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Abstract

We prove that a real symmetric polynomial inequality of degreed � 2 holds onRn+ if and only if it
holds for elements with at most�d/2� distinct non-zero components, which may have multiplicit
We establish this result by solving a Cauchy problem for ordinary differential equations involvin
symmetric power sums; this implies the existence of a special kind of paths in the minimizer o
restriction of the considered polynomial function. In the final section, extensions of our results
whole spaceRn are outlined. The main results are Theorems 5.1 and 5.2 with Corollaries 2.1 an
and the corresponding results forRn from the last subsection. Part II will contain a discussion on
ordered vector spaceH[n]

d
in general, as well as on the particular cases of degreesd = 4 andd = 5

(finite test sets for positivity in the homogeneous case and other sufficient criteria).
 2003 Elsevier Inc. All rights reserved.
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1. Introduction and notations

Excepting the results of Hilbert and Artin on Hilbert’s 17th Problem and of Póly
strictly positive forms, together with their further refinements, there are only parti
results on positivity,1 even for symmetric polynomials (small degree or number of v
ables or restricted form). Our paper deals with minimizers of symmetric polynomials
some more general symmetric functions on “curved simplices.” We thus prove that
symmetric polynomial inequality of degreed � 2 holds onRn+ := [0,∞[n if and only if

E-mail address:vlad.timofte@epfl.ch.
1 Which will mean� 0, according to the terminology of ordered vector spaces.
0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00301-9
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it holds for elements with at most�d/2� (the integer part) distinct non-zero componen
A similar result holds for arbitrary even degree andRn. For the convenience of the read
we included in Section 2 simplified versions of some of our results, in a purely polyno
setting.

In our entire discussion we require thatn ∈ N, n � 2. SinceR is an infinite field we
can and will always identify polynomials inR[X1, . . . ,Xn] with real polynomial functions
onRn. Let us denote2 byΣ [n] theR-algebra of all real symmetric polynomials onRn (i.e.,
Σ [n] :=R[X1, . . . ,Xn]Sn).

For eachd ∈N, consider the following vector subspaces ofΣ [n]:

Σ
[n]
d := {

f ∈Σ [n] | deg(f ) � d
}
,

H[n]d := {f ∈Σ [n] | f is d-homogeneous} ⊂Σ
[n]
d .

For all numbersa, b ∈ R, seta ∧ b :=min{a, b}, a ∨ b :=max{a, b}, anda, b := Z ∩
[a, b] (possibly empty!). Let�a� denote the integer part ofa.

For everyx = (x1, . . . , xn) ∈Rn, set

supp(x) := {j ∈ 1, n | xj �= 0},
v(x) := ∣∣{xj | j ∈ 1, n}∣∣, v∗(x) := ∣∣{xj | j ∈ supp(x)

}∣∣= ∣∣{xj | xj �= 0}∣∣,
where|A| stands for the number of elements (cardinal) of a finite setA. Both functions
v, v∗ : Rn → 0, n are lower semi-continuous. It is worth pointing out thatv∗ is counting
the non-zero distinct components of its argument,without their multiplicities.

For eachk ∈N∗, thekth symmetric power sum is defined by

Pk : Rn→R, Pk(x) :=
n∑

j=1

xkj .

Some of our functions are characterized by more parameters than we indicate; in
pression, sayE, we may sometimes indicate a numberr �= n of variables3 in the formE[r].

For anyσ > 0 and any continuous functionf : Rn+ \ {0n} → R, define the following
sets:

Kσ := P−1
1

({σ })∩Rn+ =
{
x ∈Rn+ | P1(x)= σ

}
,

Ks
σ :=

{
x ∈Kσ | v∗(x)� s

}
(s ∈N∗),

Mσ (f ) :=minimizer(f |Kσ )=
{
ξ ∈Kσ | f (ξ)= min

x∈Kσ

f (x)
}
.

The simplexKσ ⊂Rn+ \ {0n} is a compact set,]0,∞[ ·Kσ =Rn+ \ {0n}, and the restriction
f |Kσ attains its minimum onMσ(f ) �= ∅.

Definition 1.1. A pathγ : [a, b]→Rn is said to be an(s)-path (s ∈N∗) provided

Pi ◦ γ ≡ (Pi ◦ γ )(a), ∀i ∈ 1, s, supp
(
γ (t)

)= supp
(
γ (a)

)
, ∀t ∈ [a, b].

2 We need our notations to be suggestive, explicit and condensed at the time.
3 E.g., for the symmetric power sumPk :Rr →R, which acts onr variables.
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For eachk ∈N∗, thekth complete symmetric functionhk is the sum of all monomials o
total degreek on Rn. We take by conventionh0≡ 1. In [7], it is shown thath2k is positive
definite (h2k > 0 onRn \ {0n}) for everyk ∈N∗.

For all i, j ∈N∗ with i � j , we may consider the vector-valued function

P(i,j) : Rn→Rj−i+1, P(i,j)(x) :=
(
Pi(x), . . . ,Pj (x)

)
.

For allJ ⊂ 1, n andx ∈Rn, setJ̌ := 1, n \ J andxJ := (xj )j∈J .
For everyk ∈ 1, n, write 0k := (0, . . . ,0) ∈ Rk and 1k := (1, . . . ,1) ∈ Rk . If x ∈ Rn, it

is convenient to writexk for its kth component, as we already have done. Therefore
avoid to denote vectors with symbols with lower indexes (however, upper indexes w
allowed) and 0k,1k arethe only exceptionsto this rule.

2. Main results

The results of this paper are, to the best of my knowledge, all new (excepting
for which we explicitly mention the contrary). In this section, we will state only the m
relevant of them.

Let f ∈Σ
[n]
d andξ ∈Mσ(f ) for someσ > 0. Since the cased ∈ {0,1} is trivial (f =

aP1+ b for somea, b ∈R), we will assume here thatd � 2.

Theorem 2.1 (Of enlargement).If v∗(ξ) > �d/2�, then for eachε > 0, there exists an
injective(�d/2�)-path inMσ(f ) ∩B(ξ, ε) which connectsξ to a pointζ �= ξ satisfying

v∗(ζ )= ∣∣supp(ζ )
∣∣

(i.e., all non-zero components ofζ are pairwise distinct).

Theorem 2.2 (Of reduction).There exists an(�d/2�)-path inMσ(f ) which connectsξ to
a pointζ satisfying

v∗(ζ )� �d/2�.
In particular, we have

min
x∈Kσ

f (x)= min
x∈K�d/2�σ

f (x).

Note that the pointζ ∈Mσ(f ) from Theorems 2.1 and 2.2 also satisfies

supp(ζ )= supp(ξ), Pi(ζ )= Pi(ξ), ∀i ∈ 1, �d/2�.
The above results will be both stated and proved in a much more general setting in Se
(Theorems 5.1 and 5.2). For this, we will define there some new notions. The follo
corollary is a generalization of some known results on even symmetric forms of degd
from [3, Theorem 3.7, p. 567] (the case 2d = 6) and [5, Theorem 2.3, p. 211] (the ca
2d = 8) and [5, Theorem 3.2, p. 215] (the case 2d = 10,n= 3). Corollary 5.2 will be even
more general.
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Corollary 2.1.

(1) A symmetric polynomial inequality of degreed ∈N∗ holds onRn+ if and only if it holds
on {x ∈Rn+ | v∗(x)� �d/2� ∨ 1}.

(2) A symmetric polynomial inequality of even degreed ∈N∗ holds onRn if and only if it
holds on{x ∈Rn | v(x) � (d/2)∨ 2}.

Note that positivity for somef ∈Σ
[n]
d on Rn+ is equivalent to the positive (semi-)de

niteness ofg ∈Σ [n]
2d defined byg(x1, . . . , xn) := f (x2

1, . . . , x
2
n).

3. Symmetric functions and curved simplices

It is well known (the fundamental theorem on symmetric functions) that every sym
ric polynomial inn variables is uniquely expressible as a polynomial in the elemen
symmetric functionsE1, . . . ,En, and that the same is true for the complete symme
functionsh1, . . . , hn. In [10], it is shown that the algebraΣ [n] is also generated by eve
family of n monomial symmetric functions with degrees 1,2, . . . , n. The following result
is well known, even if not exactly in this form (see [9, pp. 24–25]).

Theorem 3.1. For everyf ∈ Σ
[n]
d , there exists a unique polynomial̃f : Rd̄ → R (d̄ :=

d ∧ n), such that

f = f̃ ◦ P(1,d̄) = f̃ (P1, . . . ,Pd̄ ). (1)

Moreover,f can be written in the form

f = g(P1, . . . ,P�d/2�)+
d∑

i=�d/2�+1

gi(P1, . . . ,Pd−i ) · Pi, (2)

whereg,gi are polynomials andgi ≡ 0 if i > d̄ . In particular,f depends only affinely4 on
each power sumPi with i > �d/2�.

Proof of Eq. (2). Let f ∈Σ
[n]
d be given. Iff is expressed in the elementary symme

functionsE1, . . . ,Ed̄ , the most direct method to put it in the form (1) is to use the ident
(see [9, p. 28])

k!Ek =

∣∣∣∣∣∣∣∣∣∣

P1 1 0 . . . 0
P2 P1 2 . . . 0
...

...
...

. . .
...

Pk−1 Pk−2 Pk−3 . . . k − 1
Pk Pk−1 Pk−2 . . . P1

∣∣∣∣∣∣∣∣∣∣
, ∀k ∈ 1, n.

4 By an affine function on a subset of a vector space, we mean a linear map plus a (constant) vector.f

is regarded (by a slight abuse) as an expression inP1, . . . ,P ¯ .
d
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In f̃ (P1, . . . ,Pd̄ ), for reasons of degree, terms containing products asPiPj with i+ j > d

cannot appear. Therefore, power sumsPi with i > �d/2� can only occur in the first powe
Now (2) follows easily. ✷

Note that in (2), we haved− i � �d/2� for everyi � �d/2�+1, and so the polynomial
gi do not depend onPk for k � �d/2�+ 1.

We can now summarize the idea of our construction. Ifγ : [a, b]→Rn is an(s)-path for
some fixeds � �d/2�, and ifPi ◦ γ is an affine function for eachi ∈ s + 1, d (Lemma 4.1
will provide a method to find various such paths), thenf ◦ γ is affine too, by (2). If a
subsetK ⊂Rn can be characterized in terms ofP1, . . . ,Ps (say by an equation of the form
ω(P1(x), . . . ,Ps(x))= σ ) and if γ (t0) ∈minimizer(f |K) for somet0 ∈]a, b[, thenf ◦ γ
must be constant, and consequently,γ ([a, b]) ⊂ minimizer(f |K). As we shall see, thi
pattern allows the construction of various kinds of(s)-paths and points in minimizer(f |K).

Our previous discussion motivates the introduction of the mathematical object
we are studying: the classes of functionsF [n]d,s and Ω

[n]
s , the “ω-curved simplices”

Kσ (ω)⊂Rn+, and the minimizerMσ(f,ω) of f |Kσ (ω).

Definition 3.1. For all d, s ∈N, d � s, let us consider

(A) The spaceG[n]s of all functionsg : Rn+ \ {0n}→R of the form

g = ḡ ◦P(1,s) (3)

for some continuous map̄g : ]0,∞[ s→R. We take by conventionG[n]0 :=R.

(B) The spaceF [n]d,s of all functionsf : Rn+ \ {0n}→R of the form

f = gs +
d∑

i=s+1

giPi (4)

for somegi ∈ G[n]s , ∀i ∈ s, d .
(C) For eachs ∈ N∗, consider the subsetΩ [n]

s ⊂ G[n]s of all functionsω : Rn+ \ {0n} →
]0,∞[ in G[n]s , such that for everyx ∈Rn+ \ {0n}, the map

ωx : ]0,∞[→]0,∞[, ωx(t)= ω(tx),

is increasing and limt↘0ωx(t)= 0, limt→∞ωx(t)=∞.

Note that5 Pi ∈Ω [n]
s for everyi ∈ 1, s.

The following example shows that the functions from Definition 3.1 need not be
nomial.

5 In the new setting of Section 5.2, this holds only for even numbersi ∈ 2, s.
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each
Example 3.1.

g = 2P2 + P 2
1 log

(
1+ P 4

1 + P2
) ∈ G[n]2

∖
Ω
[n]
2 ,

f = 3
√
P1− P2 · P4+ log

(
P 2

1 + P2
) · P3+ P1 sin(P1P2) ∈F [n]4,2,

ω = 2P2 − 1+ P 2
1 log

(
1+ P 4

1 +P2
) ∈Ω

[n]
2 ⊂ G[n]2 .

It is convenient, by a minor abuse of notation, to write (3) and (4) as

g = ḡ(P1, . . . ,Ps),

f = ḡs (P1, . . . ,Ps)+
d∑

i=s+1

ḡi(P1, . . . ,Ps) · Pi. (5)

We have the obvious relations

F [n]d,d = G[n]d ⊃F [n]d,s. (6)

Forg ∈ G[n]s , f ∈F [n]d,s we always assume the representations (3) and (4). Note that for

f ∈F [n]d,s we also havef = f̄ ◦ P(1,d), where

f̄ : ]0,∞[ s×Rd−s+ →R, f̄ (y)= ḡs (y1, . . . , ys)+
d∑

i=s+1

ḡi (y1, . . . , ys) · yi. (7)

Remark 3.1. (1) The family(F [n]d,s)d,s is increasing with respect tod ands. EveryG[n]s is

anR-algebra and everyF [n]d,s is aG[n]s -module.

(2) We have the natural inclusionΣ [n]
d ⊂F [n]d,�d/2�. If d � 2s + 1, then

H[n]d ⊂Σ
[n]
d ⊂F [n]d,s.

Proposition 3.1. If d � 2s + 1, thend ∧ n� 2(s ∧ n)+ 1 and

F [n]d,s =F [n]d∧n,s∧n.

In particular, we haveG[n]s = G[n]s∧n andΩ [n]
s =Ω

[n]
s∧n.

Proof. Setd̄ := d ∧n, s̄ := s ∧n. The inequalityd̄ � 2s̄+1 is immediate and “⊃” clearly
holds by Remark 3.1(1). To prove “⊂,” we can assume thatn < d and hencēd = n, since
otherwised̄ = d and s̄ = s. Fix f ∈ F [n]d,s . By Theorem 3.1, we have for everyi � n,
Pi = P̃i ◦ P(1,n) for some unique polynomial̃Pi : Rn→ R, and soPi ∈ G[n]n . We need to
consider two cases.

(1) If s � n, then replacing in (5)Pi by P̃i ◦P(1,n) for eachi > n gives by (6)f ∈ G[n]n =
F [n]n,n =F [n]

d̄,s̄
, sinces̄ = n.

(2) If s < n < d � 2s + 1, let i ∈ n+ 1, d be fixed. By Theorem 3.1, the polynomialP̃i

depends affinely on eachPj , j ∈ s + 1, n, since clearlyi � d � 2s + 1< 2j . Therefore,
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Pi ∈ F [n]n,s . As Pi ∈ F [n]n,s , ∀i ∈ n+ 1, d, andF [n]n,s is aG[n]s -module, by (5) we deduce th
f ∈F [n]n,s =F [n]

d̄,s̄
. ✷

Definition 3.2. For allω ∈Ω [n]
s , σ > 0, and for every continuousf : Rn+\{0n}→R, define

the following sets:

Kσ (ω) := ω−1({σ })= {
x ∈Rn+ | ω(x)= σ

}
,

Ks
σ (ω) :=

{
x ∈Kσ (ω) | v∗(x)� s

}
,

Mσ (f,ω) :=minimizer(f |Kσ (ω))=
{
ξ ∈Kσ (ω) | f (ξ)= min

x∈Kσ (ω)
f (x)

}
.

If ω= P1, we write these sets asKσ ,K
s
σ ,Mσ (f ), that is withoutω.

Lemma 3.1. The set6 Kσ (ω) is compact and]0,∞[ ·Kσ(ω) = Rn+ \ {0n}. Therefore,
Mσ(f,ω) �= ∅.

Proof. The setK :=K1(P2) = {x ∈ Rn+ | P2(x) = 1} is clearly compact. Dini’s theorem
applied to the sequences of functions(Fν)ν∈N∗, (Gν)ν∈N∗ ,

Fν,Gν :K→]0,∞[ , Fν(x)= ω(ν−1x), Gν(x)= 1

ω(νx)
,

shows that∃ν ∈N∗, such thatFν < σ andGν < σ−1 onK, that is

ω(ν−1x) < σ < ω(νx), ∀x ∈K. (8)

We claim thatKσ (ω)⊂ [ν−1, ν] ·K =:H . To see this, fixz ∈Kσ (ω). Forλ := √P2(z) > 0
and x := λ−1z ∈ K, we haveω(λx) = σ , which leads by (8) and the monotony ofωx

to λ ∈]ν−1, ν[ . We thus getz = λx ∈ H , which proves our claim. AsKσ (ω) ⊂ H ⊂
Rn+ \ {0n} andH is compact andKσ (ω) is closed inRn+ \ {0n}, we deduce thatKσ (ω)

is compact. Now fixx ∈ K. Sinceω is continuous, by (8) we must havetx ∈ Kσ (ω) for
somet ∈ [ν−1, ν], and sox ∈]0,∞[ ·Kσ(ω) =: T . Hence,K ⊂ T forcesRn+ \ {0n} =
]0,∞[ ·K ⊂ T , which yieldsT =Rn+ \ {0n}. ✷

It is to note that every pointx ∈Rn+ \ {0n} is projectively represented inKσ (ω). This is
important iff is homogeneous.

4. Construction of (s)-paths

The following lemma is the last important ingredient of our construction. Its intere
that it allows one to vary continuously the symmetric power sums, keeping some of
constant.All properties(i)–(vii) of the function given by this lemma are essential and w
be used in Section 5.

6 For Lemma3̃.1 from Section 5.2, the setsKσ (ω),Mσ (f,ω),Rn+ will be replaced byK̃σ (ω), M̃σ (f,ω),Rn.
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Lemma 4.1. For everyξ ∈]0,∞[n with r := v∗(ξ) � 2, there exists a bounded interv
I =]α,β[ and a functionϕ : Ī →Rn+, satisfying

(i) t0 := Pr(ξ) ∈ I andϕ(t0)= ξ;
(ii) ϕ is continuous on̄I andϕ(I)⊂]0,∞[n;
(iii) Pi ◦ ϕ ≡ Pi(ξ) for eachi < r, butPr(ϕ(t))= t for everyt ∈ Ī ;
(iv) v∗(ϕ(t))= r for everyt ∈ I , butv∗(ϕ(α)) < r andv∗(ϕ(β)) < r;
(v) ϕ(α) ∈]0,∞[n or ϕ(β) ∈]0,∞[n;
(vi) ϕ ∈ C∞(I,Rn), ϕ′j �= 0 on I , ∀j ∈ 1, n, and(Pk ◦ ϕ)′ > 0, ∀k � r;
(vii) If r = n, thenPk ◦ ϕ is an affine function for eachk < 2n and

(Pk ◦ ϕ)′ ≡ k

n
hk−n(ξ), ∀k ∈ n,2n− 1.

Proof. We can assume, by permuting coordinates inRn if necessary, thatξ = (ζ11n1, . . . ,

ζr1nr )=: (ζj1nj )j∈1,r for someζ = (ζj )j∈1,r ∈]0,∞[ r with ζ1 < ζ2 < · · ·< ζr and some

nj ∈ N∗ (j ∈ 1, r), with
∑r

j=1nj = n. Sett0 := Pr(ξ), D := {z ∈]0,∞[ r | z1 < z2 < · · ·
< zr } ⊂Rr and define the functionf = (f1, . . . , fr ) : R×D→Rr by

fj (t, z)=
(
nj r

∏
k �=j

(zj − zk)

)−1

, ∀j ∈ 1, r.

According to the Cauchy–Lipschitz theorem, there exists a unique maximal so
ψ : I →D (I an open interval,t0 ∈ I ) of the Cauchy problem

ψ ′ = f (t,ψ), ψ(t0)= ζ. (9)

Hence,ψ ∈ C∞(I,D), ψ1 <ψ2 < · · ·<ψr , and

ψ ′j =
(
nj r

∏
k �=j

(ψj −ψk)

)−1

, ∀j ∈ 1, r. (10)

Consequently, allψj are strictly monotone. Now define

F : Rr →Rn, F (z) := (zj1nj )j∈1,r , ϕ = F ◦ψ : I →]0,∞[n.
Hence,ϕ ∈ C∞(I,Rn), ϕ(t0) = F(ζ ) = ξ , ψ1 = ϕ1 � ϕ2 � · · · � ϕn, and v∗(ϕ(t)) =
v∗(ψ(t)) = r, ∀t ∈ I . The components ofϕ are the same as those ofψ , with multiplic-
ities. We claim that (10) is equivalent to{∑r

j=1njψ
i−1
j ψ ′j ≡ 0, ∀i ∈ 1, r − 1,∑r

j=1njψ
r−1
j ψ ′j ≡ r−1.

(11)

Indeed, solving (11) via Cramers rule and Vandermonde determinants leads to (10).
definitions ofF andϕ, it follows that (11) is equivalent to{

(Pi ◦ ϕ)′ ≡ 0, ∀i ∈ 1, r − 1,
′
(Pr ◦ ϕ) ≡ 1,
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,

which leads toPi ◦ ϕ ≡ Pi(ξ), ∀i ∈ 1, r − 1 and(Pr ◦ ϕ)(t) = t , ∀t ∈ I , sinceϕ(t0) = ξ

andPr(ξ)= t0. We next show thatI is a bounded interval and thatϕ can be continuousl
extended tōI . Indeed,I is bounded since

0< t = Pr

(
ϕ(t)

)
<P1

(
ϕ(t)

)r = P1(ξ)
r , ∀t ∈ I. (12)

Therefore,I =]α,β[ for someα,β ∈R. Since by (10) and

0<ψj <

r∑
i=1

niψi = P1 ◦ ϕ ≡ P1(ξ), ∀j ∈ 1, r, (13)

the components ofψ are strictly monotone and bounded, there exist some contin
extensionsψ̄ : Ī → D̄ ⊂Rr+, ϕ̄ : Ī→Rn+ of ψ andϕ. We have

ϕ̄(t)= (
ψ̄j (t)1nj

)
j∈1,r , v∗

(
ϕ̄(t)

)= v∗
(
ψ̄(t)

)
� r, ∀t ∈ Ī .

Clearly,ϕ̄ satisfies (i)–(iii) and the first parts of (iv) and (vi).
(iv) If v∗(ψ̄(α))= r, thenψ̄(α) ∈ D̄ \ ∂D =D, and soψ cannot be a maximal solutio

of (9). Therefore,v∗(ϕ̄(α))= v∗(ψ̄(α)) < r and similarlyv∗(ϕ̄(β)) < r. Consequently,̄ϕ
satisfies (iv).

(v) If {ϕ̄(α), ϕ̄(β)}∩ ]0,∞[n= ∅, then 0� ϕ̄1 � · · · � ϕ̄n clearly forcesϕ̄1(α) =
ϕ̄1(β)= 0, which contradicts that̄ϕ1= ψ̄1 is strictly monotone. Hence,̄ϕ satisfies (v).

(vi) Fix k � r. SincePk ◦ϕ =∑r
j=1njψ

k
j , it follows that the components ofψ ′ satisfy,

on I , (11) and the additional equation
r∑

j=1

njψ
k−1
j ψ ′j = k−1(Pk ◦ ϕ)′.

Since the algebraic system ofr + 1 equations in ther components ofψ ′ is consistent
Rouché’s theorem yields∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 0
ψ1 ψ2 . . . ψr 0
...

...
. . .

...
...

ψr−1
1 ψr−1

2 . . . ψr−1
r r−1

ψk−1
1 ψk−1

2 . . . ψk−1
r k−1(Pk ◦ ϕ)′

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Developing this determinant with respect to the last column, it follows that

k−1(Pk ◦ ϕ)′
∏

1�i<j�r

(ψj −ψi)= r−1(h[r]k−r ◦ψ) ∏
1�i<j�r

(ψj −ψi)

(for the cofactor ofr−1, see [9, pp. 40–41, relations (3.1) and (3.4)]). Sinceψ1 < · · ·<ψr ,
we can cancel and obtain

(Pk ◦ ϕ)′ = k

r

(
h
[r]
k−r ◦ψ

)
> 0. (14)

(vii) Assume thatr = n and fixk < 2n. Since fork � n the conclusion follows from (iii),
assume thatk > n. As r = n forcesnj = 1 for all j and henceψ = ϕ, (14) becomes
(Pk ◦ ϕ)′ = kn−1(hk−n ◦ ϕ). By Theorem 3.1, we havehk−n = Q ◦ P(1,k−n) for some
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duce
polynomial Q : Rk−n → R. Now using (iii) andk − n < n = r leads tohk−n ◦ ϕ ≡
Q(P(1,k−n)(ξ))= hk−n(ξ), which proves (vii). ✷

For some other aspects concerning the variation ofP(1,n) on Rn+, see [15].

5. Minimizers on ω-curved simplices

5.1. Symmetric inequalities onRn+

Context. Unless otherwise stated, we will consider in this subsection the following se

f ∈F [n]d,s, ω ∈Ω [n]
s , σ > 0, ξ ∈Mσ(f,ω).

Furthermore, excepting Lemma 5.1, we will require thatd � 2s + 1.

Note that we must haves � 1 (see the definition ofΩ [n]
s ).

Our intention is to investigate the setMσ(f,ω). An important particular caseis
f ∈Σ

[n]
d , ω = P1. If f andω are both homogeneous, the value ofσ is irrelevant. Thus

our results also provide information on the behavior of polynomialsf ∈H[n]d on Rn+.
The following remark is important.

Remark 5.1. If γ : [a, b]→Rn+ \ {0n} is an(s)-path, then every function fromG[n]s ⊃Ω
[n]
s

is constant onγ ([a, b]). If f ∈F [n]d,s , then

f ◦ γ = gs(ζ )+
d∑

i=s+1

gi(ζ )(Pi ◦ γ ), ∀ζ ∈ γ
([a, b]).

Theorem 5.1 (Of enlargement).If v∗(ξ) > s, then for everyε > 0, the pointξ is connected
by an injective(s)-path inMσ(f,ω)∩B(ξ, ε) to a pointζ �= ξ satisfying7

v∗(ζ )= ∣∣supp(ζ )
∣∣. (15)

Proof. Fix ε > 0 and setM := Mσ(f,ω), r := v∗(ξ) > s, J := 1, r. As f andω are
symmetric, we can assume thatv∗(ξJ ) = r. For ξJ ∈]0,∞[ r , let t0 := P

[r]
r (ξJ ), I :=

]α,β[ , ϕ : Ī → Rr+ be as in Lemma 4.1 (withn replaced byr) and defineψ : Ī → Rn+,
ψ(t) := (ϕ(t), ξ

J̌
). From the properties ofϕ, we see thatψ is continuous and injective

ψ(t0)= ξ , and

P(1,r−1) ◦ψ ≡ P(1,r−1)(ξ), (Pr ◦ψ)(t)= t + P [n−r]r (ξ
J̌
), ∀t ∈ Ī , (16)

supp
(
ψ(t)

) = supp(ξ), ∀t ∈ I. (17)

Moreover,Pi ◦ ψ = P
[r]
i ◦ ϕ + P

[n−r]
i (ξ

J̌
) is an affine function for eachi < 2r, since

P
[r]
i ◦ ϕ is so, according to Lemma 4.1(vii). By (16) and Remark 5.1, we also de

7 For Theorem̃5.1 from Section 5.2, we will replacev∗ by v and (15) byv(ζ )= n.
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that every function fromG[n]s ⊃ Ω
[n]
s is constant onψ(Ī ) & ξ , sinces < r. Therefore,

ω ◦ψ ≡ ω(ξ)= σ and

ψ(Ī )⊂Kσ (ω), f ◦ψ = gs(ξ)+
d∑

i=s+1

gi(ξ)(Pi ◦ψ). (18)

Herei � d < 2s + 2 � 2r shows thatf ◦ψ is an affine function (since allPi ◦ψ involved
in the sum are so). Butt0 ∈ I is a minimum point forf ◦ ψ , and so(f ◦ ψ)′(t0) = 0
forcesf ◦ψ ≡ f (ξ), which leads toψ(Ī )⊂M. By Lemma 4.1, allr components ofϕ are
continuous and injective functions, and consequently there existst1 ∈ I , t1 > t0, such that

v∗
(
ψ(t)

) = r + v∗(ξ
J̌
),

∥∥ψ(t)− ξ
∥∥ <

ε

n
, ∀t ∈]t0, t1]. (19)

(1) If v∗(ξ) = |supp(ξ)|, then ξ
J̌
= 0n−r , and soζ := ψ(t1) ∈ M and the(s)-path

ψ|[t0,t1] have the requested properties, by (16), (17), and (19).
(2) If v∗(ξ) < |supp(ξ)|, then ξ

J̌
�= 0n−r . Considerξ1 := ψ(t1) ∈ M and ψ1 :=

ψ|[t0,t1]. By (16), (17), and (19), we get

v∗(ξ1) > v∗(ξ), v∗
(
ψ1(t)

)= {
v∗(ξ), t = t0,

v∗(ξ1), t ∈]t0, t1], (20)

supp(ξ1)= supp(ξ), P(1,s)(ξ
1)= P(1,s)(ξ), ‖ξ1− ξ‖< ε

n
.

If v∗(ξ1) < |supp(ξ1)|, we can apply the above arguments again, withξ replaced byξ1,
to obtain an injective(s)-pathψ2 : [θ0, θ1] → M with ψ2(θ0) = ξ1, ψ2(θ1) =: ξ2, and
properties ofψ2, ξ1, ξ2 that are similar to those ofψ1, ξ, ξ1. By (20), we have

v∗
(
ψ1(t)

)= v∗(ξ1) < v∗(ξ2)= v∗
(
ψ2(θ)

)
, ∀t ∈]t0, t1], ∀θ ∈]θ0, θ1],

and so the(s)-path given by the union ofψ1 andψ2 (defined on the interval[t0, t1 +
θ1− θ0]) is injective. Thus, an induction argument finally proves, in at most|supp(ξ)| − r

steps, the existence ofζ ∈M which satisfies (15). The union of(s)-paths obtained at eac
step of the induction is injective.✷
Lemma 5.1. If v∗(ξ) � d > s, thenP(s+1,d)(ξ) is a local minimum point for the partia
function8

f̄
(
P(1,s)(ξ), ·

)
: Rd−s+ →R

(see(7)). In particular, we havegi(ξ)= 0 for everyi ∈ s + 1, d.

Proof. As f andω are both symmetric andv∗(ξ) � d , we can certainly assume th
ξ1 > · · · > ξd . For α := P(1,s)(ξ) �= 0s , β := P(s+1,d)(ξ), we shall prove thatβ is a
local minimum point for f̄ (α, ·) : Rd−s+ → R. By hypothesis, we havef (x) � f (ξ),
∀x ∈ Uξ ∩ Kσ (ω) for some neighborhood (nbd)Uξ of ξ . Setζ := (ξj )j∈1,d ∈]0,∞[d ,

η := (ξj )j∈d+1,n ∈ Rn−d+ and choose nbdVζ of ζ with Vζ ⊂]0,∞[d andVζ × {η} ⊂ Uξ .

8 For Lemma5̃.1 from Section 5.2, we replacev∗(ξ) by v(ξ) andRd−s+ by Rd−s .
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ThatP(1,d)(Vζ × {η}) is nbd of(α,β) follows by an application of the inverse mappi
theorem for the functionP(1,d)(·, η) :Vζ →]0,∞[d at ζ . Now choose nbdWβ of β with
{α} ×Wβ ⊂ P(1,d)(Vζ × {η}). We claim thatf̄ (α, z) � f̄ (α,β), ∀z ∈Wβ . To prove this,
fix z ∈Wβ . By the choice ofWβ , we have(α, z)= P(1,d)(x) for somex ∈ Vζ × {η} ⊂Uξ .
Hence,P(1,s)(x)= α = P(1,s)(ξ) andω = ω̄ ◦P(1,s) lead toω(x)= ω̄(α)= ω(ξ)= σ , and
sox ∈Uξ ∩Kσ (ω). We thus getf̄ (α, z)= f (x)� f (ξ)= f̄ (α,β). To prove the last part
observe that

f̄ (α, z)= gs(ξ)+
d∑

i=s+1

gi(ξ)zi , ∀z= (zi)i∈s+1,d ∈Wβ,

depends affinely onz. As β is a minimum forf̄ (α, ·), we must havegi(ξ) = 0, ∀i ∈
s + 1, d. ✷

The following corollary provides in the casev∗(ξ) > s, d > s some equations involvin
ξ ∈Mσ(f,ω) and the “coefficients”gi ∈ G[n]s of f . If f ∈Σ

[n]
d , then allgi are symmetric

polynomials:gd is constant,gd−1= αP1+β for someα,β ∈R, etc. Only Corollary 5.1(1)
which is a refined version of Lemma 5.1, will be needed in the proof of Theorem 5.2

Corollary 5.1. If v∗(ξ) > s, then9

(1) |supp(ξ)|� d > s⇒ gi(ξ)= 0, ∀i ∈ s + 1, d;
(2) |supp(ξ)| = d − 1> s⇒ dgd(ξ)P1(ξ)+ (d − 1)gd−1(ξ)= 0.

Proof. Applying Theorem 5.1 for everyε > 0 shows the existence of a sequence(ζ k)k�1
⊂Mσ(f,ω) satisfying

lim
k→∞ ζ k = ξ, supp(ζ k)= supp(ξ), v∗(ζ k)= ∣∣supp(ξ)

∣∣, ∀k ∈N∗. (21)

(1) For everyk ∈ N∗, we havegi(ζ k)= 0, ∀i ∈ s + 1, d, by Lemma 5.1. A passage
the limit (k→∞) now establishes the claimed equalities.

(2) As (21) shows thatv∗(ζ k)= |supp(ζ k)| = |supp(ξ)| = d − 1, ∀k ∈ N∗, it suffices
to prove the required equality for each member of the sequence(ζ k)k�1; then the assertio
follows by a passage to the limit. Therefore, we can assume thatv∗(ξ)= |supp(ξ)| and that
supp(ξ)= 1, d − 1 by the symmetry off andω. Defineϕ : Ī → Rr+, ψ : Ī →Rn+ exactly
as in the proof of Theorem 5.1, withr = d − 1 andJ = supp(ξ). As there, we obtain (18
andf ◦ψ ≡ f (ξ). AsP [d−1]

i ◦ ϕ is constant for everyi < d − 1, we get

0≡ (f ◦ψ)′ =
d∑

i=s+1

gi(ξ)
(
P
[d−1]
i ◦ ϕ)′ ≡ (d − 1)−1

d∑
i=d−1

igi(ξ)h
[d−1]
i−d+1(ξJ ).

Indeed, fori ∈ {d − 1, d} we can apply Lemma 4.1(vii), sincev∗(ξ)= d − 1 andd − 1 �
i � 2(d − 1)− 1 (we haved � 3, becaused − 1> s � 1). ✷

9 For Corollary5̃.1 from Section 5.2, we replacev∗(ξ) by v(ξ) and|supp(ξ)| by n.
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Theorem 5.2 (Of reduction).The pointξ is connected by an(s)-path inMσ(f,ω) to a
pointζ satisfying10

v∗(ζ )� s. (22)

In particular, we have

min
x∈Kσ (ω)

f (x)= min
x∈Ks

σ (ω)
f (x).

Proof. Assume thatv∗(ξ) > s and hencen > s, since otherwise the conclusion is trivia
There is no loss of generality in assuming thatd > s. Indeed, ifd = s, thenf ∈ F [n]s,s ⊂
F [n]s+1,s and we replaced by s+1> d . It suffices to prove thatξ is connected by an(s)-path

in M :=Mσ(f,ω) to a pointξ1 satisfying

v∗(ξ1) < v∗(ξ). (23)

Setr := v∗(ξ) > s, J := supp(ξ),m := |J |� r. Asf andω are symmetric, we can assum
thatJ = 1,m, and soξ = (ξJ ,0n−m). For ξJ ∈]0,∞[m, let t0 := P

[r]
r (ξJ )= Pr(ξ), I :=

]α,β[ , ϕ : Ī → Rm+ be as in Lemma 4.1 (withn replaced bym) and defineψ : Ī → Rn+,
ψ(t) := (ϕ(t),0n−m). We claim thatf ◦ψ is a constant function. The properties ofϕ yield

ψ(t0)= ξ, P(1,r−1) ◦ψ ≡ P(1,r−1)(ξ), (Pr ◦ψ)(t)= t, ∀t ∈ Ī . (24)

By (24) and Remark 5.1, every function fromG[m]s ⊃Ω
[m]
s is constant onϕ(Ī ), sincer > s.

Definef [m] ∈F [m]d,s andω[m] ∈Ω [m]
s by

f [m](y)= f (y,0n−m), ω[m](y)= ω(y,0n−m).

Hence,f ◦ ψ = f [m] ◦ ϕ andξJ ∈Mσ(f
[m],ω[m]). By Proposition 3.1, we havef [m] ∈

F [m]
d̄,s

for d̄ := d ∧m> s, and consequently

f [m] = qs +
d̄∑

i=s+1

qiP
[m]
i

for someqi ∈ G[m]s , ∀i ∈ s, d̄ . As |supp(ξJ )| =m� d̄ > s andv∗(ξJ ) > s, Corollary 5.1(1)

shows thatqi(ξJ )= 0, ∀i ∈ s + 1, d̄. Since allqi (i ∈ s, d̄) are constant onϕ(Ī ) & ξJ , we
havef [m] ◦ ϕ ≡ qs(ξJ ), which proves our claim. Therefore,f ◦ψ ≡ (f ◦ψ)(t0)= f (ξ).
Thatψ(Ī )⊂Kσ (ω) follows fromω ◦ψ = ω[m] ◦ ϕ ≡ (ω[m] ◦ϕ)(t0)= ω(ξ)= σ . We thus
conclude thatψ(Ī )⊂M. But ϕ satisfies (iv) and (v) from Lemma 4.1, and so there ex
t1 ∈ {α,β}, with v∗(ψ(t1)) < r = v∗(ξ) and supp(ψ(t1)) = supp(ξ). Hence,ξ1 := ψ(t1)

∈M satisfies (23) and it is connected toξ by the(s)-pathψ|[t0∧t1,t0∨t1] in M. If v∗(ξ1) > s,
we can apply all above arguments again, withξ replaced byξ1. Thus, an obvious inductio
completes the proof. ✷

10 For Theorem̃5.2 from Section 5.2, we will replace (22) byv(ζ )� s.
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Corollary 5.2. Considerf,g ∈F [n]d,s , ω ∈Ω [n]
s , σ > 0, withg > 0 onKσ (ω). If d � 2s+1,

then

min
x∈Kσ (ω)

f (x)

g(x)
= min

x∈Ks
σ (ω)

f (x)

g(x)
.

Proof. For α := minx∈Kσ (ω)(f (x)/g(x)) and h := f − αg ∈ F [n]d,s , we clearly have
Mσ(h,ω)=minimizer((f/g)|Kσ (ω)), and the conclusion follows by applying Theorem 5
for h, ω andσ . ✷
Proof of Corollary 2.1(1). Fix d ∈ N∗, f ∈ Σ

[n]
d , set s := �d/2� ∨ 1, and assume tha

f > 0 onA := {x ∈ Rn+ | v∗(x) � s}. We shall prove thatf > 0 on Rn+. To show this,
fix x ∈ Rn+ \ A and setσ := P1(x). Since 0n ∈ A, we havex �= 0n, and soσ > 0. As

f ∈F [n]d,s by Remark 3.1(2) andP1 ∈Ω
[n]
s , Theorem 5.2 shows that∃ζ ∈Mσ(f )∩A �= ∅.

But x ∈Kσ now leads tof (x)� f (ζ ) > 0. We conclude thatf > 0 onRn+. The reasoning
for a non-strict inequality (i.e.,f � 0 onA) is similar.

Corollary 2.1(2) will be proved in Section 5.2.✷
Corollary 5.3. If f ∈Σ [n]

3 , then for everyσ > 0 we have

min
x∈Kσ

f (x)= min
1�k�n

f (σk−11k,0n−k).

Proof. Since f ∈ F [n]3,1 and P1 ∈ Ω
[n]
1 , the conclusion follows immediately by The

rem 5.2. ✷
In the homogeneous case we obtain the following corollary, which is known in

context of even symmetric sextics (see [3, Theorem 3.7]).

Corollary 5.4. If f ∈H[n]d andd � 3, then

f � 0 on Rn+ ⇔ f (1k,0n−k)� 0, ∀k ∈ 1, n.

Remark 5.2. For d � 4 andn � 2, the previous equivalence is no longer true. Inde
f := P2Pd−2 − P1Pd−1 ∈H[n]d satisfiesf (1k,0n−k) = 0 for everyk ∈ 1, n, but f (x) =
−∑

1�i<j�n xixj (xi − xj )(x
d−3
i − xd−3

j ) � 0 onRn+ andf (2,1,0n−2) < 0.

5.2. Symmetric inequalities onRn

Our theory (results and proofs) forRn+ can be adapted to the study of symmetric po
nomials or more general symmetric functions onRn. This can be done according to t
following translation table (TT):
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Symbol To be substituted by For every

Rk+ Rk k ∈N∗
]0,∞[ k Rk \ {0k} k ∈N∗
v∗(x) v(x) x ∈Rk , k ∈N∗
supp(x) 1, k x ∈Rk , k ∈N∗

Substitutions for]0,∞[ k by Rk \ {0k} will be made in our previous statements and pro
only if the exponent is present (even ifk = 1), but]0,∞[ will remain unchanged (e.g., i
Definition 3.1(C), Lemma 3.1, etc.).

We first need the following correspondent of Lemma 4.1.

Lemma 5.2. For every ξ ∈ Rn with r := v(ξ) � 3, there exists a bounded interv
I =]α,β[ and a functionϕ : Ī →Rn, satisfying

(i) t0 := Pr(ξ) ∈ I andϕ(t0)= ξ;
(ii) ϕ is continuous on̄I ;
(iii) Pi ◦ ϕ ≡ Pi(ξ) for eachi < r, butPr(ϕ(t))= t for everyt ∈ Ī ;
(iv) v(ϕ(t))= r for everyt ∈ I , butv(ϕ(α)) < r andv(ϕ(β)) < r;
(vi) ϕ ∈ C∞(I,Rn) andϕ′j �= 0 on I for everyj ∈ 1, n;
(vii) If r = n, thenPk ◦ ϕ is an affine function for eachk < 2n and

(Pk ◦ ϕ)′ ≡ k

n
hk−n(ξ), ∀k ∈ n,2n− 1.

Proof. Replacing in the proof of Lemma 4.1 Eqs. (12) and (13) by

|t| = ∣∣Pr

(
ϕ(t)

)∣∣<P2
(
ϕ(t)

)r/2= P2(ξ)
r/2, ∀t ∈ I, (25)

ψ2
j <

r∑
i=1

niψ
2
i = P2 ◦ ϕ ≡ P2(ξ), ∀j ∈ 1, r, (26)

then removing item (v) and the inequality from (14), and finally reading all with (TT) g
a valid proof. The hypothesisr � 3 is needed in (25). ✷

Translating Definitions 1.1, 3.1, and 3.2 by (TT) leads to anew notionof (s)-path,new
classes of functions̃G[n]s , F̃ [n]d,s, Ω̃

[n]
s (we require thatd � s � 2 for this new definition)

consisting of functions defined onRn \ {0n} andnew setsK̃σ (ω), K̃
s
σ (ω), M̃σ (f,ω). Let

us consider the following setting:

f ∈ F̃ [n]d,s, ω ∈ Ω̃ [n]
s , σ > 0, ξ ∈ M̃σ (f,ω), d � 2s + 1.

An important particular caseis f ∈Σ
[n]
d , ω= P2.

Claim 5.1. Translating by (TT) from Sections 3 and 5.1all results and proofswhich were
given before the proof of Corollary 2.1(1) leads tonew results with valid proofs.11

11 We verified this by making all changes for the concerned results into the “tex.” file of this article. The
after typesetting makes sense and all works.
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We will now refer to a translated result by adding “˜” over its number. Rewriting with
(TT) and verifying those proofs that do not use Lemma 4.1 poses no problem. All
proofs were based on the initial assumptionv∗(ξ) > s, which, upon translation by (TT)
turns intov(ξ) > s. As s � 2, we havev(ξ) � 3, and therefore in the new setting we c
use Lemma 5.2 instead of Lemma 4.1. The proof of Theorem5̃.2 simplifies (we will have
J = 1, n, m := |J | = n � r := v(ξ) > s, hencef [m] = f , ω[m] = ω, etc.). The detailed
verification of the rewritten proofs is left to the reader. We thus get the corresponde
Theorems 5.1 and 5.2 and of Corollary 5.2.

Theorem 5.3 (Of enlargement).If v(ξ) > s, then for everyε > 0, the pointξ is connected
by an injective(s)-path in M̃σ (f,ω) ∩ B(ξ, ε) to a point ζ �= ξ with pairwise distinct
components.

Theorem 5.4 (Of reduction).The pointξ is connected by an(s)-path in M̃σ (f,ω) to a
pointζ satisfyingv(ζ ) � s. In particular, we have

min
x∈K̃σ (ω)

f (x)= min
x∈K̃s

σ (ω)

f (x).

Corollary 5.5. Considerf,g ∈ F̃ [n]d,s , ω ∈ Ω̃ [n]
s , σ > 0, withg > 0 onK̃σ (ω). If d � 2s+1,

then

min
x∈K̃σ (ω)

f (x)

g(x)
= min

x∈K̃s
σ (ω)

f (x)

g(x)
.

Proof of Corollary 2.1(2). Fix d ∈ N∗, f ∈ Σ
[n]
d , set s := (d/2) ∨ 2, and assume tha

f > 0 onA := {x ∈ Rn | v(x) � s}. We shall prove thatf > 0 on Rn. To show this, fix
x ∈Rn \A and setσ := P2(x). Since 0n ∈A, we havex �= 0n, and soσ > 0. Asf ∈ F̃ [n]d∨2,s

by Remark3̃.1 andP2 ∈ Ω̃
[n]
s , Theorem 5.4 shows that∃ζ ∈Mσ(f )∩A �= ∅. But x ∈Kσ

now leads tof (x) � f (ζ ) > 0. We conclude thatf > 0 onRn. The proof for a non-stric
inequality (i.e.,f � 0 onA) is similar. ✷

The last part of the following corollary is an equivalent form of Theorem 2.3 in [5].

Corollary 5.6. If f ∈H[n]4 , then

f � 0 on Rn ⇔ f (t · 1k,1n−k) � 0, ∀t ∈ [−1,1], ∀k ∈ 1, n− 1,

f � 0 on Rn+ ⇔ f (t · 1k,1l ,0n−k−l )� 0, ∀t ∈ [0,1], ∀k, l ∈N, k + l � n.

For the results of Hilbert and Artin on Hilbert’s 17th Problem and of Pólya on str
positive forms, we refer the reader to [1,6] and [4]. Bounds for the exponent from Pó
theorem are given in [8,13]. Various symmetric inequalities can be found especially
11], but also in [2,7,12,14].
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