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Abstract

We prove that a real symmetric polynomial inequality of degtee2 holds orR’} if and only if it
holds for elements with at mog# /2] distinct non-zero components, which may have multiplicities.
We establish this result by solving a Cauchy problem for ordinary differential equations involving the
symmetric power sums; this implies the existence of a special kind of paths in the minimizer of some
restriction of the considered polynomial function. In the final section, extensions of our results to the
whole spac&” are outlined. The main results are Theorems 5.1 and 5.2 with Corollaries 2.1 and 5.2,
and the corresponding results ¥ from the last subsection. Part Il will contain a discussion on the
ordered vector spada(g”] in general, as well as on the particular cases of degfeed andd =5
(finite test sets for positivity in the homogeneous case and other sufficient criteria).
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction and notations

Excepting the results of Hilbert and Artin on Hilbert's 17th Problem and of Pdlya on
strictly positive forms, together with their further refinements, there are only particular
results on positivity, even for symmetric polynomials (small degree or number of vari-
ables or restricted form). Our paper deals with minimizers of symmetric polynomials or of
some more general symmetric functions on “curved simplices.” We thus prove that a real
symmetric polynomial inequality of degref> 2 holds onR’} := [0, co[" if and only if

E-mail addressvlad.timofte @epfl.ch.
1 Which will mean> 0, according to the terminology of ordered vector spaces.

0022-247X/$ — see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00301-9



V. Timofte / J. Math. Anal. Appl. 284 (2003) 174-190 175

it holds for elements with at mosti/2| (the integer part) distinct non-zero components.
A similar result holds for arbitrary even degree @it For the convenience of the reader,
we included in Section 2 simplified versions of some of our results, in a purely polynomial
setting.

In our entire discussion we require that N, n > 2. SinceR is an infinite field we
can and will always identify polynomials R[ X1, ..., X,] with real polynomial functions
onR”. Let us denotéby X" theR-algebra of all real symmetric polynomials &f (i.e.,
i =R(Xq,..., X,]%).

For eachd e N, consider the following vector subspacessof!:

Zpli={f e 2™ | deg ) <d},
HI .= (f e =" | 1 is d-homogeneoysc T,
For all numbers:, b € R, seta A b :=min{a, b}, a v b :=maxa, b}, anda, b :=2Z N
[a, b] (possibly empty!). Leta ] denote the integer part af
For everyx = (x1,...,x,) € R", set
suppx) :={jeln|x; #0},
. V= [{xg | esuppn f| = [{xg | x; # 0}

where|A| stands for the number of elements (cardinal) of a finiteAseBoth functions
v, v*:R" — 0,n are lower semi-continuous. It is worth pointing out thétis counting
the non-zero distinct components of its argumeiithout their multiplicities

For eachk € N*, thekth symmetric power sum is defined by

9

v(x) = {xj | j e Ln}

n
P.:R" >R, P(x):= fo
j=1

Some of our functions are characterized by more parameters than we indicate; in an ex-
pression, say, we may sometimes indicate a numbe# n of variables in the formE "],

For anyo > 0 and any continuous functiofi: R’ \ {0,} — R, define the following
sets:

Ko =P *({o}) NR% =[x e R | Pi(x) =0},
K = {x €K, v (x) < s} (s € N%),
My (f) = minimizen(f|x,) = {§ € Ko | £(&) = min f(x)}.

The simplexK, C R \ {0,} is a compact selD, oo[ - K, = R’} \ {0,}, and the restriction
flk, attains its minimum o, (f) # 9.

Definition 1.1. A pathy : [a, b] — R" is said to be arnis)-path ¢ € N*) provided

Pioy=(P;oy)(a), Vie 1,s, Supp(y(t)) = Sup[:(y(a)), vVt € [a, b].

2 We need our notations to be suggestive, explicit and condensed at the time.
3 E.g., for the symmetric power suf), : R" — R, which acts on- variables.
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For eachk € N*, thekth complete symmetric functioiy, is the sum of all monomials of
total degree on R". We take by conventiong = 1. In [7], it is shown thatiy is positive
definite Gpx > 0 onR" \ {0,}) for everyk € N*.

For alli, j e N* with i < j, we may consider the vector-valued function

P jy: R" — Rj7i+l, P j(x) = (P,' x),..., Pj (x))

ForallJ c 1,n andx e R", set/ :=1,n\ J andx; := (x})jes.

For everyk € 1,n, write O, := (0,...,0) e R and  :=(1,...,1) e R*. If x e R", it
is convenient to writex; for its kth component, as we already have done. Therefore, we
avoid to denote vectors with symbols with lower indexes (however, upper indexes will be
allowed) and @, 1 arethe only exceptiont® this rule.

2. Main results

The results of this paper are, to the best of my knowledge, all new (excepting those
for which we explicitly mention the contrary). In this section, we will state only the most
relevant of them.

Let f e 20[1”] and¢ € M, (f) for someo > 0. Since the casé € {0, 1} is trivial (f =
a Py + b for somea, b € R), we will assume here that> 2.

Theorem 2.1 (Of enlargement)If v*(&) > |d/2], then for eache > 0, there exists an

injective(|d/2])-path in M, (f) N B(&, &) which connect$ to a point¢ # & satisfying
v*(§) = |sup¢)|

(i.e., all non-zero components pfare pairwise distinct

Theorem 2.2 (Of reduction).There exists aii|d/2])-path in M, ( f) which connect§ to
a point¢ satisfying

v (¢) < [d/2].
In particular, we have

min f(x)= min_ f(x).
xeK, ! rek /2 f

Note that the point € M, (f) from Theorems 2.1 and 2.2 also satisfies

SUp¢) = Suppé), Pi(5)=Pi(§), Viel |d/2].

The above results will be both stated and proved in a much more general setting in Section 5
(Theorems 5.1 and 5.2). For this, we will define there some new notions. The following
corollary is a generalization of some known results on even symmetric forms of defyree 2
from [3, Theorem 3.7, p. 567] (the casé 2 6) and [5, Theorem 2.3, p. 211] (the case

2d = 8) and [5, Theorem 3.2, p. 215] (the cagk=210,n = 3). Corollary 5.2 will be even

more general.
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Corollary 2.1.

(1) A symmetric polynomialinequality of degite N* holds onR’, if and only if it holds
on{x e R |v*(x) < [d/2] v 1]}.

(2) A symmetric polynomial inequality of even degéee N* holds onR” if and only if it
holds on{x e R" | v(x) < (d/2) v 2}.

Note that positivity for someg € =) on R is equivalent to the positive (semi-)defi-
niteness of € ! defined byg(x1, ..., x,) := f(x2, ..., x2).

3. Symmetric functionsand curved simplices

Itis well known (the fundamental theorem on symmetric functions) that every symmet-
ric polynomial inn variables is uniquely expressible as a polynomial in the elementary
symmetric functionsEy, ..., E,, and that the same is true for the complete symmetric
functionshz, ..., h,. In [10], it is shown that the algebra!"! is also generated by every
family of » monomial symmetric functions with degree<21.. ., n. The following result
is well known, even if not exactly in this form (see [9, pp. 24-25]).

Theorem 3.1. For every f € !, there exists a unique polynomigl: R? — R (d :=
d An), such that

f=FfoPyg=Ff(PrL....Pp. (1)
Moreover, f can be written in the form
d

f=g(P1,..., Plap)+ Z gi(P1,...,Pg—i)- P, (2)
i=1d/2]+1

whereg, g; are polynomials ang; = 0if i > 4. In particular, f depends only affinefyon
each power sun®; withi > |d/2].

Proof of Eq. (2). Let f € EC[I”] be given. If f is expressed in the elementary symmetric
functionsEy, ..., E;, the most direct method to putitin the form (1) is to use the identities
(see[9, p. 28)])

Py 1 0 0
Py Py 2 ... 0
KlEx=]| : : .. 1|, Ykeln.
P_1 Pio Pz ... k—1
Py Pi1 P2 ... P

4 By an affine function on a subset of a vector space, we mean a linear map plus a (constant) vectgr. Here,
is regarded (by a slight abuse) as an expressiaghin.., P;.
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In f(Py,..., P;), for reasons of degree, terms containing product® & with i + j > d
cannot appear. Therefore, power sumsvith i > |d /2| can only occur in the first power.
Now (2) follows easily. O

Note thatin (2), we haveé —i < |d/2] foreveryi > |d/2] + 1, and so the polynomials
gi do not depend o, for k > |d/2] + 1.

We can now summarize the idea of our constructiop.:lfa, b] — R" is an(s)-path for
some fixeds > |d/2], and if P; o y is an affine function for eache s + 1,d (Lemma 4.1
will provide a method to find various such paths), thér y is affine too, by (2). If a
subsetX C R" can be characterized in terms#y, ..., Ps (say by an equation of the form
w(P1(x),..., Ps(x)) =0) and if y (fp) € minimizen f|g) for somerg € la, b[,then f o y
must be constant, and consequenfi{ia, b]) C minimizer f|g). As we shall see, this
pattern allows the construction of various kindgofpaths and points in minimizef |k ).

Our previous discussion motivates the introduction of the mathematical objects that
we are studying: the classes of functioﬁ’é’)’g and 2", the “w-curved simplices”
K, (w) C R%, and the minimizeM, (f, ®) of f|k, (w)-

Definition 3.1. Foralld,s € N, d > s, let us consider
(A) The space&!™ of all functionsg : R% \ {0,} — R of the form
g=8o0Puy )

for some continuous map: 10, co[*— R. We take by conventioﬁ([)”] =R.
(B) The spacery'] of all functionsf :R” \ {0,} — R of the form

d
f=g+ Y gl 4)
i=s+1

for someg; € "', Vi e 5, d.
(C) For eachs € N*, consider the subse2™ c g™ of all functionsw:R™ \ {0,} —
+
10, oo[ in G, such that for every e R\ {04}, the map

(Ux: ]0700[_)]0500[3 C()x(t)z(,()(tx),

is increasing and lim o w, (t) =0, liM;_ 00 wx (1) = co.
Note that P; € 21" for everyi e 1, .

The following example shows that the functions from Definition 3.1 need not be poly-
nomial.

5 In the new setting of Section 5.2, this holds only for even number2, s.
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Example 3.1.
g =224 PZlog(1+ P{ + Po) e Gy \ 20",
= /PL— P;- P4+10g(PE + P2) - P3+ Pisin(PLP2) € Fy3,
w=2P_14 Pl Iog(1+ Pl + p2) c _Q["] c ggn]_

It is convenient, by a minor abuse of notation, to write (3) and (4) as

gzg(Pl7~-~7PS)a

d
f=8(Pr, .. P+ Y &(PL,...,P)- P (5)
i=s+1
We have the obvious relations
F =g o Fpl. (6)

Forg e g, ferF d’fs we always assume the representations (3) and (4). Note that for each
f € F'l we also havef = f o P(y.4), where

d
fi10.00l* xR >R, f() =801 ¥+ D &0y v (7)
i=s+1

Remark 3.1. (1) The family (F ["])d s is increasing with respect @ ands. EveryG!™ is
anR-algebra and everg}"! is ag!"!-module.
(2) We have the natural inclusiagl’! ¢ fé[fy,l]l_d/zj' Ifd <25 +1,then

My e =i e FlL
Proposition 3.1. If d <25 + 1, thend An < 2(s An) +1and
[n]
‘7:n ‘Fdlj\n SAR®

In particular, we haveg!"’ gm and 2" = .QS[A],,

Proof. Setd :=d An, 5 :=s An. The inequalityl < 25 + 1 is immediate and” clearly
holds by Remark 3.1(1). To prove=}’ We can assume that < d and hencel = n, since
otherwised = d ands =s. Fix f € ]—‘d By Theorem 3.1, we have for every> n,
P,=P o P(1,,) for some unique polynomiaP; : R” — R, and soP; € gn We need to

consider two cases.
(1) If s > n, then replacingin (5p; by P; o P(1.,,) for eachi > n gives by (6)f € G" =
J-',, = ]-'["_, sinces = n.

(2)If s <n <d<2s+1,leti e n+ 1, d be fixed. By Theorem 3.1, the polynomi&|
depends affinely on each;, j € s + 1, n, since clearlyi <d < 2s + 1 < 2j. Therefore,
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P € }‘,E’fs]. AsS P; € ]—‘,[,’fs], Vien+1,d, and]—‘,[,’fs] is aGl™-module, by (5) we deduce that
ferd=rr o

Definition 3.2. Forallw € 2!"!, o > 0, and for every continuoug: R™. \ {0,} — R, define
the following sets:

Ky (@) =0 {o})={xeR} o) =0},

K5 () = {x € K5 () | v*(x) < s},

Mo (f.0) = minimize /1) = {& € Ko@) | €)= _min f)].

If o = P1, we write these sets d&;, K., M, (f), that is withoutw.

Lemma 3.1. The sef K, (w) is compact and|0, co[ -K (w) = R\ {0,}. Therefore,
M(T(fs 0)) 75 @

Proof. The setK := K1(P2) = {x € R, | P2(x) =1} is clearly compact. Dini’s theorem
applied to the sequences of functiqiis ) ven+, (Gy)ven=,

F,,Gy:K —10,00[, F,(x)=w® tx), GV(X):—(tx)’
w

shows thaBlv € N*, such thatF, < o andG, <o 1 on K, thatis
o0 x) <o <w(x), VxeKk. (8)

We claim thatk, (») C [v™1, v]- K =: H. To see this, fix € Ky (®). FOra := /P2(2) > 0
andx := 171z € K, we havew(rx) = o, which leads by (8) and the monotony of
to » €]v=L, v[. We thus getz = Ax € H, which proves our claim. AX,(w) C H C
R’ \ {0,} and H is compact anK,; (w) is closed inR’ \ {0,}, we deduce thak, (w)
is compact. Now fixx € K. Sincew is continuous, by (8) we must have € K, (w) for
somer € [v~1, 1], and sox €10, 00[-K,(w) =: T. Hence,K C T forcesR’ \ {0,} =
10, 00[-K C T, whichyieldsT =R, \ {0,}. O

It is to note that every point € R, \ {0,} is projectively represented ik, (). This is
important if f is homogeneous.
4. Construction of (s)-paths

The following lemma is the last important ingredient of our construction. Its interest is
that it allows one to vary continuously the symmetric power sums, keeping some of them

constantAll properties(i)—(vii) of the function given by this lemma are essential and will
be used in Section 5.

6 For Lemma3.1 from Section 5.2, the sek&, (), M (f, »). R". will be replaced byK (), Mo (f, ). R".
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Lemma 4.1. For every¢ €0, oo[” with r := v*(&) > 2, there exists a bounded interval
I =]ea, B[ and a functionp : I — R’} , satisfying

(i) t0:=Pr(§) € I andp(to) =§;
(i) ¢ is continuous o andg () C 10, oo[”;
(iii)y P o= P;i(&) foreachi <r, butP.(¢(t)) =1t for everyr € I;
(iv) v*(p(t)) =r foreveryt € I, butv*(¢(a)) < r andv*(¢(B)) <r;
(V) ¢(a) €10, 00[" or p(B) €10, ool ";
(Vi) ¢ eC>®(I,R"), go} #0onl,Vjeln,and(Pyog) >0,Vk >r;
(vii) If r =n, thenPy o ¢ is an affine function for each < 2n and

k
(Pio@) = —hi_n), Yken,2n—1
n

Proof. We can assume, by permuting coordinateR'rif necessary, thef = (¢11,,, - . .,
&ly,) = (gjlnj)jelv—r for somes = (gj)jeL—, €10, co[" with ¢1 < &2 < - -+ < ¢ and some

nj e N* (j € 1,r), with >i_qnj=n.Setig:= P (§), D:={z€l0,00["|z1 <z2 < -
<z} € R" and define the functiof = (f1, ..., f;):R x D — R" by

-1
fj(t,Z)=(njr ]_[(z.,'—zk)) , Vjelr.
k#j

According to the Cauchy-Lipschitz theorem, there exists a unique maximal solution
v : 1 — D (I an open intervalp € I) of the Cauchy problem

v =f@ ), Vo) =¢. )
Hencey € C*(1, D), Y1 < Y2 <--- < ¥, and

-1
V= <"1V [Twi - wk)) . Vjelr. (10)
ey

Consequently, aly; are strictly monotone. Now define
F:RT—=R", F@© 5=(Z.i1nj)jel,_r’ po=Foy:I—1]0, 00"

Hence,p € C*(I,R"), ¢(to) = F({) =&, Y1 =01 < 92 < -+ < ¢y, ANd 0¥ (p(1)) =
v*(y(t)) =r, Vt € I. The components gp are the same as those ¥f with multiplic-
ities. We claim that (10) is equivalent to

Yianjwi Tty =0, vielr—1,
Z;Zlnjlﬂ;_llﬂ} =rL

Indeed, solving (11) via Cramers rule and Vandermonde determinants leads to (10). By the
definitions of F andy, it follows that (11) is equivalent to

(11)

{(P,-O(p)’EO, Vielr—1,
(Progp) =1,
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which leads toP; o o = P;(§),Vie 1, r —1 and(P, o p)(t) =1, Vt € I, sincep(tp) = &
and P, (&) = to. We next show that is a bounded interval and thatcan be continuously
extended td . Indeed,/ is bounded since

0<t=P (o) < Pilp®))" = Pr(§), Vrel. (12)
ThereforeJ =], B[ for somew, g € R. Since by (10) and

O<y; <) myi=Pop=PiE)., Vjelr, (13)
i=1
the components of, are strictly monotone and bounded, there exist some continuous
extensions): 1 — D CR’,, ¢:1 — R’ of ¥ andg. We have
o) = (v; (t)1,,j)jel7, V(@) =v* (Y ()) <r, Viel.
Clearly,¢ satisfies (i)—(iii) and the first parts of (iv) and (vi).

(V) If v* (¥ (@) =r, theny (@) € D\ 9D = D, and soyr cannot be a maximal solution
of (9). Thereforep* (¢ (a)) = v* (¥ ()) < r and similarlyv*(¢(8)) < r. Consequentlyp
satisfies (iv).

V) If {g(@), @(B)}N10, co[" = @, then 0< ¢1 < --- < ¢, clearly forcesgi(a) =
@1(8) = 0, which contradicts thai; = yr1 is strictly monotone. Hence, satisfies (v).

(vi) Fix k > r. SinceProp = Z;.:lnjt/ff, it follows that the components @f’ satisfy,
on/, (11) and the additional equation

Y nk Ty =k Pog) .
j=1
Since the algebraic system pft+ 1 equations in the components of)’ is consistent,
Rouché’s theorem yields
1 1 1 0
V1 V2 ... Yy 0

A C R Ve
it st L Yk kY (Peog)
Developing this determinant with respect to the last column, it follows that
KrPeog) T @wi—vwo=r0vw) ] wi-vw
1<i<j<r I<i<j<r

(for the cofactor of ~1, see [9, pp. 40-41, relations (3.1) and (3.4)]). Sitige< - - - < ¥,
we can cancel and obtain

ko
(Prog) = ;(h,[{lr oY) >0. (14)

(vii) Assume that = n and fixk < 2n. Since fork < n the conclusion follows from (iii),
assume thak > n. As r =n forcesn; =1 for all j and hencey = ¢, (14) becomes
(P 0 9) = kn~Y(hx_, o ¢). By Theorem 3.1, we havi;_, = Q o P1x—n for some
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polynomial Q :R*™" — R. Now using (iii) andk —n < n = r leads tohy_, o ¢ =
Q(Pk—n)(§)) = hx—n (&), which proves (vi)). O

For some other aspects concerning the variatioR 0f,) on R’} , see [15].

5. Minimizerson w-curved simplices
5.1. Symmetric inequalities drf|.

Context. Unless otherwise stated, we will consider in this subsection the following setting:
feFM weoM >0 £eM,(f w).
Furthermore, excepting Lemma 5.1, we will require tthat 2s + 1.

Note that we must have> 1 (see the definition af2!").
Our intention is to investigate the séf, (f, w). An important particular cases
fex™ w=P.If fandw are both homogeneous, the valuesofs irrelevant. Thus,

our results also provide information on the behavior of polynonyfadsHé[,"] onR’.
The following remark is important.

Remark 5.1. I y :[a, b] — R\ {0,} is an(s)-path, then every function fro@"! > 2"
is constant oy ([a, b]). If f € J-"‘[J”E then

d
foy=2g@)+ Y gi@)(Pioy), Viey(la,bl).

i=s+1
Theorem 5.1 (Of enlargement)f v*(¢) > s, then for every > 0, the point is connected
by an injective(s)-path in M, (f, w) N B(£, ¢) to a point # & satisfyind
v*(¢) = [supr©)|. (15)

Proof. Fix ¢ > 0 and setM := M, (f,w), r ;== v*() > s, J :=1,r. As f andw are
symmetric, we can assume thet(&;) =r. For&; €]0,00[", let o := P,[”(é_J), I :=
Ja, B[, ¢:1 — R’ be as in Lemma 4.1 (with replaced by-) and definey: I — R’ ,
¥ (t) == (p(1), ;). From the properties of, we see that/ is continuous and injective,
¥ (to) =§&, and

Pa-po¥ =Pa,—1E), (Proy)®)=t+P" &y, Vviel, (16)
SUpf(y (1)) = suppé), Vrel. (17)

Moreover, P, o ¢ = P!V o ¢ + P"7I(¢;) is an affine function for each < 2r, since
pl! o @ is so, according to Lemma 4.1(vii). By (16) and Remark 5.1, we also deduce

1

7 For Theorenb.1 from Section 5.2, we will replace* by v and (15) byv(¢) = n.
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that every function fromgl™ > 2! is constant ony (1) > &, sinces < r. Therefore,
woyY =w(é)=0c and

d

v(I) C Kq (), foy =g+ Z 8i(§)(Pioy). (18)
i=s+1

Herei <d < 2s + 2 < 2r shows thatf o v is an affine function (since alt; o ¥ involved

in the sum are so). Bup € I is a minimum point forf o v, and so(f o ¥) (tg) =0

forcesf oy = f (&), which leads tay (1) ¢ M. By Lemma 4.1, all components o are

continuous and injective functions, and consequently there exists$, 11 > o, such that

V() =r+vEp. [vo-g| <= vielonl (19)

(1) If v*(§) = |suppé)|, then&; = 0,_,, and so¢ := ¥ (t1) € M and the(s)-path
¥lin.11) have the requested properties, by (16), (17), and (19).

(2) If v*(§) < |suppé)|, then&; # 0,_,. Considers® := y(11) € M and ¢! :=
Ylir0.11]- BY (16), (17), and (19), we get
vi(§), t=to,
v*(EY), 1 el nl,

SUPEEY) = suppé), Py (EY = Py (©). ||sl—s||<§.

vEH > vrE),  ov(vie) = { (20)

If v*(&1) < |supfel)|, we can apply the above arguments again, Witleplaced by?,
to obtain an injective(s)-path 2 : [6o, 1] — M with ¥2(0p) = €1, ¥2(61) =: €2, and
properties ofs2, 1, £2 that are similar to those af?, £, £1. By (20), we have

v (Y0) = v*(EY < v*(ED) = v*(¥2(6)), Vi €lto, 1], VO €160, 1],

and so the(s)-path given by the union ofy1 and 2 (defined on the intervalro, 11 +
61 — 6p]) is injective. Thus, an induction argument finally proves, in at mhespgé)| — r
steps, the existence ofe M which satisfies (15). The union @f)-paths obtained at each
step of the induction is injective.O

Lemma 5.1. If v*(§) > d > s, then P11 4)(£) is a local minimum point for the partial
functior?

f(Pas®.):RT >R

(see(7)). In particular, we haveg; (¢§) = 0foreveryi e s + 1, d.

Proof. As f andw are both symmetric and*(&) > d, we can certainly assume that
& > - > & Fora = Py (&) # 0y, B:= Piy1.a4)(&), we shall prove thap is a
local minimum point for f («, .):Rf’[s — R. By hypothesis, we have (x) > f(&),
Vx € Us N K, (w) for some neighborhood (nbd)e of £. Set¢ := (5/’),‘6171 €10, oo[ 9,

n:=(€)) ;eqi1n € Ri¢ and choose nbdf; of ¢ with V; € 10,00[ andV; x {n} C Us.

8 For Lemma5.1 from Section 5.2, we replaeé (¢) by v(§) andR%™ by R4,
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That P q)(V; x {n}) is nbd of («, 8) follows by an application of the inverse mapping
theorem for the functioP(1 4)(-, n) : V; — 10, oo[4 atz. Now choose nbdVg of g with
{a} x Wg C P1,q)(Ve x {n}). We claim thatf (a, z) > f(a, B), Vz € Wg. To prove this,
fix z € Wg. By the choice oWpg, we have(a, z) = P, q)(x) for somex € V; x {n} C Us.
Hence,Pq5)(x) =a = P,)(§) andw = w o P(1 5 lead tow(x) = o(a) = w(§) = o, and
sox € Ug N Ky (w). We thus getf (a, z) = f(x) > f(€) = f(a, p). To prove the last part,
observe that

d
flae=g@+ Y gi®z. Yz=@)eq1a € W
i=s+1

depends affinely on. As 8 is a minimum for f (o, -), we must haveg; () =0, Vi €
s+1,d. O

The following corollary provides in the casé(¢) > s, d > s some equations involving
£ € M, (f, w) and the “coefficientsk; € G of f. If f e X", then allg; are symmetric
polynomialsig, is constantg;_1 = o Py + 8 for somex, 8 € R, etc. Only Corollary 5.1(1),
which is a refined version of Lemma 5.1, will be needed in the proof of Theorem 5.2.

Corollary 5.1. If v*(¢) > s, ther?

(1) Isuppé)|>d >s=gi(§)=0,Vies+1,.d;
(2) Isuppé)|=d—1>s=dga&)P1(§) +(d —1ga-1(5) =0.

Proof. Applying Theorem 5.1 for every > 0 shows the existence of a sequen;fe@l
C M, (f, w) satisfying

Jim cf=¢  suppc®) =suppé). v*(c") =|[supp)]. vk eN*. (21)

(1) For everyk € N*, we haveg; (¢¥) =0,Vi e s + 1,d, by Lemma 5.1. A passage to
the limit (k — oo) now establishes the claimed equalities.

(2) As (21) shows that*(¢%) = | supfc®)| = | suppé)| = d — 1, Vk € N*, it suffices
to prove the required equality for each member of the sequ(qr’iaggl; then the assertion
follows by a passage to the limit. Therefore, we can assumetligt = | supgé)| and that
suppé) = 1,d — 1 by the symmetry off andw. Defineg:1 — R’,, ¢ :1 — R". exactly
as in the proof of Theorem 5.1, with=d — 1 andJ = suppé). As there, we obtain (18)
andf oy = f(£). As P/ "M o ¢ is constant for every < d — 1, we get

d d
O=(foy) = Y g@® (P Mog) =@-17 Y ig®n &,
i=s+1 i=d—1

Indeed, fori € {d — 1, d} we can apply Lemma 4.1(vii), sina&(¢) =d —1 andd — 1 <
i<2(d—-1) —1(wehavel >3,becausd —1>s>1). O

9 For Corollaryé.vl from Section 5.2, we replaceé (&) by v(§) and|suppé)| by n.
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Theorem 5.2 (Of reduction).The point¢ is connected by axs)-path in M, (f, ) to a
point¢ satisfyindg®

v*(¢) <. (22)
In particular, we have

min XxX)= min x).
xEKU(w)f( ) xeK} (o) f( )

Proof. Assume thav*(¢) > s and hence: > s, since otherwise the conclusion is trivial.

There is no loss of generality in assuming that s. Indeed, ifd = s, then f € ]-'S[,'fg] C
]—ff’jr]l)s and we replacé by s + 1 > d. It suffices to prove that is connected by ay)-path
in M := M, (f, ») to a points? satisfying

v (EY) < v (). (23)

Setr :=v*(§) > s, J :=supf&), m :=|J| > r. As f andw are symmetric, we can assume
thatJ =1, m, and se& = (&7, 0,_n). FOr&, €10, 00[™, lettg:= P (&) = P.(£), I :=
lo, BI, @1 — R be as in Lemma 4.1 (with replaced byn) and definey : 7 — R,
¥(t) := (p(t), 0,—n). We claim thatf o ¢ is a constant function. The propertiesoyield

V(o) =§, Pa,nov=Pr, &), (Poy)n)=t, Viel. (24)

By (24) and Remark 5.1, every function fra#t{"! > "' is constant ow (1), sincer > s.
Definef[’"] e }—‘[J'z] andwl™ ¢ ‘Qs[m] by

M) = F3,0mm),  0™(3) =0y, Opp).

Hence,f o ¥ = fI™ o ¢ and&; € M, ("1, w™1). By Proposition 3.1, we havg™l e
]—“[j”;] ford :==d Am > s, and consequently

d

=g+ Y g™
i=s+1

for someg; € GI"™, Vi € s,d. As|suppé&,)| =m >d > s andv*(£;) > s, Corollary 5.1(1)
shows thaiy; () =0,Vi € s +1,d. Since allg; (i €s,d) are constant op(/) > £;, we
have "l o ¢ = ¢,(£;), which proves our claim. Thereforg,o ¥ = (f o ¥)(t0) = f(£).
Thaty (1) C K, (w) follows fromw o ¢ = o™ o ¢ = (0" 0 9)(19) = w (&) = 0. We thus
conclude thaiy (1) C M. But ¢ satisfies (iv) and (v) from Lemma 4.1, and so there exists
1 € {a, B}, with v* (¥ (1)) < r = v*(§) and suppy (1)) = SUpp&). Hence ' == ¥ (11)

€ M satisfies (23) and itis connectecditdy the(s)-pathy [;oas.ove] IN M. If v*(ED) > s,

we can apply all above arguments again, Witteplaced by: 1. Thus, an obvious induction
completes the proof. O

10 For Theorenb.2 from Section 5.2, we will replace (22) byz) <'s.
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Corollary 5.2. Considerf, g € 7'}, w € 2", 6 > 0,with g > 00n K, (w). If d < 25 +1,
then

min f(x) min fx)
ek (w) g(x) xeK‘(a)) g(x)

Proof. For o« := minyek, () (f(x)/g(x)) and h := f — ag € Fln ], we clearly have
My (h, w) = minimizer(f/¢)|k, »)), and the conclusion follows byapplylng Theorem 5.2
forh, wande. 0O

Proof of Corollary 2.1(1). Fix d € N*, f € " sets := |d/2] v 1, and assume that
f>0o0nA:={xeR] [v*(x) <s}. We shall prove thayf > 0 onR’,.. To show this,
fix x e R, \ A and seto := P1(x). Since ( € A, we havex # 0,, and soo > 0. As
f € FI'l by Remark 3.1(2) and; € 22!"!, Theorem 5.2 shows that € My (f) N A # @
Butx e K now leads tof (x) > f(¢) > 0. We conclude thaf > 0 onR’}. The reasoning
for a non-strict inequality (i.e.f > 0 on A) is similar.

Corollary 2.1(2) will be proved in Section 5.20

Corollary 5.3.1f f € £}, then for everyr > 0 we have

min f(x) = min ok, 0,—p).
<k<n

xeKy

Proof. Since f € ]—‘é’q and P; € .Q{”], the conclusion follows immediately by Theo-
rem5.2. O

In the homogeneous case we obtain the following corollary, which is known in the
context of even symmetric sextics (see [3, Theorem 3.7]).

Corollary5.4.1f f € Hé[;’] andd < 3, then

fz00onR, & f(4,0,4)>0, Vkeln.

Remark 5.2. Ford > 4 andn > 2, the previous equivalence is no longer true. Indeed,
f:=PoP;_2— P1P; 1€ Hd satisfiesf (14, 0,—x) = O for everyk € 1, n, but f(x) =
~Yrcicjenxixji —x) (2 = x47%) <O onRY and £(2,1,0,-2) < 0.

5.2. Symmetric inequalities dr

Our theory (results and proofs) f&' can be adapted to the study of symmetric poly-
nomials or more general symmetric functions®h This can be done according to the
following translation table (TT):
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Symbol  To be substituted by  For every

RE R k e N*
10,00[¥ Rk \ {0y} k e N*
v¥(x) v(x) xRk ke N*
suppx) Lk x eRk keN*

Substitutions fo0, co[* by R¥ \ {0} will be made in our previous statements and proofs
only if the exponent is present (everkit= 1), but]0, co[ will remain unchanged (e.qg., in
Definition 3.1(C), Lemma 3.1, etc.).

We first need the following correspondent of Lemma 4.1.

Lemma 5.2. For every ¢ € R" with r := v(§) > 3, there exists a bounded interval
I =]ea, B[ and a functionp : I — R", satisfying

(1) t0:=Pr(§) € I andg(r0) = &;

(ii) ¢ is continuous or;
(iiiy P o= P;i(&) foreachi <r, butP.(¢(t)) =1t for everyr € I;
(iv) v(p(t)) =r foreveryr € I, butv(p(a)) <r andv(e(B)) <r;
(Vi) ¢ €C®(1,R") andg’; #0o0n] forevery; e 1n;
(vii) If r =n, thenP; o ¢ is an affine function for each < 2n and

k -
(Pkogo)/E —hi—n(&), Vken,2n-1
n

Proof. Replacing in the proof of Lemma 4.1 Eqgs. (12) and (13) by

11 =| P ()] < Pa(0)) > = Pa&)/2 viel, (25)
1ﬁ]2<2ni1//i2=P20(pEP2(§), Vjelr, (26)
i=1

then removing item (v) and the inequality from (14), and finally reading all with (TT) gives
a valid proof. The hypothesis> 3 is needed in (25). O

Translating Definitions 1.1, 3.1, and 3.2 by (TT) leads tteav notionof (s)-path,new
classes of functiong!", 7'l 2" (we require that/ > s > 2 for this new definition)
consisting of functions defined d®" \ {0,} andnew setsK, (w), K3 (»), M, (f, w). Let
us consider the following setting:

feFM we@M 6>0 teM,(fw), d<25+1

An important particular casés f € 2, & = Ps.

Claim 5.1. Translating by (TT) from Sections 3 and Sl results and proofsvhich were
given before the proof of Corollary 2.1(1) leadstew results with valid proofst

11 we verified this by making all changes for the concerned results into the “tex.” file of this article. The result
after typesetting makes sense and all works.
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~

We will now refer to a translated result by adding™over its number. Rewriting with
(TT) and verifying those proofs that do not use Lemma 4.1 poses no problem. All other
proofs were based on the initial assumptigii¢) > s, which, upon translation by (TT),
turns intov(¢) > 5. As s > 2, we havev(§) > 3, and therefore in the new setting we can
use Lemma 5.2 instead of Lemma 4.1. The proof of Thedséhsimplifies (we will have
J=Lnm:=|J|=n>r:=vE)>s, hencefl"l = f, 0"l = w, etc.). The detailed
verification of the rewritten proofs is left to the reader. We thus get the correspondents of
Theorems 5.1 and 5.2 and of Corollary 5.2.

Theorem 5.3 (Of enlargement)f v(¢) > s, then for every > 0, the point is connected
by an injective(s)-path in M, (f, w) N B(§,¢) to a point¢ # & with pairwise distinct
components.

Theorem 5.4 (Of reduction).The point¢ is connected by aiis)-path in M, (f, w) to a
point¢ satisfyinguv(¢) < s. In particular, we have

min  f(x)= min f(x).

xeKy () xeK (w)

Corollary 5.5. Considerf, g € ]:‘['g, we 2" o >0,withg >00nK, (). Ifd <25 +1,
then

fx) min fx)

xek, (w) gx) _xelzg(w) g(x) ’

Proof of Corollary 2.1(2). Fix d € N*, f € X\, sets := (d/2) v 2, and assume that
f>00nA:={x eR"|v(x) <s}. We shall prove thaf > 0 onR". To show this, fix
x € R"\ A and seb := P»(x). Since () € A, we haver #0,,andsa > 0.As f J-"‘[J”]

V2,s
by Remark3.1 andP; € QS["], Theorem 5.4 shows that € M, (f)N A # (. Butx € K,
now leads tof (x) > f(¢) > 0. We conclude thaf > 0 onR". The proof for a non-strict
inequality (i.e.,f > 0onA)is similar. O

The last part of the following corollary is an equivalent form of Theorem 2.3 in [5].

Corollary 5.6.1f f e HY', then

f>=00nR" & f(r-1,1,4) >0 Vre[-11],Vkeln-1,
fz00nRy, & f(t-14,1,0,4-1)>0, Vte[01], Vk,leN, k+1<n.

For the results of Hilbert and Artin on Hilbert’s 17th Problem and of Pdlya on strictly
positive forms, we refer the reader to [1,6] and [4]. Bounds for the exponent from Pdlya’s
theorem are given in [8,13]. Various symmetric inequalities can be found especially in [4,
11], butalso in [2,7,12,14].
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