 0

for all x ∈ [−a, a]. Also, it is worth noticing that choosing Φ(y) = 1−
√
1− y2,

∀y ∈ [−1, 1], one has ϕ(y) =
y√

1− y2
, ∀y ∈ (−1, 1), as it is particularly involved

when dealing with problems (2.23)–(2.26).

The approaches for problems (2.27) and (2.29) (resp. (2.28) and (2.30)) are
based on the Szulkin’s critical point theory and are quite similar. That is why



92 CHAPTER 8. ONE PARAMETER NEUMANN PROBLEMS

we shall treat in detail problem (2.27) (resp. (2.28)) and we restrict ourselves
to only point out the corresponding adaptations for the treatment of problem
(2.29) (resp. (2.30)).

We set C := C[R1, R2], L
1 := L1(R1, R2), L

∞ := L∞(R1, R2) and W
1,∞ :=

W 1,∞(R1, R2). The usual norm ∥ · ∥∞ is considered on C and L∞. The space
W 1,∞ is endowed with the norm

∥v∥ = ∥v∥∞ + ∥v′∥∞, v ∈W 1,∞.

Denoting

L1
N−1 := {v : (R1, R2) → R measurable :

∫ R2

R1

rN−1|v(r)| dr < +∞},

each v ∈ L1
N−1 can be written v(r) = v + ṽ(r), with

v :=
N

RN
2 −RN

1

∫ R2

R1

v(r) rN−1 dr,

∫ R2

R1

ṽ(r) rN−1 dr = 0.

If v ∈W 1,∞ then ṽ vanishes at some r0 ∈ (R1, R2) and

|ṽ(r)| = |ṽ(r)− ṽ(r0)| ≤
∫ R2

R1

|v′(t)| dt ≤ (R2 −R1)∥v′∥∞,

so, one has that

||ṽ||∞ ≤ (R2 −R1)∥v′∥∞. (8.12)

Putting
K := {v ∈W 1,∞ : ∥v′∥∞ ≤ a},

it is clear that K is a convex subset of W 1,∞.
Let Ψ : C → (−∞,+∞] be defined by

Ψ(v) =


∫ R2

R1

rN−1Φ(v′) dr, if v ∈ K,

+∞, otherwise.

Obviously, Ψ is proper and convex. On the other hand, as shown in [20] (also,
see [18]), K ⊂ C is closed and Ψ is lower semicontinuous on C.

Next, denoting by F : [R1, R2]× IR → IR the primitive of f , i.e.,

F (r, x) :=

∫ x

0

f(r, ξ) dξ, (r, x) ∈ [R1, R2]× IR,

we define Fλ : C → IR by

Fλ(u) =

∫ R2

R1

rN−1

[
α

p
|u|p − F (r, u)− λ

q
b(r)|u|q

]
dr, u ∈ C
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and F̂λ : C → IR by

F̂λ(u) =

∫ R2

R1

rN−1

[
λ

m
|u|m − F (r, u)− h(r)u

]
dr, u ∈ C.

A standard reasoning (also see [72, Remark 2.7]) shows that Fλ and F̂λ are of
class C1 on C and

⟨F ′
λ(u), v⟩ =

∫ R2

R1

rN−1
[
α|u|p−2u− f(r, u)− λb(r)|u|q−2u

]
v dr, u, v ∈ C,

⟨F̂ ′
λ(u), v⟩ =

∫ R2

R1

rN−1
[
λ|u|m−2u− f(r, u)− h(r)

]
v dr, u, v ∈ C,

Then it is clear that Iλ, Îλ : C → (−∞,+∞] defined by

Iλ = Fλ +Ψ, Îλ = F̂λ +Ψ

have the structure required by Szulkin’s critical point theory. At this stage, the
search of solutions of problem (2.27) (resp. (2.28)) reduces to finding critical

points of the energy functional Iλ (resp. Îλ) by the following Proposition which
is proved in [18, Proposition 1].

Proposition 12 If u ∈ C is a critical point of Iλ (resp. Îλ), then u is a solution
(2.27) (resp. (2.28)).

In the case of the periodic problems (2.29) and (2.30), taking N = 1, one
works with

KP := {v ∈W 1,∞ : ∥v′∥∞ ≤ a, v(R1) = v(R2)}

instead of K, and ΨP : C → (−∞,+∞] given by

ΨP (v) =


∫ R2

R1

Φ(v′), if v ∈ KP ,

+∞, otherwise

instead of Ψ. With FP,λ, F̂P,λ : C → IR defined by

FP,λ(u) =

∫ R2

R1

[
α

p
|u|p − F (r, u)− λ

q
b(r)|u|q

]
dr, u ∈ C,

F̂P,λ(u) =

∫ R2

R1

[
λ

m
|u|m − F (r, u)− h(r)u

]
dr, u ∈ C,

the energy functionals IP,λ, ÎP,λ : C → (−∞,+∞] will be now IP,λ = ΨP +FP,λ

and ÎP,λ = ΨP + F̂P,λ. We have (see [18, Proposition 2]) the following

Proposition 13 If u ∈ C is a critical point of IP,λ (resp. ÎP,λ), then u is a
solution of (2.29) (resp. (2.30)).
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8.3 Nontrivial solutions

The Neumann problem (2.27). Towards the application of Proposition 11,
we have to know that the energy functional satisfies the (PS) condition. In this
respect, we need the following inequalities which are proved in [18, Lemma 4].

Lemma 23 Let s ≥ 1 be a real number. Then

|u(r)|s ≥ |u|s − sa(R2 −R1)|u|s−1, ∀u ∈ K, ∀r ∈ [R1, R2] (8.13)

and there are constants k1, k2 ≥ 0 such that

|u(r)|s ≤ |u|s + k1|u|s−1 + k2, ∀u ∈ K, ∀r ∈ [R1, R2]. (8.14)

The following Lemma states that under the hypothesis (AR) the functional
Iλ satisfies the (PS) condition and is anticoercive on the subpace of constant
functions.

Lemma 24 If (2.32) holds, then Iλ satisfies the (PS) condition and

Iλ(c) → −∞ as |c| → ∞ , c ∈ IR, (8.15)

for any λ > 0.

Proof. We shall denote by ci a generic constant, which may depend on λ.
Also, we shall invoke the positive constant

A =
α(RN

2 −RN
1 )

pN
. (8.16)

Let {un} ⊂ K be a sequence for which Iλ(un) → c ∈ R and

⟨F ′
λ(un), v − un⟩+Ψ(v)−Ψ(un) ≥ −εn∥v − un∥∞, ∀v ∈ C, (8.17)

where εn → 0.

We claim that {un} is bounded.

To see this, let j ∈ (max{p− 1, q}, p) be fixed. From (8.13), (8.14) we infer∫ R2

R1

rN−1

[
α

p
|un|p −

λ

q
b(r)|un|q

]
dr ≥ A|un|p − c1|un|j − c2

and, since {Iλ(un)} and Φ are bounded, it follows

A|un|p − c1|un|j −
∫ R2

R1

rN−1F (r, un) ≤ c3 for all n ∈ IN. (8.18)

Letting v = un ± 1 in (8.17), as ε→ 0, we may assume that

−1 ≤
∫ R2

R1

rN−1
[
α|un|p−2un − f(r, un)− λb(r)|un|q−2un

]
dr ≤ 1,
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for all n ∈ IN hence, setting

β(un) :=

∫ R2

R1

rN−1
[
α|un|p−2un − λb(r)|un|q−2un

]
dr,

we have

−1− β(un) ≤ −
∫ R2

R1

rN−1f(r, un) dr ≤ 1− β(un) for all n ∈ IN. (8.19)

Using (8.14) and taking into account that j − 1 ∈ (max{p− 2, q − 1}, p− 1) we
obtain the estimate

|β(un)| ≤ pA|un|p−1 + c4|un|j−1 + c5,

which, by virtue of (8.19), gives∣∣∣∣∣
∫ R2

R1

rN−1f(r, un) dr

∣∣∣∣∣ ≤ pA|un|p−1 + c4|un|j−1 + c6 for all n ∈ IN. (8.20)

Clearly, we have∣∣∣∣∣1θ
∫ R2

R1

rN−1f(r, un)un dr

∣∣∣∣∣ ≤ pA

θ
|un|p + c7|un|j + c8|un| for all n ∈ IN.(8.21)

Now, suppose, by contradiction, that {|un|} is not bounded. Then, there is a
subsequence of {|un|}, still denoted by {|un|}, with |un| → ∞. Let n0 ∈ N be
such that |un| ≥ x0 + a(R2 −R1) for all n ≥ n0. Condition (2.32) ensures that

sign un = sign un(r) = sign f(r, un(r)) for all r ∈ [R1, R2], n ≥ n0.

As {un} ⊂ K, using (8.12) and (8.20) we obtain∣∣∣∣∣1θ
∫ R2

R1

rN−1f(r, un)ũn dr

∣∣∣∣∣ ≤ c9|un|p−1+ c10|un|j−1+ c11 for all n ≥ n0.(8.22)

From (2.32) it holds

−
∫ R2

R1

rN−1F (r, un) dr

≥ −1

θ

∫ R2

R1

rN−1f(r, un)un dr −
1

θ

∫ R2

R1

rN−1f(r, un)ũn dr,

for all n ≥ n0. Then, on account of (8.21) and (8.22), we get

−
∫ R2

R1

rN−1F (r, un) dr ≥ −pA
θ
|un|p − γ(|un|) for all n ≥ n0,
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where

γ(|un|) := c9|un|p−1 + c7|un|j + c10|un|j−1 + c8|un|+ c11.

This together with θ > p imply

A|un|p − c1|un|j −
∫ R2

R1

rN−1F (r, un)

≥ A
θ − p

p
|un|p − c1|un|j − γ(|un|) → +∞ as n→ ∞,

contradicting (8.18). Consequently, {un} is bounded, as claimed.

Since {un} ⊂ K, the sequence {un} is bounded inW 1,∞. By the compactness
of the embeddingW 1,∞ ⊂ C, we deduce that {un} has a convergent subsequence
in C. Therefore, Iλ satisfies the (PS) condition.

Condition (2.32) implies (see [49]) that there exists γ ∈ C, γ > 0, such that

F (r, x) ≥ γ(r)|x|θ for all r ∈ [R1, R2] and |x| ≥ x0.

We infer (see (8.16)):

Iλ(c) = A|c|p −
∫ R2

R1

rN−1F (r, c) dr − λ

q
|c|q

∫ R2

R1

rN−1b(r) dr

≤ A|c|p − |c|θ
∫ R2

R1

rN−1γ(r)− λ

q
|c|q

∫ R2

R1

rN−1b(r) dr ,

for all c ∈ IR with |c| ≥ x0. Then, (8.15) follows from θ > p > q and γ > 0.

Lemma 25 If b > 0 and either condition (2.33) or condition (2.34) holds true,
then

inf
Bη

Iλ < 0, (8.23)

for all η, λ > 0.

Proof. Let us suppose that (2.33) holds true. A similar argument works
under assumption (2.34). Condition (2.33) means that

lim
ε→0+

inf
x∈(−ε,0)

F (r, x)

|x|p
= h(r), uniformly in r ∈ [R1, R2] and h ≥ 0 on [R1, R2].

This yields the existence of some ε1 > 0 so that

F (r, x) ≥ −|x|p for all r ∈ [R1, R2], x ∈ (−ε1, 0]. (8.24)
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Clearly, we may assume that η < ε1. For c ∈ (−η, 0) ⊂ (−ε1, 0], using (8.24)
and b > 0, we estimate Iλ(c) as follows (see (8.16)) :

Iλ(c) = A|c|p −
∫ R2

R1

rN−1F (r, c)− λ

q

(∫ R2

R1

rN−1b(r) dr

)
|c|q

≤ A
(
1 +

p

α

)
|c|p − λ

q

(∫ R2

R1

rN−1b(r) dr

)
|c|q

= |c|q
[
A
(
1 +

p

α

)
|c|p−q − λ

q

(∫ R2

R1

rN−1b(r) dr

)]
< 0,

provided that |c| > 0 is small enough. Obviously, this implies (8.23) and the
proof is complete.

Lemma 26 If b > 0 and (2.31) holds true, then there exist ρ, λ0 > 0 such that

inf
∂Bρ

Iλ > 0, (8.25)

for all λ ∈ (0, λ0).

Proof. Assumption (2.31) ensures that there are constants ε, ρ > 0 such
that

F (r, x) ≤ α− ε

p
|x|p for allr ∈ [R1, R2] and |x| ≤ ρ. (8.26)

We know (see the proof of Lemma 7 in [18]) that

β0 := inf
u∈K∩∂Bρ

∫ R2

R1

rN−1|u|p dr > 0.

Also, from b > 0 it follows

β1 :=

∫ R2

R1

rN−1b+(r) dr > 0.

We set

λ0 :=
εp−1β0
ρqq−1β1

(> 0).

Using (8.26), for arbitrary λ ∈ (0, λ0) and u ∈ K ∩ ∂Bρ one obtains

Iλ(u) ≥ α

p

∫ R2

R1

rN−1|u|pdr −
∫ R2

R1

rN−1F (r, u)dr − λ

q

∫ R2

R1

rN−1b+(r)|u|qdr

≥ ε

p

∫ R2

R1

rN−1|u|p dr − λ
ρq

q

∫ R2

R1

rN−1b+(r) dr

≥ ε

p
β0 − λ

ρq

q
β1 =

ρq

q
β1(λ0 − λ) =: cλ > 0 .
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Then (8.25) follows from

inf
∂Bρ

Iλ = inf
u∈K∩∂Bρ

Iλ(u) ≥ cλ.

Theorem 31 Assume (2.32), (2.31) and that b > 0. If either (2.33) or (2.34)
holds true, then there exists λ0 > 0 such that problem (2.27) has at least two
nontrivial solutions for any λ ∈ (0, λ0).

Proof. It is clear that Iλ is bounded from below on bounded subsets of
C. Then, the conclusion follows from Proposition 11, Lemmas 24, 25, 26 and
Proposition 12.

Remark 22 On account of Remark 21 (i) it is easy to see that under the
hypotheses of Theorem 31, if, in addition, Φ is even and f(r, ·) is odd for all
r ∈ [R1, R2], then (2.27) has at least four nontrivial solutions for any λ ∈ (0, λ0).

Corollary 14 Assume (2.32) and that b > 0. If

0 ≤ lim
x→0

F (r, x)

|x|p
<
α

p
uniformly in r ∈ [R1, R2], (8.27)

then there exists λ0 > 0 such that problem (2.23) has at least two nontrivial
solutions for any λ ∈ (0, λ0). If, in addition, f(r, ·) is odd for all r ∈ [R1, R2],
then (2.23) has at least four nontrivial radial solutions for any λ ∈ (0, λ0).

Example 12 If α > 0, θ > p > q ≥ 2 are constants and γ, b ∈ C, γ > 0, b > 0,
then there exists λ0 > 0 such that the Neumannproblem

−div

(
∇v√

1− |∇v|2

)
+ α|v|p−2v = γ(|x|)|v|θ−2v + λb(|x|)|v|q−2v in A,

∂v

∂ν
= 0 on ∂A

has at least four nontrivial radial solutions for any λ ∈ (0, λ0).

The periodic problem (2.29). It is easy to check that Lemma 24 remains
valid with IP,λ instead of Iλ. Also, if condition “b > 0” is replaced by∫ R2

R1

b(r) dr > 0 (8.28)

then Lemmas 25 and 26 remain true with IP,λ instead of Iλ. Thus, we obtain
the following.
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Theorem 32 Assume (2.32), (2.31) and (8.28). If either (2.33) or (2.34)
holds true, then there exists λ0 > 0 such that problem (2.29) has at least two
nontrivial solutions for any λ ∈ (0, λ0).

Corollary 15 Assume (2.32) and (8.28). If (8.27) holds true, then there exists
λ0 > 0 such that problem (2.25) has at least two nontrivial solutions for any
λ ∈ (0, λ0). If, in addition, f(r, ·) is odd for all r ∈ [R1, R2], then (2.25) has at
least four nontrivial solutions for any λ ∈ (0, λ0).

Example 13 Let α > 0, θ > p > q ≥ 2 be constants and γ, b ∈ C, γ > 0 and b
satisfying (8.28). Then there exists λ0 > 0 such that the periodic problem

−

(
u′√

1− |u′|2

)′

+ α|u|p−2v = γ(r)|u|θ−2u+ λb(r)|u|q−2v in [R1, R2],

u(R1)− u(R2) = 0 = u′(R1)− u′(R2)

has at least four nontrivial solutions for any λ ∈ (0, λ0).

8.4 Multiple solutions

The Neumann problem (2.28). The following existence result, inspired from
[108, 83] provides a useful tool in obtaining multiple solutions.

Lemma 27 We assume h = 0 and there exists k1, k2 > 0 and 0 < σ < m such
that

−l(r) ≤ F (r, x) ≤ k1|x|σ + k2, for all (r, x) ∈ [R1, R2]× R+, (8.29)

with some l ∈ L1
N−1, l ≥ 0, together with either

lim
x→+∞

∫ R2

R1

rN−1F (r, x)dr = +∞, (8.30)

or the limit F+(r) = lim
x→+∞

F (r, x) exists for all r ∈ [R1, R2] and

F (r, x) < F+(r), ∀r ∈ [R1, R2], x ≥ 0. (8.31)

Then there exists λ+ > 0 such that problem (2.28) has at least one solution

uλ > 0 for any 0 < λ < λ+ which minimize Îλ on C+ = {v ∈ C : v ≥ 0}.
Moreover, uλ is a local minimum for Îλ.

Proof. First, notice that from (8.12) it holds

||ũ||∞ ≤ a(R2 −R1) for all u ∈ K. (8.32)

This implies that

u− a(R2 −R1) ≤ u(r) ≤ u+ a(R2 −R1) for all u ∈ K, (8.33)
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hence

u→ +∞ as ||u||∞ → ∞, u ∈ C+ ∩K. (8.34)

Also, it is clear that

|u(r)| ≤ |u|+ a(R2 −R1) for all u ∈ K, r ∈ [R1, R2]. (8.35)

From (8.29) it follows that

Îλ(u) ≥
∫ R2

R1

rN−1

[
λ

m
|u|m − k1|u|σ − k2 − ||h||∞|u|

]
dr,

for all u ∈ C+. Hence, using (8.13), (8.35), (8.34) and σ < m, we deduce
immediately that

Îλ(u) → +∞ whenever ||u||∞ → ∞, u ∈ C+, (8.36)

that is Îλ is coercive on C+. This immediately implies that Îλ is bounded from
below on C+. Now, let {un} ⊂ C+ ∩ K be a minimizing sequence, Îλ(un) →
infC+ Îλ as n → ∞. Then, from (8.36) it follows that {un} is bounded in C,
and using that {un} ⊂ K, we infer that {un} is bounded in W 1,∞. But W 1,∞

is compactly embedded in C, hence {un} has a convergent subsequence in C to

some uλ ∈ C+ ∩K. By the lower semicontinuity of Îλ it follows

Îλ(uλ) = inf
C+

Îλ.

We claim that

uλ → +∞ as λ→ 0. (8.37)

Assuming this for the moment, it follows from (8.33) and (8.37) that there
exists λ+ > 0 such that uλ > 0 for any 0 < λ < λ+, implying that uλ is

a local minimum for Îλ. Consequently, from Proposition 1.1 in [112], uλ is a

critical point of Îλ, and hence a solution of (2.28) (by Proposition 12) for any
0 < λ < λ+.

In order to prove the claim, assume first that (8.30) holds true. Then,
consider M > 0 and xM > 0 such that∫ R2

R1

rN−1F (r, xM )dr > 2M. (8.38)

On the other hand, as h = 0, one has that for all λ > 0,

Îλ(x) =
λ(RN

2 −RN
1 )

Nm
|x|m −

∫ R2

R1

rN−1F (r, x)dr (x ∈ R). (8.39)
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So, choosing λM > 0 such that

λM (RN
2 −RN

1 )

Nm
xmM < M,

and using (8.38), (8.39), it follows that

Îλ(xM ) < −M for all 0 < λ < λM .

Consequently, one has that

inf
C+

Îλ → −∞ as λ→ 0,

which, together with (8.33) imply (8.37), as claimed.

Now, let (8.31) holds true, and assume also by contradiction that there exists
λn → 0 such that {uλn} is bounded. On account of (8.33) and of the compact-
ness of the embedding in W 1,∞ ⊂ C, one can assume, passing if necessary to a
subsequence, that {uλn} is convergent in C to some u ∈ C+. Using (8.31) and
Fatou’s lemma it follows that∫ R2

R1

rN−1F (r, u)dr <

∫ R2

R1

r−1F+(r)dr ≤ lim inf
s→∞

∫ R2

R1

rN−1F (r, s+ ũ)dr,

which imply that there exists s0 > 0 sufficiently large, with s0 + ṽ ∈ C+ for all
v ∈ K, and ρ > 0 such that∫ R2

R1

rN−1[F (r, u)− F (r, s0 + ũ)]dr < −ρ.

So, for n sufficiently large, we have∫ R2

R1

rN−1[F (r, uλn)− F (r, s0 + ũλn)]dr < −ρ. (8.40)

On the other hand, using (8.32) and (8.33) it follows∫ R2

R1

r−1λn
m

[|s0 + ũλn |m − |uλn |m]dr → 0 as n→ ∞. (8.41)

Notice that, as h = 0, for all λ > 0 and s ∈ R, one has

Îλ(s+ ũλ) =

∫ R2

R1

rN−1Φ(u′λ)dr +

∫ R2

R1

rN−1 λ

m
|s+ ũλ|mdr

−
∫ R2

R1

rN−1F (r, s+ ũλ)dr −
∫ R2

R1

rN−1h(r)ũλdr.

Then, by (8.40) and (8.41) we obtain

Îλn(s0 + ũλn) < Îλn(uλn),

for n sufficiently large, contradicting the definition of uλn . This proves the claim
and the proof is complete.
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Theorem 33 Assume that conditions h = 0, (2.35) and either (2.36) or (2.37)
hold true. Then there exists λ0 > 0 such that problem (2.28) has at least three
solutions for any λ ∈ (0, λ0).

Proof. From Lemma 27, it follows that there exists λ+ > 0 such that Îλ has a
local minimum at some uλ,1 > 0 for any 0 < λ < λ+. Using exactly the same

strategy, we can find λ− > 0 such that Îλ has a local minimum at some uλ,2 < 0

for any 0 < λ < λ−. Taking λ0 = min{λ−, λ+} it follows that Îλ has two local
minima for any λ ∈ (0, λ0). On the other hand, from the proof of Lemma 27,

it is easy to see that Îλ is coercive on C, implying that Îλ satisfies the (PS)

condition for any λ > 0. Hence, from Corollary 3.3 in [112] we infer that Îλ
has at least three critical points for all λ ∈ (0, λ0) which are solutions of (2.28)
(Proposition 12).

Corollary 16 Under the assumptions of Theorem 33, there exists λ0 > 0 such
that problem (2.24) has at least three radial solutions for any λ ∈ (0, λ0).

Remark 23 (i) When f is bounded, it is well known [1] that the Ahmad-Lazer-
Paul condition (2.36) generalizes the Landesman-Lazer condition∫ R2

R1

rN−1f−(r)dr < 0 <

∫ R2

R1

rN−1f+(r)dr,

where f−(r) = lim sup
x→−∞

f(r, x) and f+(r) = lim inf
x→+∞

f(r, x).

(ii) Condition (2.37) holds true whenever one has the sign condition

xf(r, x) > 0 for all r ∈ [R1, R2] and x ̸= 0.

(iii) The condition :

there exists 0 < θ < m such that

xf(r, x)− θF (r, x) → −∞ as |x| → ∞, uniformly in r ∈ [R1, R2],

introduced in [109, 84], together with the sign condition

xf(r, x) > 0 for all r ∈ [R1, R2] and |x| ≥ x0

for some x0 > 0, imply (2.35) and (2.36).

Example 14 Let m ∈ N be even and h ∈ C be with h = 0. Then, using
Corollary 16 and Remark 23 (iii), it follows that there exists λ0 > 0 such that
the Neumann problem

−div

(
∇v√

1− |∇v|2

)
+ λ|v|m−2v =

vm−1

1 + vm
+ h(|x|) in A,

∂v

∂ν
= 0 on ∂A,

has at least three radial solutions for all λ ∈ (0, λ0).
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The periodic problem (2.30). Using exactly the same strategy as above,

but with ÎP,λ instead of Îλ, we have the following

Theorem 34 Assume that conditions∫ R2

R1

h(r) dr = 0, (8.42)

(2.35), and either (2.36) or (2.37) hold true for N = 1. Then there exists λ0 > 0
such that problem (2.30) has at least three solutions for any λ ∈ (0, λ0).

Corollary 17 Under the assumptions of Theorem 34, there exists λ0 > 0 such
that problem (2.26) has at least three solutions for any λ ∈ (0, λ0).

Example 15 Letm ∈ N be even and h ∈ C satisfying (8.42). Then there exists
λ0 > 0 such that the periodic problem

−

(
u′√

1− |u′|2

)′

+ λ|u|m−2u =
um−1

1 + um
+ h(r),

u(R1)− u(R2) = 0 = u′(R1)− u′(R2)

has at least three solutions for all λ ∈ (0, λ0).
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Chapter 9

Multiple critical orbits

9.1 A nonsmooth variational approach

Consider the periodic boundary value problem (2.41) under the hypotheses
(Hϕ), (HF ) and (Hh). The following variational setting is taken from [18] when
N = 1 and [97] in the general case.

We set C = C([0, T ],RN ) and W 1,∞ = W 1,∞([0, T ],RN ). The usual norm
|| · ||∞ is considered on C and L∞. Setting

C̃ := {u ∈ C :

∫ T

0

u(t)dt = 0},

we can split
C = RN ⊕ C̃

and each v ∈ C can be uniquely written as

u = u+ ũ, with u ∈ RN , ũ ∈ C̃.

Also, note that setting

Gp :=

{
N∑

k=1

kiωiei : ki ∈ Z, 1 ≤ i ≤ N

}
,

one has that Gp ≃ ZN and span Gp = RN . Putting

K̂ = {v ∈W 1,∞ : ||v′||∞ ≤ a, v(0) = v(T )},

we have that K̂ is a convex and closed set in C.

Let Ψp : C → (−∞,+∞] be defined by

Ψp(v) =

∫ T

0

Φ(v′) if v ∈ K̂, Ψp(v) = +∞ if v ∈ C \ K̂.

105
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and Gp : C → R be defined by

Gp(v) =

∫ T

0

F (t, u)dt+

∫ T

0

h(t)u (u ∈ C).

The following hold true.

(p1) Gp ∈ C1(C,R) and G′
p takes bounded sets into bounded sets; Ψp is

convex, lower semicontinuous and D(Ψp) = {u ∈ C : Ψp(u) < +∞} = K̂ is a
closed set in C. Note also that

Gp(u+ g) = Gp(u) and Ψp(u+ g) = Ψp(u) ∀u ∈ C, g ∈ Gp.

(p2) One has that Ψp(0) = 0 and

Ψp(u) = Ψp(ũ) for all u ∈ C.

(p3) There exists ρ > 0 such that

||ũ||∞ ≤ ρ, |Ψ(u)| ≤ ρ for all u ∈ K̂.

(p4) Any sequence {un} ⊂ K̂ with {un} bounded, has a convergent subse-
quence.

With Ψp and Gp as above, we define Ip := Ψp + Gp.

Proposition 14 If u ∈ C is a critical point of Ip, i.e.,

⟨G′
p(u), v − u⟩+Ψp(v)−Ψp(u) ≥ 0, ∀v ∈ C,

then u is a solution of problem (2.41).

9.2 Notations and hypotheses

The space RN (N ≥ 1) will be endowed with the norm

|u| = N
max
i=1

|ui| for all u = (u1, ..., uN ) ∈ RN .

Let (X, || · ||X) be a real Banach space with the dual denoted by X∗ and G be a
discrete subgroup of X. We denote by π : X → X/G the canonical projection.
The following definitions are taken from [101] and are classical. A set A ⊂ X is
said to be G-invariant if

A = π−1(π(A)).

Notice that a set A is G-invariant if and only if u + g ∈ A for all u ∈ A and
g ∈ G. If M is an arbitrary set and f : X → M is a function, then f is called
G-invariant if

f(u+ g) = f(u) for all u ∈ X, g ∈ G.
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For any G-invariant functional G ∈ C1(X,R), one has that G′ : X → X∗ is
G-invariant. In what follows we assume that

dim (span G) = N.

Then, we have

G ≃ ZN , X ≃ RN ⊕ Y,

where Y is a closed subspace of X. So, any u ∈ X can be uniquely decomposed
as

u = u+ ũ, with u ∈ RN , ũ ∈ Y,

and the mappings u 7→ u, u 7→ ũ are bounded linear projections. We will
consider on X the equivalent norm

||u|| = |u|+ ||ũ||X (u ∈ X).

In the sequel we assume the following hypotheses.

(H1) The functional G ∈ C1(X,R) is G-invariant and G′ takes bounded
sets into bounded sets. One the other hand, Ψ : X → (−∞,+∞] is G-invariant,
convex, lower semicontinuous and D(Ψ) = {u ∈ X : Ψ(u) < +∞} is a closed
nonempty set.

(H2) One has that Ψ(0) = 0 and

Ψ(u) = Ψ(ũ) for all u ∈ X.

(H3) There exists ρ > 0 such that

||ũ|| ≤ ρ, |Ψ(u)| ≤ ρ for all u ∈ D(Ψ).

(H4) Any sequence {un} ⊂ D(Ψ) with {un} bounded, has a convergent
subsequence.

Note that from (H2) it follows that Ψ is G-invariant and

Ψ(u) = 0 for all u ∈ RN .

With Ψ and G as above, we shall consider the functional

I = Ψ+ G. (9.1)

According to Szulkin [112], a point u ∈ X is said to be a critical point of I if
u ∈ D(Ψ) and it holds

⟨G′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0 for all v ∈ X. (9.2)

For any c ∈ R, we shall use the notations:

K = {u ∈ X : u is a critical point}, Kc = {u ∈ K : I(u) = c}.
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Since G′ and Ψ are G-invariant, it follows immediately that if u ∈ K, then
π−1(π(u)) ⊂ K. In this case the set π−1(π(u)) is called a critical orbit of I.
Moreover, using that I isG-invariant, it follows that if u ∈ Kc, then π

−1(π(u)) ⊂
Kc.

If N is an open neighborhood of Kc and ϵ > 0, we denote

Nϵ = {u ∈ X \ N : |u| ≤ 2, I(u) ≤ c+ ϵ}.

If Kc = ∅, then we will consider N = ∅. Notice that Nϵ is a compact set. Indeed,
using that I is lower semicontinuous, it follows that Nϵ is closed. If {un} is a
sequence in Nϵ, then {un} ⊂ D(Ψ) and {un} is bounded. Hence from (H4) it
follows that {un} has a convergent subsequence. So, if Nϵ ̸= ∅, we can define

α = max
u∈Nϵ

|⟨G′(u), u⟩|. (9.3)

9.3 Some auxiliary results

Below, all the neighborhoods will be assumed to be open.

Lemma 28 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then,
for each ϵ > 0, there exists ϵ ∈ (0, ϵ] such that for any u0 ∈ X \ N with
c− ϵ ≤ I(u0) ≤ c+ ϵ, there exists v0 ∈ X satisfying

⟨G′(u0), v0 − u0⟩+Ψ(v0)−Ψ(u0) < −3ϵ.

Proof. By contradiction, assume that for any positive integer n there exists
un ∈ X \ N with

c− 1/n ≤ I(un) ≤ c+ 1/n,

and

⟨G′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ −3/n, ∀v ∈ X. (9.4)

Clearly, one has that {un} ⊂ D(Ψ). On the other hand, using that G′,Ψ and N
are G-invariant, we may assume that {un} ⊂ [0, 1)N . So, using (H4), passing if
necessary to a subsequence, it follows that {un} converges to some u ∈ D(Ψ).
We deduce that

G(un) → G(u) and Ψ(un) → c− G(u).

As Ψ is lower semicontinuous, it follows that

c− G(u) = lim inf
n→∞

Ψ(un) ≥ Ψ(u).

On the other hand, taking in (9.4) v = u we obtain

lim sup
n→∞

Ψ(un) ≤ Ψ(u).
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Hence,
Ψ(un) → Ψ(u)

and using (9.4), we infer that u ∈ K. But, I(un) → I(u) and I(un) → c, hence
I(u) = c and u ∈ Kc. This is in contradiction with un → u, {un} ⊂ X \ N and
N is a neighborhood of Kc.

Lemma 29 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ϵ > 0, there exists ϵ ∈ (0, ϵ] such that for any u0 ∈ X \N with I(u0) ≤ c+ϵ,
there are ϵ0 ∈ (0, ϵ], v0 ∈ X and U0 a neighborhood of u0, satisfying

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ 1, ∀u ∈ U0, (9.5)

and

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ −2ϵ0, ∀u ∈ U0 with I(u) ≥ c− ϵ. (9.6)

Proof. Let ϵ > 0 and the corresponding ϵ ∈ (0, ϵ] be given in Lemma 28. We
have to consider the following three cases.

Case 1 : u0 ∈ K. In this case, we shall prove the assertions with v0 = u0. We
have

⟨G′(u0), u− u0⟩+Ψ(u)−Ψ(u0) ≥ 0 for all u ∈ X.

Then, from the continuity of G′, we infer that

⟨G′(u), u0 − u⟩+Ψ(u0)−Ψ(u) ≤ ⟨G′(u)− G′(u0), u0 − u⟩
≤ ||G′(u)− G′(u0)|| ||u− u0||
≤ 1,

for all u ∈ U1, where U1 is a sufficiently small neighborhood of u0. On the other
hand, using Lemma 28, it follows

[u ∈ K, c− ϵ ≤ I(u) ≤ c+ ϵ] ⇒ u ∈ N ,

which ensures that

I(u0) < c− ϵ.

Next, we prove that there exists U2 a neighborhood of u0 and ϵ0 ∈ (0, ϵ] such
that

Ψ(u)−Ψ(u0) > 3ϵ0, ∀u ∈ U2, I(u) ≥ c− ϵ.

Assume by contradiction that there exists a sequence {un} converging to u0,
with

I(un) ≥ c− ϵ, Ψ(un)−Ψ(u0) ≤ 1/n

for all n ≥ 1. This, together with the lower semicontinuity of Ψ imply that
Ψ(un) → Ψ(u0), hence I(un) → I(u0). But I(u0) < c − ϵ and I(un) ≥ c − ϵ,
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which give a contradiction. Note that, as G′ takes bounded sets into bounded
sets, we may assume

||G′(u)|| ||u− u0|| ≤ ϵ0, ∀u ∈ U2.

It follows that

⟨G′(u), u0 − u⟩+Ψ(u0)−Ψ(u) ≤ ||G′(u)|| ||u− u0|| − 3ϵ0 ≤ −2ϵ0,

for all u ∈ U2 with I(u) ≥ c− ϵ. So, in this case we take U0 = U1 ∩ U2.

Case 2 : u0 /∈ K, I(u0) < c− ϵ. Let v0 ∈ D(Ψ) be with the property

⟨G′(u0), v0 − u0⟩+Ψ(v0)−Ψ(u0) < 0. (9.7)

We may assume that v0 is arbitrarily close to u0. Indeed, consider t ∈ (0, 1)
and w0 = tv0 + (1 − t)u0. Then, from (9.7) and the convexity of Ψ, it follows
that

⟨G′(u0), w0 − u0⟩+Ψ(w0)−Ψ(u0) < 0.

The assertion follows by taking t→ 0+.
First, we deal with (9.6). Using that I(u0) < c− ϵ and arguing exactly as in

the previous case, there exists U3 a neighborhood of u0 and ϵ0 ∈ (0, ϵ] such that

Ψ(u)−Ψ(u0) > 4ϵ0, ∀u ∈ U3, I(u) ≥ c− ϵ.

Using that G′ takes bounded sets into bounded sets, it follows that there exists
M0 > ϵ0/2 with

||G′(u)|| < M0, ∀u ∈ X, ||u− u0|| ≤ 1.

Now, let us consider v0 satisfying (9.7) and ||v0 − u0|| < ϵ0/(2M0). From the
choice of M0, it follows

||G′(u)|| ||v0 − u0|| ≤
ϵ0
2

and ||G′(u)|| ||u− u0|| ≤
ϵ0
2
,

for all u ∈ X with ||u− u0|| ≤ ϵ0/(2M0). Set U4 = U3 ∩ B(u0, ϵ0/(2M0)). One
has the following estimates:

Ψ(v0)−Ψ(u) = (Ψ(v0)−Ψ(u0)) + (Ψ(u0)−Ψ(u))

< ⟨G′(u0), u0 − v0⟩+ (Ψ(u0)−Ψ(u))

≤ ||G′(u0)|| ||v0 − u0||+ (Ψ(u0)−Ψ(u))

≤ ϵ0/2− 4ϵ0 < −3ϵ0,

for all u ∈ U4 with I(u) ≥ c− ϵ. We infer

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ ||G′(u)|| (||v0 − u0||+ ||u0 − u||)− 3ϵ0

≤ ϵ0/2 + ϵ0/2− 3ϵ0 = −2ϵ0,
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for all u ∈ U4, I(u) ≥ c− ϵ, and (9.6) is proved.
Next, we have in view (9.5). Let δ0 > 0 be such that

⟨G′(u0), v0 − u0⟩+Ψ(v0)−Ψ(u0) = −2δ0.

Using the continuity of G′, it follows that there exists a neighborhood of u0
denoted by U5 such that

||G′(u)− G′(u0)|| ||v0 − u|| < δ0/4 and ||G′(u0)|| ||u− u0|| < δ0/4,

for all u ∈ U5. We get

⟨G′(u), v0 − u⟩ = ⟨G′(u)− G′(u0), v0 − u⟩
+ ⟨G′(u0), v0 − u0⟩+ ⟨G′(u0), u0 − u⟩
≤ ||G′(u)− G′(u0)|| ||v0 − u||
+ ⟨G′(u0), v0 − u0⟩+ ||G′(u0)|| ||u− u0||
≤ δ0/2 + ⟨G′(u0), v0 − u0⟩,

for all u ∈ U5. On the other hand, by the lower semicontinuity of Ψ, there exists
U6 a neighborhood of u0 such that

Ψ(u0)−Ψ(u) ≤ δ0/2, ∀u ∈ U6.

Consequently, taking U7 = U5 ∩ U6, one has

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ δ0/2 + ⟨G′(u0), v0 − u0⟩+Ψ(v0)−Ψ(u0)

+Ψ(u0)−Ψ(u) ≤ −δ0,

for all u ∈ U7, and (9.5) is proved. Therefore, in this case U0 will be U4 ∩ U7.

Case 3 : u0 /∈ K, I(u0) ≥ c− ϵ. From Lemma 28, there exists v0 ∈ X satisfying

⟨G′(u0), v0 − u0⟩+Ψ(v0)−Ψ(u0) < −3ϵ.

Now, arguing exactly as in the proof of (9.5) in Case 2, it follows that there
exists U0 a neighborhood of u0 such that

⟨G′(u), v0 − u⟩ ≤ ϵ/2 + ⟨G′(u0), v0 − u0⟩ and Ψ(u0)−Ψ(u) ≤ ϵ/2,

for all u ∈ U0. Also, an argument similar to that used in the proof of (9.5) in
Case 2 yields

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ −2ϵ ∀u ∈ U0.

Lemma 30 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ϵ > 0, there exist ϵ ∈ (0, ϵ], Mϵ > 0, ϵ′ ∈ (0, ϵ] such that: ∀u0 ∈ Nϵ,
∃v0 ∈ X with ||v0|| ≤Mϵ, ∃U0 a neighborhood of u0 satisfying (9.5) and

⟨G′(u), v0 − u⟩+Ψ(v0)−Ψ(u) ≤ −2ϵ′, ∀u ∈ U0 with I(u) ≥ c− ϵ. (9.8)
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Proof. Let ϵ > 0 and the corresponding ϵ ∈ (0, ϵ] be given by Lemma 29.
For each u0 ∈ Nϵ, let ϵ0, v0 and U0 constructed in Lemma 29. The sets U0

cover Nϵ. Using that Nϵ is compact, it follows that there exists (Uj)
l
j=1 a finite

subcovering. Let uj , ϵj , vj be related to Uj in the same way as u0, ϵ0, v0 are
related to U0. We set

Mϵ =
l

max
j=1

||vj || and ϵ′ =
l

min
j=1

ϵj .

Then, for u0 ∈ Nϵ, there exists Uj0 such that u0 ∈ Uj0 . We take v0 = vj0 and
U0 = Uj0 . The proof follows now from Lemma 29.

Lemma 31 Let u0 ∈ D(Ψ) be such that

G′(u0)|RN ̸= 0. (9.9)

Then, for any r > 0, there exists vr ∈ X and U0 a neighborhood of u0 such that

⟨G′(u+ g), vr − (u+ g)⟩+Ψ(vr)−Ψ(u+ g) ≤ −r, (9.10)

for all g ∈ G with |g| ≤ 6 and u ∈ U0.

Proof. Since G′ is bounded on bounded subsets of X, we can fix some ρ0 > 0
such that

|⟨G′(u), g⟩| ≤ ρ0, ∀u ∈ B(u0, 1) and g ∈ G with |g| ≤ 6.

On the other hand, one has that there exists some ej = (0, ..., 1, ..., 0) ∈ RN

with
⟨G′(u0), ej⟩ ̸= 0.

We may assume that
⟨G′(u0), ej⟩ > 0.

Let r > 0 and consider vr = u0 + vr ∈ D(Ψ), where vr = (0, ..., wr, ..., 0),
(wr ∈ R). We have

⟨G′(u0), vr − u0⟩ = ⟨G′(u0), vr⟩ = wr⟨G′(u0), ej⟩.

It follows that there is some wr < 0 such that

⟨G′(u0), vr − u0⟩ < −r − 2(ρ0 + 2ρ),

with ρ entering in (H3). Then, for u ∈ X, we write

⟨G′(u), vr − u⟩ ≤ ||G′(u)− G′(u0)|| ||vr − u||+ ||G′(u0)|| ||u0 − u||
+ ⟨G′(u0), vr − u0⟩.

Using the continuity of G′, it follows that there exists Ur ⊂ B(u0, 1) a neighbor-
hood of u0 such that

||G′(u)− G′(u0)|| ≤
ρ0 + 2ρ

2(|wr|+ 1)
, ∀u ∈ Ur.
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Also, we may assume that

||G′(u0)|| ||u0 − u|| ≤ ρ0 + 2ρ

2
, ∀u ∈ Ur.

Then, from
||vr − u|| ≤ |wr|+ 1

we obtain

||G′(u)− G′(u0)|| ||vr − u|| ≤ ρ0 + 2ρ

2
, ∀u ∈ Ur.

Hence,

⟨G′(u), vr − u⟩ ≤ −r − (ρ0 + 2ρ), ∀u ∈ Ur.

Now, the result follows immediately from the G-invariance of G′ and Ψ and from
(H3).

Lemma 32 Let c ∈ R and N be a neighborhood of Kc. Then, for any ϵ, r > 0,
there exists Mϵ,r > 0 such that ∀u0 ∈ Nϵ, satisfying (9.9), ∃v0 ∈ X with
||v0|| ≤ Mϵ,r, ∃U0 a neighborhood of u0 such that (9.10) holds true, for all
g ∈ G with |g| ≤ 6 and u ∈ U0.

Proof. Using that the set Nϵ ⊂ D(Ψ) is compact, the argument is similar to
that employed in the proof of Lemma 30, but with Lemma 31 instead of Lemma
29.

Remark 24 Let U be an open subset of X u0 ∈ U. Using that G is discrete,
there exists µ0 ∈ (0, 1] such that the square

D(u0, µ0) = {u ∈ X : |u− u0| < µ0, ||ũ− ũ0|| < µ0}

satisfies D(u0, µ0) ⊂ U and

u ∈ D(u0, µ0) ⇒ u+ g /∈ D(u0, µ0) ∀g ∈ G \ {0}. (9.11)

It follows that U0 in the above Lemmas 29 - 32 can be supposed to be such a
square.

Remark 25 (i) Let u0 ∈ X be such that

G′(u0)|RN = 0. (9.12)

From the continuity of G′ in u0, we infer that for any η > 0, there exists δη > 0
so that

|⟨G′(u), v⟩| ≤ η|v|, ∀v ∈ RN , ∀u ∈ X with ||u− u0|| ≤ δη.

(ii) Let U0 = D(u0, µ0) be as in Lemma 30 (see also Remark 24) with ϵ ≤
1. Assume that u0 is such that (9.12) holds true. Let η = ϵ′/12 and δη >
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0 be the corresponding number associated to η by (i). Consider also ν0 ∈
(0,min{µ0, δη/2}), and note that D(u0, ν0) ⊂ B(u0, δη) ∩D(u0, µ0). It is clear
that

|⟨G′(u+ g), v⟩| ≤ (ϵ′/12)|v|, (9.13)

for all g ∈ G, v ∈ RN and u ∈ D(u0, ν0). Then, for all g ∈ G with |g| ≤ 6 and
u ∈ D(u0, ν0), one has

|⟨G′(u+ g),−g⟩| ≤ ϵ′/2.

This, together with Lemma 30 and the G-invariance of G′ and Ψ, imply that

⟨G′(u+ g), v0 − (u+ g)⟩+Ψ(v0)−Ψ(u+ g) ≤ 2, (9.14)

for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, ν0). If, moreover, I(u) ≥ c− ϵ, then

⟨G′(u+ g), v0 − (u+ g)⟩+Ψ(v0)−Ψ(u+ g) ≤ −ϵ′. (9.15)

Remark 26 Let α be defined in (9.3) and ϵ > 0. Then, taking in Lemma 32,
r = ϵ + α, we obtain that there exists M ′

ϵ := Mϵ,ϵ+α > 0 such that for any
u0 ∈ Nϵ satisfying (9.9), ∃v0 ∈ X with ||v0|| ≤M ′

ϵ, ∃D(u0, µ0), such that

⟨G′(u+ g), v0 − (u+ g)⟩+Ψ(v0)−Ψ(u+ g) ≤ −(ϵ+ α), (9.16)

for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0).

The main result of this Section is the following

Proposition 15 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then,
for each ϵ ∈ (0, 1] there exist ϵ ∈ (0, ϵ], mϵ > 0 and ϵ′ ∈ (0, ϵ] with the following
properties.

10 For any u0 ∈ Nϵ with G′(u0)|RN = 0, ∃v0 ∈ X with ||v0|| ≤ mϵ, ∃µ0 > 0,
such that

(i) (9.13) holds true for all g ∈ G, v ∈ RN and u ∈ D(u0, µ0);

(ii) (9.14) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0);

(iii) (9.15) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0) with
I(u) ≥ c− ϵ.

20 For any u0 ∈ Nϵ with G′(u0)|RN ̸= 0, ∃v0 ∈ X with ||v0|| ≤ mϵ, ∃µ0 > 0,
such that (9.16) holds true for all g ∈ G with |g| ≤ 6 and u ∈ D(u0, µ0).

Note that µ0 above is taken such that (9.11) holds true.

Proof. For 10 one applies Lemma 30 and Remark 25, while 20 follows from
Lemma 32 and Remark 26; one takes mϵ = max{Mϵ,M

′
ϵ}.
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9.4 A deformation lemma

Lemma 33 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ϵ ∈ (0, 1] there exist ϵ ∈ (0, ϵ], dϵ > 0, ϵ′ ∈ (0, ϵ] and η : [0, t]×Nϵ → X a
continuous function, with the following properties.

(i) η(0, ·) = idNϵ .

(ii) η(t, u+ g) = η(t, u)+ g, ∀(t, u) ∈ [0, t]×Nϵ, ∀g ∈ G with u+ g ∈ Nϵ.

(iii) ||η(t, u)− u|| ≤ dϵt, ∀(t, u) ∈ [0, t]×Nϵ.

(iv) I(η(t, u))− I(u) ≤ dϵt, ∀(t, u) ∈ [0, t]×Nϵ.

(v) I(η(t, u))− I(u) ≤ −ϵ′t/2, ∀(t, u) ∈ [0, t]×Nϵ with I(u) ≥ c− ϵ.

(vi) If A is a closed subset of Nϵ with c ≤ sup
A
I, then

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −ϵ′t/2, ∀t ∈ [0, t].

Proof. Covering. Let ϵ ∈ (0, 1] and the corresponding ϵ ∈ (0, ϵ], mϵ > 0 and
ϵ′ ∈ (0, ϵ] be given in Proposition 15. Also, for each u0 ∈ Nϵ, let v0, µ0 and
D(u0, µ0) be as in Proposition 15. Since the sets D(u0, µ0) cover the compact
set Nϵ, it follows that there exists (Dj)

l
j=1 a finite subcovering. Below, uj , vj , µj

will be related to Dj in the same way as u0, v0, µ0 are related to D(u0, µ0).
Partition of unity. Let ρ1i : X → [0,∞) be a continuous function (we can

take the distance function d(·, X \Di)) such that

ρ1i (u) > 0, ∀u ∈ Di and ρ1i (u) = 0, ∀u ∈ X \Di.

Consider the G-invariant set

Vi =
∪
g∈G

(Di + g).

Note that, from the choice of the squares Di (see (9.11)), one has that the sets
Di + g (g ∈ G) are mutually disjoint. It follows that, the function ρ2i : X →
[0,∞) given by ρ2i (u + g) = ρ1i (u) for all u ∈ Di, g ∈ G, and ρ2i (u) = 0 for all
u ∈ X \ Vi is correctly defined, continuous and G-invariant.

Now, let us define

D =
l∪

i=1

Di

and

σi : D → [0, 1], σi =
ρ2i∑l
j=1 ρ

2
j

.
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One has that σi is correctly defined, continuous and G-invariant in the sense
that

σi(u+ g) = σi(u), ∀u ∈ D, g ∈ G with u+ g ∈ D.

Also, we have
l∑

i=1

σi = 1

and

σi(w) ̸= 0 ⇔ w = wi + gi with some wi ∈ Di, gi ∈ G. (9.17)

Deformation. Consider the function η : [0, 1]×Nϵ → X given by

η(t, u) = (1− t)u+ t
l∑

i=1

σi(u)vi + tu ((t, u) ∈ [0, 1]×Nϵ).

It is clear that η is continuous and η(0, ·) = idNϵ
.

To prove (ii), let (t, u) ∈ [0, 1]×Nϵ and g ∈ G be with u+ g ∈ Nϵ. Then, we
have

η(t, u+ g) = (1− t)(u+ g) + t

l∑
i=1

σi(u+ g)vi + t[u+ g]

= (1− t)u+ (1− t)g + t
l∑

i=1

σi(u)vi + tu+ tg

= η(t, u) + g.

In order to prove (iii), let us consider (t, u) ∈ [0, 1] × Nϵ. Using (H3) and
denoting d1ϵ = mϵ + ρ, one has:

||η(t, u)− u|| = t||
l∑

i=1

σi(u)vi − ũ||

≤ t

[
l∑

i=1

σi(u)||vi||+ ||ũ||

]

≤ t

[
mϵ

l∑
i=1

σi(u) + ρ

]
= td1ϵ .

Estimations. Let us consider (t, u) ∈ [0, 1]×Nϵ. Setting

w :=
l∑

i=1

σi(u)vi − ũ,

we have ∥w∥ ≤ d1ϵ and
η(t, u) = u+ tw.
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By the mean value theorem, we can write

G(u+ tw)− G(u) = t⟨G′(u+ θtw), w⟩,

with some θ ∈ (0, 1). Hence,

I(η(t, u)) = G(u) + t⟨G′(u+ θtw), w⟩+Ψ(u+ tw). (9.18)

On the other hand, from (H2) and the convexity of Ψ we get

Ψ(u+ tw) = Ψ

(
(1− t)u+ t

l∑
i=1

σi(u)vi + tu

)

= Ψ

(
(1− t)u+ t

l∑
i=1

σi(u)vi

)

≤ (1− t)Ψ(u) + t
l∑

i=1

σi(u)Ψ(vi).

Then, using (9.18), it follows

I(η(t, u))− I(u) ≤ t
l∑

i=1

σi(u) [Ψ(vi)−Ψ(u)] + t⟨G′(u+ θtw), w⟩

= t
l∑

i=1

σi(u) [⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u)]

+ t [⟨G′(u+ θtw), w⟩ − ⟨G′(u), w⟩+ ⟨G′(u), u⟩]

≤ t

l∑
i=1

σi(u) [⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u)]

+ t
[
(∥G′(u+ θtw)− G′(u)∥)d1ϵ + ⟨G′(u), u⟩

]
Next, as G′ is continuous and Nϵ is compact, there exists δ = δ(ϵ, ϵ′) > 0

such that

||G′(v)− G′(u)|| ≤ ϵ′/(4d1ϵ), ∀u ∈ Nϵ, v ∈ X with ||v − u|| ≤ δ.

Then, denoting
t1 := δ/d1ϵ ,

it follows

||G′(u+ θtw)− G′(u)|| ≤ ϵ′/(4d1ϵ), ∀t ∈ [0, t1], ∀u ∈ Nϵ.

So, we obtain

I(η(t, u))− I(u) ≤ t
l∑

i=1

σi(u) [⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u)]

+ t [ϵ′/4 + ⟨G′(u), u⟩] (9.19)
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for all t ∈ [0, t1] and u ∈ Nϵ.
Let us prove (iv). Consider (t, u) ∈ [0, t1] × Nϵ. From (9.17), if σi(u) ̸= 0

then u = u′i + gi, with u
′
i ∈ Di and gi ∈ G. In this situation we have

|gi| ≤ |u|+ |u′i| ≤ |u|+ |u′i − ui|+ |ui| ≤ 2 + µi + 2 ≤ 6

and, from Proposition 15 (ii) it follows

⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u) ≤ 2.

This, together with (9.3) and (9.19) yield

I(η(t, u))− I(u) ≤ t(α+ 3).

To prove (v), let (t, u) ∈ [0, t1] × Nϵ be such that I(u) ≥ c − ϵ. We rewrite
(9.19) as follows

I(η(t, u))− I(u) ≤ (9.20)

t

l∑
i=1

σi(u) [⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u) + ⟨G′(u), u⟩] + tϵ′/4.

As above, if σi(u) ̸= 0 then u = u′i+gi, with u
′
i ∈ Di, gi ∈ G and |gi| ≤ 6. From

Proposition 15, if G′(ui)|RN = 0, then

⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u) ≤ −ϵ′,

and
|⟨G′(u), u⟩| ≤ ϵ′/6,

while, if G′(ui)|RN ̸= 0, then

⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u) ≤ −ϵ− α.

In both cases, one has that

⟨G′(u), vi − u⟩+Ψ(vi)−Ψ(u) + ⟨G′(u), u⟩ ≤ −ϵ′ + (ϵ′/6).

This, together with (9.20) give

I(η(t, u))− I(u) ≤ t
l∑

i=1

σi(u)[−ϵ′ + (ϵ′/6)] + tϵ′/4 < −ϵ′t/2.

In order to prove (vi), we set t := min{t1, 1/2, ϵ
2(α+3)} and let A ⊂ Nϵ be

closed such that c ≤ sup
A
I. For t ∈ [0, t], we have two cases.

If
sup
u∈A

I(η(t, u)) ≤ c− (ϵ/2),
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then, using that t ≤ 1/2, it follows

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −ϵt ≤ −ϵ′t.

If
sup
u∈A

I(η(t, u)) > c− (ϵ/2),

then, putting
B := {u ∈ A : I(u) ≥ c− ϵ},

it follows

I(η(t, u)) ≤ I(u) + (α+ 3)t < c− ϵ+ (α+ 3)t ≤ c− (ϵ/2),

for all u ∈ A \B. We infer that

sup
u∈A

I(η(t, u)) = sup
u∈B

I(η(t, u)).

Consequently,

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ sup
u∈B

I(η(t, u))− sup
u∈B

I(u)

≤ sup
u∈B

[I(η(t, u))− I(u)]

≤ −ϵ′t/2.

Now, to finish the proof it suffices to take dϵ := max{d1ϵ , α+ 3}.

The main result of this Section is the following

Proposition 16 Let c ∈ R and N be a G-invariant neighborhood of Kc. Then,
for each ϵ > 0 there exist d > 0, ϵ′′ ∈ (0, ϵ] with 2dϵ′′ < ϵ, and η : [0, t]×Nϵ′′ → X
a continuous function, with the following properties.

(i) η(0, ·) = idNϵ′′ .

(ii) η(t, u+g) = η(t, u)+g, ∀(t, u) ∈ [0, t]×Nϵ′′ , ∀g ∈ G with u+g ∈ Nϵ′′ .

(iii) ||η(t, u)− u|| ≤ dt, ∀(t, u) ∈ [0, t]×Nϵ′′ .

(iv) If A is a closed subset of Nϵ′′ with c ≤ supA I, then

sup
u∈A

I(η(t, u))− sup
u∈A

I(u) ≤ −ϵ′′t, ∀t ∈ [0, t].

Proof. The result follows immediately from Lemma 33 taking

0 < ϵ′′ < min{ϵ′/2, ϵ/2dϵ}.

Note that Nϵ′′ ⊂ Nϵ.
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Lemma 34 Let η be as in Proposition 16. Then η̂ : [0, t] × π(Nϵ′′) → π(X)
defined by

η̂(t,Γ) = π(η(t, v)), for v ∈ Nϵ′′ with π(v) = Γ (t ∈ [0, t])

is well defined and continuous.

Proof. Let (t,Γ) ∈ [0, t]×π(Nϵ′′). It follows that there exists u ∈ Nϵ′′ such that
π(u) = Γ. Assume that u1, u2 ∈ Nϵ′′ are such that π(u1) = Γ = π(u2). It follows
that u2 = u1 + g, for some g ∈ G. Then, using Proposition 16 (ii), we get

η(t, u2) = η(t, u1 + g) = η(t, u1) + g,

which means that π(η(t, u1)) = π(η(t, u2)) and η̂ is well defined.
For the continuity of η̂, consider a sequence {(tk,Γk)} ⊂ [0, t] × π(Nϵ′′)

converging to some (t,Γ) ∈ [0, t]×π(Nϵ′′). It follows that there exists {uk} ⊂ X
with π(uk) = Γk such that uk → u ∈ X and π(u) = Γ. Note that ũk → ũ and
uk → u. On the other hand, uk = vk + gk with some vk ∈ Nϵ′′ and gk ∈ G.
So, using that I is G-invariant, we deduce I(uk) ≤ c+ ϵ′′. Similarly, u = v + g
with v ∈ Nϵ′′ , g ∈ G and I(u) ≤ c+ ϵ′′. Consider g′ ∈ G with u + g′ ∈ [0, 1)N .
Then, we may assume that |uk + g′| ≤ 2 for all k ∈ N. Using that N and I are
G-invariant, it follows that wk := uk + g′ ∈ Nϵ′′ and w := u+ g′ ∈ Nϵ′′ . By the
continuity of η and π, we have

η̂(tk,Γk) = π(η(tk, wk)) → π(η(t, w)) = η̂(t,Γ)

and the proof is complete.

Remark 27 If A ⊂ [0, 1)N +Y is compact, b ∈ X and infa∈A ||b−a|| ≤ 1, then
|b| ≤ 2. Indeed, using the compactness of A, it follows that there exists a0 ∈ A

such that ||b − a0|| = infa∈A ||b − a||. As ||b − a0|| = |b − a0| + ||̃b − ã0||X , one
has that |b− a0| ≤ 1. It follows that |b| ≤ |b− a0|+ |a0| ≤ 2.

9.5 Main tools

The results in this section are proved in [101].

1. Lusternik-Schnirelman category. Recall, a subset C of a topological
spaces E is called contractible in E if there exists a continuous function h :
[0, 1]× C → E and e ∈ E such that

h(0, ·) = idC , h(1, ·) = e.

A subset A of a topological space E is said to has category k in E if k is the
least integer such that A can be covered by k closed sets contractible in E. The
category of A in E is denoted by catE(A).

The main properties of the Lusternik-Schnirelman category are given in the
following
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Lemma 35 Let E be a topological space and let A,B ⊂ E.

(i) If A ⊂ B, then catE(A) ≤ catE(B).

(ii) catE(A ∪B) ≤ catE(A) + catE(B).

(iii) If A is closed and B = η(t, A), where η : [0, t] × A → E is a continuous
function such that η(0, ·) = idA, then catE(A) ≤ catE(B).

Remark 28 In the functional framework from the previous section, if A =
[0, 1]N + {0} (⊂ X = RN ⊕ Y ), then catπ(X)(π(A)) = N + 1.

2. Ekeland variational principle. Let (E, d) be a complete metric space
and γ : E → (−∞,+∞] a proper, lower semi-continuous function bounded from
below. Given δ, λ > 0, and x ∈ E with

γ(x) ≤ inf
E
γ + δ,

there exists y ∈ E such that

γ(y) ≤ γ(x),

d(x, y) ≤ 1/λ,

γ(z)− γ(y) ≥ −δλd(y, z), ∀z ∈ E.

3. Hausdorff distance and a complete metric space. On account of
Remark 28, it follows that, for 1 ≤ j ≤ N + 1, the set

Aj = {A ⊂ X : A is compact and catπ(X)(π(A)) ≥ j}

is nonempty. In order to apply Ekeland’s variational principle, we need the
following

Lemma 36 Let 1 ≤ j ≤ N + 1 be fixed.

(i) The space Aj with the Hausdorff distance

δ(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}

is a complete metric space.

(ii) If I : X → (−∞,+∞] is lower semicontinuous, then the function γ :
Aj → (−∞,+∞], defined by

γ(A) = sup
A
I (A ∈ Aj) (9.21)

is lower semicontinuous.
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9.6 Main result

The main abstract result of the paper is the following

Theorem 35 Under the assumptions (H1)− (H4), the functional I defined in
(9.1) is bounded from below and has at least N + 1 critical orbits.

Proof. First, let us note that, D(Ψ) closed and (H4) imply that {u ∈ D(Ψ) :
|u| ≤ 1} is a compact set. This, together with the G-invariance and the conti-
nuity of G, imply that G is bounded on D(Ψ). So, from (H3), we deduce that I
is bounded from below on X.

For 1 ≤ j ≤ N + 1, let γ : Aj → (−∞,+∞] be defined by (9.21) and

cj := inf
A∈Aj

γ(A).

Using also that Aj+1 ⊂ Aj , one has that

−∞ < inf
X
I ≤ c1 ≤ ... ≤ cN+1.

Moreover, from Remark 28 one has A = [0, 1]N + {0} ∈ AN+1, and using (H2),
we have that I(u) = G(u) for all u ∈ A. This together with the continuity of G
and the compactness of A imply that

cN+1 <∞.

We will show that Kcj ̸= ∅. By contradiction, assume that Kcj = ∅. Then, let
d, ϵ′′, η be given by Proposition 16 with N = ∅ and ϵ = 1/2. Consider B ∈ Aj

with
γ(B) ≤ cj + ϵ′′

2
.

Using the G-invariance of I, we may assume that B ⊂ [0, 1)N + Y. Using Eke-

land’s variational principle (see Lemma 36) with δ = ϵ′′
2
and λ = 1/2ϵ′′d, it

follows that there exists CB ∈ Aj such that

γ(CB) ≤ γ(B) ≤ cj + ϵ′′
2
, (9.22)

δ(B,CB) ≤ 2ϵ′′d < 1/2,

γ(D)− γ(CB) ≥ − ϵ′′

2d
δ(CB , D), ∀D ∈ Aj . (9.23)

In particular, one has that δ(B,CB) < 1 and γ(CB) ≤ cj + ϵ′′, which together
with B ⊂ [0, 1)N + Y and Remark 27 imply CB ⊂ Nϵ′′ . So, we can consider the
compact set DB := η(t, CB). Then, with η̂ introduced in Lemma 34, we have

π(DB) = η̂(t, π(CB))

and from Lemma 35 (iii) it follows

catπ(X)(π(DB)) ≥ catπ(X)(π(CB)) ≥ j,
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showing that DB ∈ Aj . So, γ(DB) ≥ cj . On the other hand, from Proposition
16, one has

δ(CB, DB) ≤ dt, γ(DB)− γ(CB) ≤ −ϵ′′t.

Consequently,

−ϵ′′t ≥ γ(DB)− γ(CB) ≥ − ϵ′′

2d
δ(CB, DB) ≥ − ϵ′′

2d
dt,

giving 1 ≤ 1/2, a contradiction.
It suffices to prove that, if ck = cj = c for some 1 ≤ j < k ≤ N + 1, then

Kc contains at least k− j + 1 critical orbits. By contradiction, assume that Kc

contains at most n ≤ k−j critical orbits denoted by π−1(π(u1)), ..., π
−1(π(un)).

Note that, from the above step it follows that n ≥ 1. Let ρ ∈ (0, 1) be such that
π restricted to B(um, ρ) is injective. We introduce the G-invariant set

Mρ :=
n∪

m=1

∪
g∈G

B(um + g, ρ),

which, clearly is an open neighborhood of Kc.
Let d, ϵ′′, and η be given by Proposition 16 with N = Mρ/2 and ϵ = ρ/2.

Pick A ∈ Ak such that
γ(A) ≤ c+ ϵ′′

2
.

Using the G-invariance of I, we may assume that A ⊂ [0, 1)N + Y. Setting
B = A \Mρ and using Lemma 35, we have

k ≤ catπ(X)(π(A))

≤ catπ(X)(π(B) ∪ π(Mρ))

≤ catπ(X)(π(B)) + catπ(X)(π(Mρ)).

Since from the injectivity of π on B(um, ρ) and Lemma 35 (ii), one has that
catπ(X)(π(Mρ)) ≤ n, it follows

k ≤ catπ(X)(π(B)) + n ≤ catπ(X)(π(B)) + k − j,

hence B ∈ Aj . It is clear that

γ(B) ≤ γ(A) ≤ c+ ϵ′′
2
.

By Ekeland’s variational principle with δ = ϵ′′
2
and λ = 1/2ϵ′′d, there exists

CB ∈ Aj such that (9.22), (9.23) hold true and

δ(B,CB) ≤ 2ϵ′′d < ρ/2.

Note that B ∩Mρ = ∅ and δ(B,CB) < ρ/2 imply CB ∩Mρ/2 = ∅. Then CB ⊂
Nϵ′′ , and reasoning as above we arrive at the same contradiction (1 ≤ 1/2), and
the proof is completed.
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Corollary 18 Under the hypothesis (Hϕ), (HF ) and (Hh), the differential sys-
tem (2.41) has at least N + 1 geometrically distinct solutions.

Proof. It follows immediately from the Theorem 35 and the results of Section
2.



Chapter 10

Further developments

10.1 Positive radial solutions

The Laplacian. It is proved in the seminal paper [52] that the second order
boundary value problem

u′′ + a(t)f(u) = 0,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,

has at least one positive solution if the following assumptions hold true: the
nonlinearity f : [0,∞) → [0,∞) is continuous, f(0) = 0 and superlinear, that is

lim
u→0

f(u)

u
= 0, lim

u→∞

f(u)

u
= ∞,

the weight function a : [0, 1] → [0,∞) is continuous and non-identically zero
on any subinterval of [0, 1], and α, β, γ, δ ≥ 0 are such that γβ + αγ + αδ > 0.
The proof of this result is based on an application of Krasnoselskii’s fixed point
theorem on compression-expansion of conical shells on a Banach space.

On the other hand, consider the Dirichlet boundary value problem

∆u+ a(|x|)f(u) = 0 in A, u = 0 on ∂A, (10.1)

where 0 < R1 < R2, A = {x ∈ RN : R1 < |x| < R2} is an annular domain,
a, f satisfy the above assumptions and f > 0 on (0,∞). Then, it is proved
independently in [8, 39, 78] using the shooting method combined with the Sturm
comparison theorem and phase-plane method and in [119] using Krasnoselskii
fixed point theorem, that (10.1) has at least one positive radial solution.

Analogous results can be proved if the superlinearity condition on f is re-
placed by the fact that f is sublinear, that is

lim
u→0

f(u)

u
= ∞, lim

u→∞

f(u)

u
= 0.

125
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Typical examples are f(u) = uq with 0 < q < 1 in the sublinear case and
q > 1 in the superlinear case.

The ϕ-Laplacian. In [42] it is proved that the Dirichlet boundary value
problem

div(a(|∇u|)∇u) + f(u) = 0 in A, u = 0 on ∂A,

where A is an annular domain, the coefficient function a satisfies some appro-
priate condition (for example a(s) = |s|p−2 with p > 1) and f is superlinear.
To prove that the above problem has at least one positive radial solution, the
authors use the properties of the Leray-Schauder degree. The main idea is to
show that the degree around zero is one and the degree in a large ball is zero.
For related results see [60, 64].

Prescribed mean curvature problems. Consider the prescribed mean
curvature problem

div

(
∇v√

1 + |∇v|2

)
+ λ vq = 0 in B(R), v = 0 on ∂B(R), (10.2)

with 1 < q < N+2
N−2 . This assumption is natural because, from [105] it follows that

(10.2) has no nontrivial solutions in case q ≥ N+2
N−2 . Notice also that from [65]

it follows that all positive solutions of (10.2) have radial symmetry. By using
critical point theory, it is proved in [40] that (10.2) has at least one positive
radial solution provided λ is sufficiently large. One the other hand, if λ = 1, it
is shown in [38], by mainly using a generalization of a Liouville type theorem
concerning ground states due to Ni and Serrin, that there exists a non-negative
number R∗ such that (10.2) has at least one positive radial solution for every
R > R∗. Notice that it has been proved in [110] that there exists R∗ > 0 such
that (10.2) has no positive radial solution when R < R∗. The case q = 1 is
considered in [104] for λ in a left neighborhood of the principal eigenvalue of
−∆ in H1

0 , and the case q < 1 is considered in [67] for λ small. Finally, in
dimension one, in [68] it is given a complete description of the exact number of
positive solutions of (10.2).

Open problems. Existence of classical positive radial solutions for Dirich-
let problems of type

div

(
∇v√

1− |∇v|2

)
+ f(|x|, v) = 0 in B(R), v = 0 on ∂B(R),

where f : [0, R] × [0,∞) → R is a continuous function, which is positive on
(0, R]×(0,∞) and satisfies some appropriate conditions inspired from the above
results.
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10.2 Generalized Robertson - Walker spacetimes

Let I ⊂ R be an open interval, f : I → R be a positive smooth function and
(F, g) be an n-dimensional Riemannian manifold. The product I×F is endowed
with the Lorentzian metric

⟨·, ·⟩ = −τ∗I (dt2) + f(τI)
2τ∗F (g),

where τI and τF denote the projections onto I and F, respectively. One has that
(I×F, ⟨·, ·⟩) is called, following [3], a generalized Robertson - Walker spacetime.

Let u ∈ C∞(F ) be a function such that u(F ) ⊂ I. The graph of u is spacelike
and has the constant mean curvature H if and only if |∇u| < f(u) and

div

(
∇u

f(u)
√
f(u)2 − |∇u|2

)
= −nH − f ′(u)√

f(u)2 − |∇u|2

(
n+

|∇u|2

f(u)2

)
,

see [31]. The case f = 1 corresponds to the Mimkowski space.

Research line. Prove in this context results analogous with those contained
in the present work.
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128 (1988) 139-151.
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[80] R. López, Stationary surfaces in Lorentz-Minkowski space, Proc. Royal
Soc. Edinburgh 138A (2008) 1067-1096.
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[88] J. Mawhin, Problèmes de Dirichlet variationnels non linéaires, Sémin.
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