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Abstract: In this paper, we give a uniqueness theorem concerning a thermomechanical model which de-
scribes the behavior of shape memory alloys and takes into account the nonisothermal character of the phase
transformations, as well as the existence of the intrinsic dissipation.
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1. INTRODUCTION

The analyzed thermomechanical model of shape memory alloys (SMAs) is nonisothermal,
considers a nonzero intrinsic dissipation, and is due to A. Chrysochoos [1]. This model was
used by X. Balandraud, E. Ernst, and E. So6s to describe rheological properties of SMAs
during direct and inverse phase transformations in [2—4]. Important qualitative properties of
the model were established by us in [5].

For the convenience of the reader, we repeat the description of the model from [5], thus
making our exposition self-contained. In Sections 4 and 5, we introduce the new notions of
increment point and decrement point of a real continuous function and a new structure, that of
abstract derivation space. We thus provide in Section 5 a more general setting for the initial
differential system in the circular cylindrical case and a unitary study of it in Section 7. The
SMA's operators defined in Section 6 will prove extremely useful for our theory. Our main
results are Theorem 7.1 (the principle of optimum) with its corollary and Theorem 7.2 (the
uniqueness of the solutions).

2. THE THERMOMECHANICAL MODEL OF SMA

The classical thermomechanical model we use in this paper to describe the behavior of the
SMA contains three independent state variables. Along with the strain tensor ¢ and the
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absolute temperature T, we consider an internal variable 8, which is an adimensional scalar
field representing the volume fraction of the martensitic phase. Obviously, we must satisfy
the restriction

0<pB<1. (2.1)

We assume that the system has a thermodynamic potential and that this potential is its specific
free energy,

y=e—Ts. 2.2)

Consequently, we may express the constitutive thermomechanical relations using the C2-class
function (e, T, B):

_ oy

g = = (2.3)
_

s = Y 2.4)
Iy

Here, p is the mass density, e is the specific internal energy, o represents the stress tensor, s
the specific entropy, and B is the thermodynamical force associated with /3.

The set of constitutive equations is completed by assuming for the heat flux vector g a
classical Fourier law,

q¢=—KVT, (2.6)

where K is a positive material constant.

The evolution of the SMA is governed by the balance of momentum equation, considered
here in its quasistatic form,

divo =0, 2.7)
and by the first law of thermodynamics,
pe=0-&— divg. ' (2.8)

A superposed dot denotes the time derivative.

We neglect external body forces and external heat sources.

To describe the evolution of the SMA, the previous system must be completed with
an equation for the internal variable f. This equation must be chosen such that any
thermomechanical process satisfying the accordingly completed system identically satisfies
the restriction (2.1) together with the second law of thermodynamics,
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pi > —div e, 2.9)
T
Using (2.2) and (2.8) in (2.9), we get
. . . 1
0~8—psT—py/—}q-VT20. (2.10)
Since
1 K
= ——g-VT==(VT)? > 2.
8= =24 VT=3(VI)* 20, 2.11)

inequality (2.10), and thus the second principle of thermodynamics, is satisfied every time
when

ay

aﬁﬂ =pBf > 0. (2.12)

S =0-¢&—psT—py=—p
Here, J; is the intrinsic dissipation.

We shall consider evolution equations leading to a nonzero internal dissipation. Let
® : R — R be a convex, continuous, nonnegative, and positively homogeneous of degree
r > 0 function satisfying ®(0) = 0.

In this paper, we consider evolution equations for 4 based on the dissipation potential ®:

rpB € ad(B) + AI(B), (2.13)

where I denotes the indicator function of the segment [0, 1],

+oo ifp€10,1]
)= { 0 ifpelo1] @19
and 9/ its subdifferential,
oI(p) ={x e R|I(a) 2](ﬂ)+x(a—ﬂ),Va€R}. (2.15)

The energy balance law (2.8) may be written as

Crt divg =6+ pTL 4 4 r 2y ) (2.16)

P 9= TP Gear TP gpar T ‘
P’y e

where C = —T— is the specific heat of the system.

Accordingly, any thermodynamic process which fulfills (2.13) and (2.8) will also satisfy

2

"y
0paT

0%y

T+ divg = (8 -
pCT+ divg (,B)+pTaeaT

B, (2.17)

e+pT

and any such process which fulfills (2.13) and (2.17) will also satisfy (2.13) and (2.8). We
may therefore replace (2.8) by (2.17) in the system of evolution equations.
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Let Tj be the absolute temperature (supposed constant) of the room in which the SMA
is placed; the variation of the absolute temperature 7 of the sample with respect to Ty will be
denoted by 6, that is,

T=Ty+0. (2.18)

Our model is intended to describe the behavior of the SMA during quasistatic traction-
compression tests. In this case, experimental data show that the variation of temperature
6 is small compared to T and that the norm of the strain is small with respect to 1. It has
also been noticed that the classical thermoelastic coupling is characterized by a heat dilatation
coefficient o of order 1076 /° C that is negligible with respect to the other terms from the heat
propagation law.

Accordingly, we may attempt to describe the behavior of the SMA using a general
quadratic specific free energy with zero thermal dilatation coefficient,

2

A 0
l//(ea07ﬂ) = 5(1‘:1’8) tHE: e—pC—2—17—2,u,BR-e

+ WBR-R+p— (ﬂy+0 T)ﬁ+p——ﬂ%T T), (2.19)

where 4 and 4 are Lamé’s coefficients, R is the structural tensor of the system, L represents
the latent heat of the body, and T, T,, < T, are characteristic temperatures for the material.
All the above scalars are positive, and the structural tensor is constant, symmetric, and
traceless,

R" =R and trR=0. (2.20)
For the dissipation potential ®, we let the simplest form ( = 1),
®(5) =K, |p, (2.21)

where K, is a positive constant.
The constitutive equations are now

0 = Atrel+2ue—2upR, 2.22)
0 L
ps = PCE—PFOﬁ (2.23)
and
PB=2uR-e—2upR-R— pT(T0+¢9 T, + pAT), (2.24)

where
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AT=T, — T, > 0. (2.25)

The energy balance law (2.17) becomes

. . L.
pCT + divg = K, |p| —I—pTTﬂ. (2.26)
0

To determine the form of the evolution equation for f, using (2.20) and (2.22), we express B
as a function of g, T and S as follows:

L
sza-R—p—T—(To—{—B—-Ta + BAT). 2.27)
0
Let us put

o '=0-R,

L
of =p7 (To +6 — T, + BAT) £ K,.

T
Using (2.13), (2.21), and (2.27), we obtain the evolution system:

((If p=0, then 0y <0y and
B <0=>0 <03
If 0<p <1, then oy <0y <0f and
€ - 4 {/3<0=>0R=a;
B>0=0; =04
If =1, then 0, >0, and
B>0=0; >0%

\
Concerning the above system, we make the following specifications:

Consider a nondegenerate interval J C [0, c0), with infJ =0 € J, and the functions
space:

D, :={f:J— R]|the set of all nonderivability points of fis
locally finite in J, and f has finite lateral derivatives at every point}.
Jis interpreted to be the time interval of the process’s evolution. We assume that all functions

which appear are in D, and the equations involving their time derivatives are written in the
sense of lateral derivatives.
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3. THE CIRCULAR CYLINDRICAL CASE: ASSOCIATED ORDINARY
DIFFERENTIAL SYSTEM

We shall analyze here the traction-compression problem for a cylindrical specimen. The
authors of the model obtained in this case the next form of the heat propagation equation:

. 1 . L,

0 +—6=T — A
where I' = K, /pC and 7 is a parameter which will be experimentally determined.
Experimental data show that I is small, I" < L/C.

Let us put
pL K
= and g = —= 3.2

where g is the maximal axial strain due to the complete martensitic phase transformation,
during a simple traction test.
Set

0 i =p(Ty =T, + 0+ BAT) % q. (3.3)

From now on, ¢ and ¢ stand for axial components of the correspondent tensors, having for
the traction-compression test in the circular cylindrical case the usual meaning.
The constitutive equation obtained in this case,

0 =E(e - gf), (3.4)

the heat propagation equation (3.1), the evolution system for j, together with (3.2), (3.3), and
the initial conditions, lead us to the following system:

(. 1 . L.
(9+;<9—F|,3’+6ﬂ

o =E(e—gp)

((If =0, then 0 < o' and
f<0=>0<0"

(T) - If 0<p <1, then 0~ <o <ot and
f>0=0=0"

If =1, then 0 >0~ and
\ p>0=0>0"
| #(0) =0, 6(0)=0, &(0) =0, 0(0)=0

The constants 7,1, L, C E, g, p, q, Ty, T,, AT are all positive, and 7o > 7,, ' < L/C.
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4. THE GENERALIZATION OF THE EVOLUTION SYSTEM (&)3

To remove the derivatives of 3 from (£)2, we introduce and study a new notion:

Definition 4.1. Consider a nondegenerate interval J; C Rand u € C(Jp). A point
t € Jy is said to be an increment point (respectively, a decrement point) of u, iff for every
neighborhood V' of ¢, there exist t,f, € V' NJy, such that #; < £ and u(ty) < u(ty)
(respectively, u(t;) > u(ty)). Let M* (u) (respectively, M~ (u)) denote the set of all these
points.

Notations 4.1. Let J; and u be as above. Set:

Ny (u) = {t € Jo | u does not have a finite forward derivative at ¢},
N, (1) = {t € Jo | u does not have a finite backward derivative at ¢},
and consider the function spaces:

D¢ (Jo) = {u € C(Jo) | Ny () is at most countable },

Dy(Jo) = {u € C(Jo) | Ny(u) is at most countable},

ACpe (Jo) = {u € C(Jp) | u is locally absolutely continuous}.

Proposition 4.1. For a nondegenerate interval J, C Rand u € C(Jp), we have

1) t€Jy \ M*(u4) & uis decreasing on a neighborhood of 7.
t € Jo \ M~ (u) & u is increasing on a neighborhood of 7.

2) If J, is a subinterval of Jy, then
u is increasing on J; < M~ (u)N J1= 0.
u is decreasing on J; < M1 (u)N fllz 0.

3) M*(u) and M~ (u) are perfect sets in Jo, M~ (4) = M*(—u).

4) M+(u) D) {t € Jy \M(u) |Uf (f) > O} NJy. Foru € Df (Jo) U AC,, (Jo), these sets
coincide. Analogous statements hold for the backward derivative and u € D,(Jp), and
also for M~ (u).

Proof. 1) and 2) obviously hold.
3) We show that (Mt (u))' N Jo = M* (u).

“c”Lett € (M*(u)) NJy and suppose ¢ ¢ M*(u). By (1) = (3)Jd > 0, such that u is
decreasing onJo N (t—6,t+6). By (2) = MT(u) N (¢ —J,¢+ J) = 0 (contradiction with
te (M(u)).

“>7” Lett € M*(u) and suppose ¢t ¢ (M*(u))' NJy =t ¢ (M (u)) = (3)d > 0,
such that Mt ()N (t—3,t+8)\{t} =0 = MT(u)N(t=6,1) = Mt (w)N(t,t+6) = 0. By
(2) = uis decreasing on JoN(¢—4, ¢) and on JoN (¢, t+9), and therefore on JoN (¢ —9, t+9),
because u is continuous. By (1) = ¢ ¢ M (u) (contradiction).

It follows that (M*(u)) NJy = MT(u), hence M (u) is a perfect set in Jp. It is clear
that M~ (u) = M (—u).

4) By (1) = {t € Jo \ Ns () | iy (£) > 0} C MT(u). By (3) = M"(u) is a closed set in
JO = {t GJO \Nf(U) ]uf(t) > 0} ﬁJg CM+(u).
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For u € Dy(Jo) UACy. (o), lett € M*(u), d > 0. Suppose it;(s) < 0 (V)s €
(Jo\ Ny (w))N(t—9,t+ ) = uis decreasingonJo N (t —J,t+ ). By (1) =t ¢ M*(u)
(contradiction). O

Comments. In Section 2, for 8,60 € D,, we obtained the evolution system (&)3.
Proposition 4.1 (4) and D; C Dy (J) make it obvious that this system becomes

( If B(t) =0, then 0y (f) < 05 (f) and
te M= (B) = 0x (1) < 0x (1)
If 0<p(f) <1, then o5 (¢) <0y (t) <o () and
), — 9 { te M=(B) = 0 (t) = 0z (¢)
te M*(B) = op (1) = 03 (¢)
If B(t) =1, then o, (¢) > 0x(¢) and
( te M (p) = op(6) 2 0% (1)

Since the derivatives of  are no more present in (€ )%j , we can rephrase the system for
functions A, 6 in C(J) or in an arbitrary vector subspace X(J) of C(J), obtaining a system
which will be denoted by (€)%, -

Theorem 4.1. For 3,6 € C(J) satisfying (5)%0) and t € J, we have

1) te MY (B) = o0x(t) =0i (1)
2) te M (B) = o,(t) =0z (2).

Moreover: in both of these cases, if 3,0, and O are derivable at t, then 0 4 (f) = U;(t) =
or (1)

Proof. 1) Lett € M* () and suppose 0y (f) # 03 (). 0z,08 € C(J) = (3)6 > 0,
suchthat oy (s) # o7 (s) (V) s € JN(t—6,t+6). t € MT(B) = (3) 11,1, € IN(t—56,t+0),
such that t; < ty, B(t1) < B(t2). Sets; = sup{s € [f1,52) | B(s) < f(t1)}, 5o = inf{s €
[s1,2] | B(s) > B(t2)} = 11 < 51 < 52 < 1y, f(s1) = B(t1), Bs2) = B(t2), B(s1) <
B(s) < B(s2)(V)s € (s1,s2). By Proposition 4.1 (2), s1 < 82, f(s51) < B(s2) = (T)s €
M*(B) N (s1,52). Wehaves € (51,82) C (t1,82) CIN(t—6,t+ ) = 0z (s) # 0} (s),
B(s) € (0,1). From (€)%, ,s € M¥(B) = 0 (s) = 0z (s) (contradiction). We conclude
that g, (£) = o4 ().

2) The proof runs as in the case (1).

Assume now that 8, 8,0 are derivable at t € MT(B) = 0;,0%,0% are derivable at
t. By Proposition 4.1 (3) = (3) (t,)az0 C M*(B) \ {t}, such that , —— . We have
or (t,) =0F(t,) (V)neN=

6o (6) = lim 20 =% _ ‘W")—:’mzd;(t)zd;(z).m

n—oo t, —t n—00 n
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Corollary 4.1. For X(J) a vector subspace of C(J), the system (€)% ;) becomes

B(8) >0 =0y (1) 2 05 (7)
Bt) <1=0x(t) <05 ()
te M (B) = 0x () = 05 (1)
te M= (f) = og (1) = 0x (1)

iy —

Proof. Observe that if § and 8 satisfy (S)ﬁ’(( 7y » they also satisfy (8)‘2( 7y - Theorem 4.1
now gives the conclusion. [J

Corollary 4.2. (The phase transformation’s inertia)
Let 8,0 € C(J) satisfy (5)%( 7y - Then, £ is locally monotone, that is, for every 7 € J,
S is monotone on a neighborhood of .

Proof. For every ¢ € J, we have 07 (f) # 05 (1) = 0g (¢) # 07 (1) or 0 (t) # 0% (£) =
t ¢ MY(B) ort ¢ M~(p), which follows from Corollary 4.1. Proposition 4.1 (1) now
completes the proof. [

Comments. Corollary 4.2 will prove extremely useful in the study of the heat propagation
equation (3.1) (see also (2.26)). Corollaries 2.4 (the persistence of the phase) and 2.5 (the
initial elasticity) from [5] remain valid, with similar proofs. Corollary 2.3 from [5] can be
rephrased as follows:

Lett,s € Jsatisfy t < s, one of them being in M () and the other in M~ (). Then, there
exist ¢',s' € J,suchthat t <t <s' < sand fis constanton [t ,s'].

5. THE GENERALIZATION OF THE HEAT PROPAGATION EQUATION IN THE
CIRCULAR CYLINDRICAL CASE

Consider X(J) a vector subspace of C(J). Following the notations of Sections 3 and 4, for
the circular cylindrical case, (£)%,) becomes

B(t) >0=0(t) >0 ()
Bt) <1=0(r) <™ (1)
te MT(B) = o(t) = o™ (¢)
teM(B)=0a(t) =0 ()

(E)xuy —

Note that Corollary 4.2 still holds for # and 0, satisfying (£)x(s) . For §,60 € D;, under the
assumptions of (€)¢(s) , an equivalent formulation of the heat propagation equation (3.1) is
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[ For every subinterval J; (of J), which is an interval of monotony

o
for f#, we have on J

(H)DJ - 6 + %6 - <PO + é) ﬂ,

T, if §is increasing on Jj

—I', if S is decreasing on Jy

| If /8 is constant on Jy, we make an arbitrary choice for I'y € {I', —T'}.

where I'y = {

From now on, we will keep the above convention for I'.

This condition can be rephrased by replacing D, and the lateral derivatives by any of the
spaces and derivatives from the examples below:
1) C(J), with the derivation in the sense of distributions in D'(}). Note here the natural

o

inclusions C(J) C C(J) C D’(f)]).

Let us recall that a continuous function on an interval is an increasing function if and only
if its derivative in the sense of distributions on the interior of that interval is a positive
linear functional (that is, takes positive values for all positive test functions).

2) ACi (J), with the derivation almost everywhere (a.e.) on }

3) Dy (J) (respectively, D,(J)), with the forward (respectively, backward) derivation on :}
where this one exists.

4) D(J) := {u € C(J) | u has an at most countable set of nonderivability points}, with the

usual derivation on f] where this one exists.
5) a) Ar(J) = {u € C(J)|uis aforward-analytic function}, with the forward derivation
on J.
We call u € C(J) a forward-analytic function at ¢ € J\ {sup J}, iff there exists s € J,
such that s > ¢ and u is an analytic function on [t,s). We call u a forward-analytic
function, iff u is a forward-analytic function at every ¢ € J '\ {supJ}.
b) 4,(J) := {u € C(J) |u is a backward-analytic function}, with the backward deriva-

tion on J. The definitions are similar to those above.
¢) A;(J) := A4, (J) NA4,(J), with the forward and the backward derivations on J.

Each of the above spaces can be replaced by some vector subspaces of it, keeping the
sense of the derivation.

To examine simultaneously all these cases, we now introduce the notion of abstract
derivation space. Let A(R) denote the space of all real analytic functions on R.

Definition 5.1. Consider X(J) an 4(R)-submodule of C(J) containing 4(R) and all
the primitives of functions from X(J), ¥ an 4(R)-module, and { : X(J) — Y an injective
morphism of 4(R)-modules. We call a Y-derivation on X(J) any function 9 : X(J) — Y,
satisfying

i) dis R-linear and Kerd C R,
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it) d(au) =a-{ (u)+a-ou forall a € A(R) and u € X(J),
iii) ou = ¢ (&) forevery u € X(J) N C*(J) with u € X(J).

Under the above assumptions, the triplet (X(J), {, ) is said to be an abstract derivation
space.

Proposition 5.1. The spaces from the examples (1) through (5) and D, have natural
structures of abstract derivation spaces.

Proof. We give only the main ideas of the proof. The details are left to the reader. We will
denote by F(T) the space of all real functions on the given set 7 # (). To simplify notation,

we will use the same letter for a function on the interval J and for its restriction to J.

1) Consider{,d: C(J) — D' (.0]), ¢ the natural inclusion morphism, du = (¢ (u))’, where
the derivative of { () is taken in the sense of distributions.

o

2) Define Y := {#|u € F(J)}, & meaning the equivalence class of the function u, with

respect to the equality a.e. Consider ¢, 0 : ACy. (J) — Y, ¢ (u) = i1, du = 1. Note that
i exists a.e. for every u € ACy,. (J). Therefore, 9 is well defined.

o

3) Define Y := {it|u € F(J)}, & meaning the equivalence class of the function u, with

respect to the relation on F(}) givenby: v ~ w & {¢ ey |v(t) # w(f)} is at most
countable. Consider {,d : Dy (J) — Y, { (u) = @1, du = z;} A similar construction
works for Dy (J).

4) The construction is similar to that used for the previous example.

o

5) a) Consider ', 9 : Ay (J) — A (J), { (u) = u, du = 1. (b) and (c) are similar to (a).

o o

For D;, define {,8: Dy — F(J) x F(J), { (1) = (u,u), ou = (ity, 15).0

Comments. We can now consider the heat propagation equation in a more general setting.

Let X(J) be as in Definition 5.1. For every subinterval J, C J, set X(Jy) := {ul;, |u €
X(J)}. Assume that on each X(Jy) (which also satisfies the requirements of Definition 5.1)
is given an abstract derivation 9, , which always exists, at least in the sense of distributions
(see Example 1). For simplicity, we will write 0 and " instead of 4, and { ;, . From now on,
X(J) denotes such a structure (with a given abstract derivation on each X(Jp)), which will be
called an abstract derivation structure. We now can replace (H)p, by

For every J, as in (M), , we have in (X(Jy), ¢, 9)

G 00 + Tl{ () = (I‘O + é) ap.

The generalized evolution system (£)x(s), the generalized heat propagation equation
(H)x() » the constitutive equation (3.4), the restriction (2.1), together with the initial
conditions, lead us to a system which will be denoted by (7 )x(s). Observe that (7)x()
is a more general setting of (7).

Our mathematical problem is the following: for a given X(J) and a given o in C(J)
(or in X(J)) with 0(0) = 0, we wish to investigate the system (7 )x(s). It is required that
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B,0 € X(J),e € C(J). Itis easily seen that we can ignore the constitutive equation (3.4) and
the condition £(0) = 0 from (7 )x(s). Indeed, for £ and & satisfying all the other conditions,

g
we get a solution of (7)x(,) withe = 7 +gB € C(J).
Theorem 5.1. (The integral form of the heat propagation equation)

For B,6 € X(J), the following conditions are equivalent:

1) PBand 0 satisfy (H)x@) -
2) Forevery Jy asin (H)p, and for an arbitrary fixed v € Jo, we have on Jo

t

00 = 001+ (ro+ £) - {180 500 = 777 [ e (6) = res]

r

Proof. Let Jy, I’y be as in (H)p, and r € Jo. In (X(Jy), , 9), we have

ae+%c(9) = <r0+£

c) 8B < el 390+ (277) - (6)

= (roxg)erap= (1o ) e -ats-p0)

& e 0) = (ro + %)

(e (8- B00) ~ ¢ (" (5= Al0)|

= (ro+ )l a-p) - 2ol [ e s0) ~p)as)]
= (rorg) aler s -pe)
_ % j e/ (B(s) — B(r))ds) & The function

L

Jo 3 z—>ef/fe(t)—<r0+z,>
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t

(e (80~ p) = 2 [ (8ls) — po)as) < R

r

is constant = e’/ §(r), which establishes the formula. (]

. . AT
Notations 5.1. For a given I'y € {I',-T'}, set ag = T T L/CT AT Vo =
1 AT L AT L yoAT
——0‘0,Co=p—.WehaveF0+—+AT=_=£9,I‘O+_=70 _

Since I" < L/C, we have ag,7¢,co > 0.
Forr € Jand B € X(J), define y° = co(B — B(r)) € X(J).

Set# + = (T — T,) % q/p. The notation (3.3) now becomes 0= = p(6 +BAT+7 +).

Let B and 0 satisfy (H)xy) . For every r € J, define 0F : J — R, 05(r) =
p(O(r)eT=" + B(rAT+7 2).

Note that if  is constant on a subinterval Jy of J, such that » € Jy, then, by Theorem 5.1,
we have on Jy: 0(2) = 0(r)e—/7 [ o* = o,

Corollary 5.1. For 8,0 € X(J), the following conditions are equivalent:

1) B and 8 satisfy (H)xq).
2) Forevery J; C Jand r € J; as in the previous theorem, we have on Jj

t

(0" —07)(t) = (07 — 07)(8) = 1°t) — yoe ™" - / e*1" (s ds.

r

Proof. We have @_70?—)-@ =0(t) — 6(r)e" " L AT(B(£) — B(¥)) (Y)te .

Let J, € Jand r € Jy as in (2). For every t € Jp, the equality from

Theorem 5.1 (2) is equivalent to q&)— = (Fo + é + AT) (B(®) — B(r)

2 (rorg)e / " (Bls) =B s = 2 (1300 =yoe ™ - [l ibio)s).

r

Theorem 5.1 now comple;tes the proof. O

Observe that the conditions (2) from Theorem 5.1 and from its corollary are independent
of the derivations considered on X(J). Therefore, we can replace them by the derivations in
the sense of distributions. It will cause no confusion if we use the same letter to designate a
continuous function on an interval and the correspondent distribution. Thus, we have

Corollary 5.2. For $,6 € X(J), the following conditions are equivalent:
1) Band 0 satisfy (H)xy) -
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2) Forevery Jy as in (H)p, , we have
1 LN\ o o
8/-{—;—9: (Fo-’ra)ﬂ mD(JO)

Corollary 5.3. Let o, 5, and 6 satisfy (7)x(s). If one of the functions £, 6, and ot allows
a finite forward derivative at ¢ € J, then the same is true for the other two functions and we
have

. 1 . L.
0;(t) + —0(t) = T1p (1) + =h (1).
The corollary holds for the backward derivative too.

Proof. Let f, € J. By Corollary 4.2, = (3)J > 0, such that § is monotone on
JN (ty — d,t + J). The equalities from Theorem 5.1 (2) and Corollary 5.1 (2) hold on
Jo =JN (ty — &,ty + J). Therefore, S, 0, and o allow finite forward derivatives at f, iff
one of them does so. Assume that 3, 6, and 0 have this property. We multiply the formula
from Theorem 5.1 (2) by e/ on Jy, and we consider in the obtained equality the forward
derivative at 7, thus ending the proof. O

Corollary 5.4. For 8,6 € C(J), the following conditions are equivalent:

1) (B,0)is asolution of (7)x(s) -
2) (B, 0)isasolution of (7T )¢y and 8,6 € X(J).

6. THE SMA’s LINEAR OPERATORS

In this section, we introduce and study two linear operators which will play an important role
in the study of our problem. Subsequently, J; will denote a nondegenerate interval and » a
fixed element of it.

Definition 6.1. Define U?, V2 : C(Jy) — C(Jp),
t t
U%(t) = v(£) + yoe %! '/e""’v(s)ds, Vou(t) = u(t) —yoe ™" -/es/T u(s)ds

forall u,v € C(Jp) and ¢ € Jj.

For simplicity of notation, we will write a,y,¢,x,, U,, ¥, instead of a,,yq,Co,x°,
U, V9 (all of them depending on I’y € {I", —I'}) when no confusion can arise.

Proposition 6.1. U, and V, are invertible linear operators, and (U,)~! = ¥,. Moreover,
U, and V, are continuous with respect to the topology of C(J) given by the uniform
convergence on compact subsets of Jg.
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Proof. It is easily seen that U, and V, are linear and continuous. For v € C(Jp) and
t € Jy, we have

V,Uv(t) = Unv() —ye /" ~/es/7 U.v(s)ds

= Unv(t) —ye". [/tes”v(s)ds+y/tes/f ~e“”(/se“fv(§ )d¢ )ds]

¥ r r

t t s

= Un(t) —yet" - / e/ y(s)ds — ye /" / @ ( / e“6v(& )¢ )ds

r r ¥

5 t

= Unv(t) —ye " ./te‘/’v(s)ds—ye"/T : [(e“ -/e“€V(f )dé’)’

r

Similarly, we get U, V,u(t) = u(t) (V)u € C(J), t € Jo. Therefore, U, and ¥, are
invertible, (U,)~* = V,. O

Remark 6.1. Every abstract derivation space of functions on J; is an invariant vector
subspace of C(Jy) for the operators U, and V.

The proof is straightforward.

Remark 6.2. For u,v € C(Jp), the following conditions are equivalent:
D u=Uv
2) v="F,u.
1 0
3) u(r) =v(r) and u’' +au =v’ + p inD'(Jy).

Proof. Proposition 6.1 gives (1) < (2). To prove (1) < (3), define uy,v; € C(Jp),
ui(t) = e*u(t), vi(t) = e*'U,v(r). We have the following equivalent conditions:

u=Uv & u =vi & u(r) = vi(r)and uj = v} in D’(.OJO). An easy computation

o
shows that in D’ (Jp), we have the equivalence: u} =v| & u' +ou=v' + —v. O
T
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In the remainder of this section, we assume that » = inf Jj.

Lemma 6.1. Consider vy, vo € Dy, and set Vipin = V1 A Vo, Vimax = V1 V Vo, i; = U,y
forj € {1,2}, tmin = U Vimin, Umax = Uy Vmax. Then, for every ¢ € Jy \ {supJo}, we have

(omin)y (2) 2 (ia)y (8) A i)y (2), (Fma)y () < (wia)y (8) V (i) (0)-

Proof. We first observe that v, € Dy (Jo). By Proposition 5.1 and Remark 6.1,
= Upin € Dy (Jp). Foreveryj € {1,2}, we have u; = U,v;, and therefore

t

<@»w:4w»@+wwoy-weﬂﬂ/w%ﬂoﬁ<mﬁA{wphy

r

A similar equality holds for i, and vp;, instead of #; and v;.
Fix t € Jy \ {supJo}. Vimin = v1 Ave = (3)j € {1, 2}, such that v;n (£) = v; (8),

Tam)r (1) = 03 (8) = @)y (2)

- @»@+wf“/wwwn

Iz

Vain())ds 2 (1) (£) 2 (ia)y (6) A (i) (0)-

To prove the second inequality of the lemma, we can apply the first one to the functions —v;
and —v, instead of v; and v,. O

Proposition 6.2. Consider vi,v2 € C(Jy). If U,vy and U,v, are increasing
(respectively, decreasing) functions, then so is U, (vi A vp) (respectively, U, (v1 V v2)).

Proof. Assume that ; := U, is increasing (V)j € {1,2}. For each
j € {1,2}, approaching the plot of the function u; by open polygons gives
the sequence (u]).ex, such that u} is increasing (V)n € N and uj 2% u;,

where “u.c.” means the uniform convergence on compact subsets of J;. By
Proposition 6.1, = v} = Vu} & V. = v (V)] € {1,2} = v A

vj Ay, A vy Proposition 6.1 now gives U (vi A vy) 2 Ui A ).

n—

By Remark 6.1 and Lemma 6.1, = (U, (v Av3)) () > (i) (&) A (i) (f) = 0
(W)t € o\ {supJo} = U, (v Av%) is increasing (V) n € N. It follows that U, (v; A v)
is increasing. [J
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7. THE PRINCIPLE OF OPTIMUM AND THE UNIQUENESS THEOREM

In this section, we consider a given solution (f,6) of (7)xy) and a nondegenerate
subinterval Jy of J. Unless otherwise stated, we assume that § is monotone on J, and
V= ianO € J().

Recall that the operators U, and V, defined on C(Jy) depend on the value of
Iy € {T', —T'}. We require Iy to be as in (H)p, .

Notations 7.1. For a given function @ € C(J,), set

AN (w) = {veCC(h)|v(r) >0, v>w, Uv isincreasing}, where [y =T,

A7 (0) = {veCh)|v(r) <0, v<w, Uv is decreasing}, where 'y = —T.

It will cause no confusion if we use the same letter to designate a member of C(J) and its
restriction to Jy.

Theorem 7.1. (The principle of optimum)

1) IfonJywehave 0 < 0" and B is increasing, then 0 — o}F = min4f (o — a}t).
2) IfonJywehave 0 > 0~ and p is decreasing, then 0~ — 0, = max 4, (0 — o).

Proof. By Corollary 5.4, = (3, 0) is a solution of (7 )¢/} .

1) To shorten notation, set w, = o+ — ;" € C(Jy). Corollary 5.1 gives w, = V,y,. By
Proposition 6.1, = U,w, = x, is increasing on Jy. It follows that w, € 4 (o — a}').
It remains to prove that w, is a minorant of 41 (0 — o;f). Fix v € 4}(0 — o). Set
w=w, Av € C(Jy) = w(r) = 0. By Proposition 6.2, = u := U,w is increasing on
Jo. Observe that U, is a positive operator. We haveo — o0 < w < w, = u = Uw <
U-w, = x,. It follows that u(r) = 0, (v — y, )(r) = 0, u is increasing.

We next show that u — y, is increasing. It suffices to prove that (u —y, )’ > 0in D’ (}0).
We have u — x, = U, (w — w, ). By Remark 6.2, =

1 0 0
(u—y,) +alu—y,) = (w—w,)%—;(w—w,) inD'(Jo). Fixp € D' (), > 0=

< w=r)p>=a [ —up= [v=m) (o= Zo)

Jo JO

— o fwmwe— [ - (p-1o),

Jo Jo\M+(f)

because (V) t € Jo "M+ (f), o(t) = 0" (¢) and consequently w(z) = w, (). By Proposition
4.1 (3),=Jo \M"(p) isan open subset of R = (3) ((a;, b;));cs , an at most countable family
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of mutually disjoint open intervals with limiting points in (Jo N M*(8)) U (Jo\ .0]0), such
that Jo \M*(B) = U (ai, b;). Let (a, b) denote one of these intervals =

/b<w—wr>(¢>—$go) - /b<w-wr>dso—$/b<w—wr>so
= (w-we i—/bsod<w—wr>—;1—/b<w—wr>¢

b b b
1 . 1
= —/¢dw—;/w¢+/(wr+;w,)¢

a

b

= _/e—’/np(t)d(e’/fw(t)) +a/bxr<p,

a

because on (a,b), B is constant, which gives 0© = o} € C'((a,b)) and, by Remark
1 .
6.2, W, + —w, = x, + ay, = ay,. Note that e/"w(f) = e u(t) —y
‘ 7 b b b
-/es/Tu(s)ds Wt € Sy = /e"’/fgo(t)d(e’”w(t)) = /godu + a/u(p =

a a

/b(w—wr)@—%w) =—/bsodu+a/b(xr—u)<p-

r

It follows that

!
(w—wr)<so—;so> =— / pdu + o / (xr — u)p.
Jo\M*(f) Jo\M*(f) Jo\M*(B)

We conclude that

<(u—yx) p>= / pdu + o / (xr —u)p 2 0.

Jo\M*(p) JoNM*(p)
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We have thus proved that (u — y,)’ > 0in D’ (.OJO) = u — y, is increasing. (u — y,)(»)
=0=u—y, >0. Hence,u —y, = 0= U,w, =y, = u = U.w. By Proposition 6.1,
= w, =w=w, AV =V > w,. Therefore, w, = min4;}(c — o).

2) Takingw, =0~ — 0, € C(Jy) andw =w, Vv forv € A7 (0 — 0;), we see at once
that the proof runs as above. [

Corollary 7.1. 1) Under the hypotheses of Theorem 7.1 (1), we have

% = min{u € C(Jy) |u(r) >0, V,u >0 — o, u is increasing}.

2) Under the hypotheses of Theorem 7.1 (2), we have

xr =max{u € C(Jo) |u(r) <0, V,u<o—o0,, u is decreasing}.

r

Proof. 1) Set B = {u € C(J)|u(¥) > 0, V,u > 0 — o, u isincreasing},
A = A (o — o). Proposition 6.1 gives B = U, (4). By Theorem 7.1 (1), = ot — o} =
min4. U, is a positive linear operator = U, (07 — 0;") = minB. By Corollary 5.1 and
Proposition 6.1, we also have y, = U, (0 — ¢;7), which completes the proof.

2) The proof runs as in the case (1). O

Theorem 7.2. (The uniqueness theorem)
For every abstract derivation structure X(J), the system (T )x(sy has at most one solution

with 8,0 € X(J) and € € C(J).

Proof. Let (f1,61) and (S5, 02) be solutions of (7 )x(;y andsetr:=sup{s € J|f1 =
Boon [0, s]}. Suppose » < supJ = r € J, f1 = Sz on [0, 7]. By Corollary 4.2 and Theorem
5.1, = 0; = 0, on the compact interval [0,#]. Therefore, (07); = (07); on [0,7] and
(o)1 = (0;7)2 on J. We need to consider the following three cases:

1) (07)1(r) #0(r) # (01)1(r) = (3)d > 0, such that on J N (r — J,7 + J) we have
(07); # 0 # (07);, and consequently f; is constant (V)j € {1,2}. f1(r) = Ba(r) =
B1 =2 onJN[0,r+ J) (contradiction).

2) o(r) = (0%)1(r) = (07)2(r) = (3)6 > 0, such thatonJ N (r — &, + J) we have
o > (07);, and consequently f; is increasing (V)j € {1,2}. We will now consider two
subcases.

i) pr(r) =B2(r) =1=pr=Fo=1onJN[Knr+3d) = 1 =fFonJN[0,r+9)
(contradiction).
ity f1(r) = B2(r) < 1 = (I)dg € (0,6], such that on Jy := J N [r,r + dg) we
have B; < 1, and consequently o < (o), (V)j € {1,2}. By Corollary 7.1 (1),
= (xr)1 = (xr)2 onJy, which gives 1 = fz onJy = f1 = f onJ N [0,7 + o)
(contradiction).
3) o(r) = (67)1(r) = (07)2(r). As in the previous case, we obtain a contradiction.
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By (1), (2), 3), = » = supJ = 1 = f5. Theorem 5.1 now gives 6; = 65, which
completes the proof. [
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