

J. Math. Anal. Appl. 303 (2005) 90-102

www.elsevier.com/locate/jmaa

Integral estimates for convergent positive series

Vlad Timofte

Département de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland Received 3 February 2004 Available online 24 November 2004 Submitted by H.R. Parks

Abstract

It is shown that for every $\alpha > 1$, we have

$$\sum_{k=n+1}^{\infty} \frac{1}{k^{\alpha}} = \frac{1}{(\alpha-1)(n+\theta_n)^{\alpha-1}}$$

for some strictly decreasing sequence $(\theta_n)_{n \ge 1}$ such that

$$\frac{1}{2} < \theta_n < \frac{1}{4} \left[1 + \left(1 + \frac{1}{2n+1} \right)^{\alpha} \right],$$

hence with $\lim_{n\to\infty} \theta_n = \frac{1}{2}$. This is only a particular case of more general new results on series defined by convex functions.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Positive series; Convex function; Harmonic series; Partial sum

E-mail address: vlad.timofte@epfl.ch.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.07.004

1. Introduction

Let $f : [1, \infty[\rightarrow]0, \infty[$ be a convex differentiable function, such that the series $\sum_{n \ge 1} f(n)$ converges. We will show that

$$\sum_{k=n+1}^{\infty} f(k) = \int_{n+\theta_n}^{\infty} f(t) dt \quad \text{for every } n \ge 1,$$
(1)

for some unique sequence $(\theta_n)_{n \ge 1} \subset]\frac{1}{2}$, 1[. Under reasonable assumptions the sequence is strictly decreasing to $\frac{1}{2}$. In this case, among all integral expressions $\int_{n+\alpha}^{\infty} f(t) dt$, the best asymptotic approximation for series' *n*th remainder is obtained for $\alpha = \frac{1}{2}$. As we shall see (Proposition 1 and Theorem 3), this "half integer" optimality is *strongly related to slow convergence* ($\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = 1$) of the series. If the ratio test limit is less than 1, then $\frac{1}{2}$ is *no longer optimal*.

Let us recall that approximations for partial sums in terms of $n + \frac{1}{2}$ were used in [2] for the harmonic series (slowly divergent!), and in a hidden form in [3]. In the latter, for the alternating harmonic series (slowly convergent!), *n*th remainder's absolute value is expressed as

$$\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k}\right| = \frac{1}{2n+x_n}.$$

The main result from [3] states that the sequence $(x_n)_{n \ge 1}$ is strictly decreasing and provides good estimates for its convergence to 1. If we write this series as $\sum_{n \ge 1} (-1)^{n-1} g(n)$ for $g(x) = \frac{1}{x}$, then

$$\frac{1}{2n+x_n} = \frac{1}{2}g\left(n+\frac{x_n}{2}\right).$$

Thus the theorem from [3] actually has a half integer approximation nature. This was also pointed out in [4], where the results from [3] were generalized for Leibniz series defined by convex functions.

Our main results (Theorems 3, 6, and 9) are in the spirit of [3,4] and hold in particular for $f(x) = 1/x^{\alpha}$, with $\alpha > 1$, hence for all convergent generalized harmonic series. For instance, in the particular case $\alpha = 2$ we have

$$\frac{1}{n+\frac{1}{2}} > \frac{\pi^2}{6} - \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{n+\theta_n}$$

for some strictly decreasing sequence $(\theta_n)_{n \ge 1}$, with

$$\theta_1 = \frac{6}{\pi^2 - 6} - 1 \approx 0.5505461$$

and

$$\frac{1}{2} < \theta_n < \frac{1}{2} \left[1 + \frac{1}{\sqrt{4(n+1)^2 + 1} + 2(n+1)} \right] < \frac{1}{2} + \frac{1}{8(n+1)}$$

(the first majorant of θ_n is given by (14)).

2. Existence and convergence of $(\theta_n)_{n \ge 1}$

Let us observe that (1) depends only on the restriction $f|_{[\frac{3}{2},\infty[}$. Therefore, we shall consider a continuous function $f:[1,\infty[\rightarrow]0,\infty[$, which is subject to the following conditions:

(i) the series $\sum_{n \ge 1} f(n)$ converges,

(ii)
$$f|_{\frac{3}{2}} \propto f$$
 is convex.

Let us note that $f|_{[\frac{3}{2},\infty[}$ must be strictly decreasing. Set $S_n := \sum_{k=1}^n f(k)$ for every $n \in \mathbb{N}^* := \mathbb{N} \setminus \{0\}$ and $S := \lim_{n \to \infty} S_n$. Since $\int_1^\infty f(t) dt < \infty$ according to the integral test, we can define

$$F:[1,\infty[\rightarrow\mathbb{R},\qquad F(x)=-\int_{x}^{\infty}f(t)\,dt.$$

Obviously, *F* is the unique primitive of *f* vanishing at infinity. Hence *F* is strictly increasing and $F|_{[\frac{3}{2},\infty[}$ is strictly concave.

Let us recall that any convex continuous $g : [a, b] \to \mathbb{R}$ satisfies the well-known Hadamard inequalities

$$g\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} g(t) dt \leqslant \frac{g(a)+g(b)}{2},$$
(2)

and both inequalities are strict if g is not an affine function.¹

Proposition 1. There exists a unique sequence $(\theta_n)_{n \ge 1} \subset [\frac{1}{2}, 1]$, such that

$$S_n - S = F(n + \theta_n) \quad \text{for every } n \in \mathbb{N}^*.$$
(3)

This sequence depends only on the restriction $f|_{l^{\frac{3}{2},\infty[}}$. We have the estimates

$$F\left(n+\frac{1}{2}\right) \leqslant S_n - S \leqslant F(n+1) - \frac{f(n+1)}{2},\tag{4}$$

$$\frac{1}{2} \leqslant \theta_n < \frac{1}{4} \left[1 + \frac{f\left(n + \frac{1}{2}\right)}{f\left(n + 1\right)} \right],\tag{5}$$

for every $n \in \mathbb{N}^*$. In particular, if $\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = 1$, then $\lim_{n\to\infty} \theta_n = \frac{1}{2}$.

Proof. Let us define the sequences $(X_n)_{n \ge 1}$ and $(Y_n)_{n \ge 1}$ by

$$X_n := S_n - S - F\left(n + \frac{1}{2}\right), \qquad Y_n := S_n - S - F(n+1) + \frac{f(n+1)}{2}.$$

¹ That is, $g(x) = \lambda x + \mu$ for some $\lambda, \mu \in \mathbb{R}$.

By (2) we deduce that $(X_n)_{n \ge 1}$ is decreasing and $(Y_n)_{n \ge 1}$ is increasing. As $\lim_{n \to \infty} X_n = \lim_{n \to \infty} Y_n = 0$, it follows that $Y_n \le 0 \le X_n$ for every $n \in \mathbb{N}^*$. We thus get (4), as well as the existence of a unique sequence $(\theta_n)_{n \ge 1} \subset [\frac{1}{2}, 1[$ satisfying (3), since *F* is continuous and strictly increasing.

It remains to prove (5). For every $n \in \mathbb{N}^*$, using (2) and (4) yields

$$\frac{f(n+\frac{1}{2})-f(n+1)}{4} \ge \int_{n+\frac{1}{2}}^{n+1} f(t) dt - \frac{f(n+1)}{2} \ge S_n - S - F\left(n+\frac{1}{2}\right)$$
$$= F(n+\theta_n) - F\left(n+\frac{1}{2}\right)$$
$$\ge \left(\theta_n - \frac{1}{2}\right) f\left(n+\frac{2\theta_n+1}{4}\right) \ge \left(\theta_n - \frac{1}{2}\right) f\left(n+\frac{3}{4}\right).$$

We thus get

$$\theta_n - \frac{1}{2} \leqslant \frac{f(n+\frac{1}{2}) - f(n+1)}{4f(n+\frac{3}{4})} < \frac{f(n+\frac{1}{2}) - f(n+1)}{4f(n+1)},$$

that is, (5). We also have

$$\theta_n < \frac{1}{4} \left[1 + \frac{f(n)}{f(n+1)} \right]$$

for every $n \ge 2$, which proves the last statement. \Box

Remark 2.

- (a) If $f|_{\frac{3}{2},\infty[}$ is differentiable or strictly convex, then (4) and (5) hold with strict inequalities.
- (b) If $f|_{[\frac{3}{2},\infty[}$ is differentiable, then

$$0 < S_n - S - F\left(n + \frac{1}{2}\right) < -\frac{f'(n + \frac{1}{2})}{8} \quad \text{for every } n \in \mathbb{N}^*.$$
(6)

(a) follows from the strict inequalities $X_n > 0 > Y_n$. Suppose that $X_{n_0} = 0$ for some $n_0 \in \mathbb{N}^*$, that is, $X_{n+1} = X_n$ for $n \ge n_0$. It follows that $f|_{[n-\frac{1}{2},n+\frac{1}{2}]}$ is affine (equality in (2)) for every $n > n_0$. Thus, $f|_{]\frac{3}{2},\infty[}$ must be differentiable, since it is not strictly convex. We deduce that $f|_{[n_0+\frac{1}{2},\infty[}$ is affine, which is absurd, because f > 0 and $\lim_{n\to\infty} f(n) = 0$. Hence $X_n > 0$. The proof of the inequality $Y_n < 0$ is similar.

For (b) we combine (4), the second order Taylor expansion of F(x) (at n + 1, for $x = n + \frac{1}{2}$) with remainder in derivative form, and the monotony of f'.

Our next result provides a convergence test for the sequence $(\theta_n)_{n \ge 1}$, as well as the value of its limit. Let us define

$$L:[0,1] \to \mathbb{R}, \qquad L(x) = \begin{cases} 1, & \text{if } x = 0, \\ \ln\left(\frac{x \ln x}{x-1}\right) / \ln x, & \text{if } x \in]0, 1[, \\ \frac{1}{2}, & \text{if } x = 1. \end{cases}$$

It is easy to check that L is continuous and $\frac{1}{2} \leq L \leq 1$. Hence $L([0, 1]) = [\frac{1}{2}, 1]$.

Theorem 3. If $\lim_{x\to\infty} \frac{f(x+t)}{f(x)}$ exists² for every $t \in [0, 1]$, then the sequence $(\theta_n)_{n \ge 1}$ converges. For $a := \lim_{n\to\infty} \frac{f(n+1)}{f(n)} \in [0, 1]$, we have

$$\lim_{n \to \infty} \theta_n = L(a). \tag{7}$$

Proof. Let us first observe that $\omega(t) := \lim_{x \to \infty} \frac{f(x+t)}{f(x)} \in [0, 1]$ exists for every $t \ge 0$ (we can obtain it as a finite product of limits as in our statement), and that $\omega : [0, \infty[\to [0, 1]]$ is decreasing, since so is $f|_{[\frac{3}{2},\infty[}$. It is easily seen that $\omega(t+s) = \omega(t)\omega(s)$ for all $t, s \ge 0$. It follows that $\omega(t) = a^t$ for every t > 0, where $a = \omega(1) \in [0, 1]$. To prove (7) we need to analyze three cases.

Case 1. If a = 1, the conclusion follows by Proposition 1.

Case 2. If $a \in [0, 1[$, then for every $n \in \mathbb{N}^*$ we have $z_n := S_n - S - F(n + \theta) = F(n + \theta_n) - F(n + \theta) = (\theta_n - \theta) f(n + \lambda_n)$ for some $\lambda_n \in]\frac{1}{2}, 1[$, by the mean value theorem of Lagrange. We thus get

$$|\theta_n - \theta| = \frac{|z_n|}{f(n+\lambda_n)} \leqslant \frac{|z_n|}{f(n+1)} \quad \text{for every } n \in \mathbb{N}^*.$$
(8)

We next prove by applying Cesaro–Stolz theorem (0/0) that $\lim_{n\to\infty} \frac{z_n}{f(n+1)} = 0$ for suitable θ . An easy computation leads for $n \ge 2$ to

$$\frac{z_n - z_{n-1}}{f(n+1) - f(n)} = \frac{1}{f(n+1)/f(n) - 1} \times \left[1 - \frac{f(n+\theta - 1)}{f(n)} \int_0^1 \frac{f(n+\theta - 1+t)}{f(n+\theta - 1)} dt \right].$$

As Lebesgue's theorem shows that

$$\lim_{n \to \infty} \int_{0}^{1} \frac{f(n+\theta-1+t)}{f(n+\theta-1)} dt = \int_{0}^{1} a^{t} dt = \frac{a-1}{\ln a},$$

² For instance, if f is log-convex (that is, $\ln(f)$ is a convex function).

we have

$$\lim_{n \to \infty} \frac{z_n}{f(n+1)} = \lim_{n \to \infty} \frac{z_n - z_{n-1}}{f(n+1) - f(n)} = \frac{1}{a - 1} \left(1 - \frac{1}{a^{1-\theta}} \frac{a - 1}{\ln a} \right).$$

Since this limit is 0 for $\theta = L(a)$, the conclusion follows by (8).

Case 3. If a = 0, let $\varepsilon \in [0, 1[$ and $\alpha := 1 - \frac{\varepsilon}{2} \in]\frac{1}{2}, 1[$. As $\omega \equiv 0$, there exists $n_{\varepsilon} \in \mathbb{N}^*$, such that $\frac{f(x+\frac{\varepsilon}{2})}{f(x)} < \frac{\varepsilon}{3}$ for every $x \in [n_{\varepsilon}, \infty[$. Thus, $\frac{f(n+1)}{f(n+\alpha)} < \frac{\varepsilon}{3}$ for $n \ge n_{\varepsilon}$. If we prove that $\theta_n > 1 - \varepsilon$ for every $n \ge n_{\varepsilon}$, the assertion follows. On the contrary, suppose that $\theta_m \le 1 - \varepsilon < \alpha$ for some $m \ge n_{\varepsilon}$. By (3) and the concavity of F < 0, it follows that

$$S - S_m = -F(m + \theta_m) > F(m + \alpha) - F(m + \theta_m) \ge (\alpha - \theta_m) f(m + \alpha)$$
$$\ge \frac{\varepsilon}{2} f(m + \alpha) > \frac{3}{2} f(m + 1).$$

Let us observe that

$$\frac{f(n+1)}{f(n)} < \frac{f(n+\frac{\varepsilon}{2})}{f(n)} < \frac{\varepsilon}{3} \quad \text{for } n > n_{\varepsilon},$$

and hence

$$\frac{f(m+k)}{f(m+1)} \leqslant \left(\frac{\varepsilon}{3}\right)^{k-1} \quad \text{for every } k \in \mathbb{N}^*.$$

We thus get

$$S - S_m = \sum_{k=1}^{\infty} f(m+k) \leqslant \frac{f(m+1)}{1 - \frac{\varepsilon}{3}} < \frac{3}{2}f(m+1),$$

a contradiction. We conclude that $\lim_{n\to\infty} \theta_n = 1$. \Box

As Example 7 will show, all numbers from $[\frac{1}{2}, 1]$ are potential limits of the sequence $(\theta_n)_{n \ge 1}$.

3. Monotony of $(\theta_n)_{n \ge 1}$

The sequence $(\theta_n)_{n \ge 1}$ need not be monotone in general.

Example 4. Let us consider the function

$$f:[1,\infty[\to\mathbb{R}, f(x)] = \begin{cases} \frac{8x^2 - 25x + 21}{4}, & x \in [1,\frac{3}{2}], \\ \frac{3-x}{4}, & x \in [\frac{3}{2},2], \\ \frac{1}{x^2}, & x \in [2,\infty[.$$

Then f is continuously differentiable and convex,

$$\sum_{n=1}^{\infty} f(n) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

 $\lim_{n\to\infty} \theta_n = \frac{1}{2}$, but $\frac{1}{2} < \theta_1 < \theta_2$. Therefore $(\theta_n)_{n \ge 1}$ is not monotone.

We have $f(n) = \frac{1}{n^2}$ for every $n \in \mathbb{N}^*$. Some easy computations show that $f \in C^1([1, \infty[) \text{ and }$

$$f'(x) = \begin{cases} \frac{16x-25}{4}, & x \in [1, \frac{3}{2}], \\ -\frac{1}{4}, & x \in [\frac{3}{2}, 2], \\ -\frac{2}{x^3}, & x \in [2, \infty[, \end{cases} \qquad F(x) = \begin{cases} -\frac{(x-3)^2+3}{8}, & x \in [\frac{3}{2}, 2], \\ -\frac{1}{x}, & x \in [2, \infty[. \end{cases}$$

We see that f' is increasing, that is, f is convex. That $\lim_{n\to\infty} \theta_n = \frac{1}{2}$ follows by Proposition 1. We have $S_1 - S = F(1 + \theta_1)$, $S_2 - S = F(2 + \theta_2)$, and so

$$\theta_1 = 2 - \sqrt{\frac{4\pi^2}{3} - 11} < 0.5305, \qquad \theta_2 = \frac{12}{2\pi^2 - 15} - 2 > 0.532.$$

Lemma 5. Let $g: [a, b] \to \mathbb{R}$ be a continuous function and $c \in [a, b]$, such that

$$\int_{a}^{b} g(t) dt = g(c)(b-a).$$

Assume $g|_{]a,b[}$ to be twice differentiable, with $g' \neq 0$ and $\frac{g''}{g'}$ monotone.³ If g and $\frac{g''}{g'}$ have opposite monotonies, then

$$g(b) - g(a) \leqslant g'(c)(b - a). \tag{9}$$

If g and $\frac{g''}{g'}$ have the same monotony, then converse inequality holds in (9). Strict inequality holds if $\frac{g''}{p'}$ is strictly monotone.

Proof. We shall assume that -g and $\frac{g''}{g'}$ are increasing on]a, b[, hence that g' < 0 (the proof is similar in all other cases). Fix a primitive $G : [a, b] \to \mathbb{R}$ of g, and define $u : [a, c] \times [c, b] \to \mathbb{R}, u(x, y) = G(y) - G(x) - g(c)(y - x)$.

Step 1. We first show that there is a unique function $\varphi : [a, c] \rightarrow [c, b]$ satisfying

$$u(x,\varphi(x)) = 0 \quad \text{for every } x \in [a,c]. \tag{10}$$

Let us observe that $\frac{\partial u}{\partial x}(x, y) = g(c) - g(x)$ and $\frac{\partial u}{\partial y}(x, y) = g(y) - g(c)$, and consequently the partial functions $u(x, \cdot) : [c, b] \to \mathbb{R}$ and $u(\cdot, y) : [a, c] \to \mathbb{R}$ are strictly decreasing for all fixed $x \in [a, c]$, $y \in [c, b]$. From this, it follows that $u(x, c) \ge u(c, c) = 0 = u(a, b) \ge$ u(x, b), with strict inequalities if $x \in [a, c[$. As u is continuous, there exists a unique solution $y =: \varphi(x) \in [c, b]$ of the equation u(x, y) = 0. We thus get the required implicit function $\varphi: [a, c] \to [c, b]$. Let us note that $\varphi(a) = b, \varphi(c) = c$, and $\varphi([a, c[) \subset]c, b[$.

Step 2. We next prove that φ is continuous, $\varphi|_{]a,c[}$ is differentiable, and

$$\varphi'(x) = \frac{g(x) - g(c)}{g(\varphi(x)) - g(c)} < 0 \quad \text{for every } x \in]a, c[. \tag{11}$$

³ This is related to the convexity or concavity of $\ln(|g'|)$ on]a, b[.

The differentiability of $\varphi|_{]a,c[}$ and relation (11) follow by applying the implicit function theorem to *u* at every point $(x, \varphi(x)) \in]a, c[\times]c, b[$. As by (11) $\varphi|_{]a,c[}$ is decreasing, both limits $\lambda_a := \lim_{x \searrow a} \varphi(x)$ and $\lambda_c := \lim_{x \nearrow c} \varphi(x)$ exist in [c, b]. Since passages to the limit in (10) lead to $u(a, \lambda_a) = 0 = u(a, \varphi(a))$ and $u(c, \lambda_c) = 0 = u(c, \varphi(c))$, by the uniqueness of φ we deduce that $\lambda_a = \varphi(a)$ and $\lambda_c = \varphi(c)$. We conclude that φ is continuous.

Step 3. We finally prove the required inequality from (9). The continuous function h: $[a, c] \to \mathbb{R}$, $h(x) = g(\varphi(x)) - g(x) - g'(c)(\varphi(x) - x)$ is differentiable on]a, c[. For every $x \in]a, c[$, using (11) leads to

$$\frac{h'(x)}{g(x) - g(c)} = \frac{g'(\varphi(x)) - g'(c)}{g(x) - g(c)} \varphi'(x) - \frac{g'(x) - g'(c)}{g(x) - g(c)}$$
$$= \frac{g'(\varphi(x)) - g'(c)}{g(\varphi(x)) - g(c)} - \frac{g'(x) - g'(c)}{g(x) - g(c)} = \frac{g''(b_x)}{g'(b_x)} - \frac{g''(a_x)}{g'(a_x)} \ge 0$$

for some $x < a_x < c < b_x < \varphi(x)$, as follows by applying Cauchy's theorem for the differentiable functions g' and g. Hence h is increasing, and consequently $0 = h(c) \ge h(a) = g(b) - g(a) - g'(c)(b - a)$. \Box

Theorem 6. Assume $f|_{\frac{3}{2},\infty[}$ to be twice differentiable. If the function $\frac{f''}{f'}$ is monotone (strictly or not), then the sequence $(\theta_n)_{n\geq 1}$ has the opposite monotony. Furthermore, the limit $\lim_{n\to\infty} \frac{f(n+1)}{f(n)} =:$ a exists and (7) holds.

Proof. We shall assume that $\frac{f''}{f'}$ is increasing on $]\frac{3}{2}$, $\infty[$. The proof is similar in the case of strict monotony. By (3), we have the recurrence relation

$$F(n+\theta_n) - F(n-1+\theta_{n-1}) = f(n) \quad \text{for every } n \ge 2.$$
(12)

Step 1. Let us show that there is a unique function $\Theta:]\frac{3}{2}, \infty[\rightarrow]\frac{1}{2}, 1[$ satisfying

$$F(x + \Theta(x)) - F(x + \Theta(x) - 1) = f(x) \quad \text{for every } x \in \left[\frac{3}{2}, \infty\right[. \tag{13}$$

Define $v:]\frac{3}{2}, \infty[\times [\frac{1}{2}, 1] \to \mathbb{R}, v(x, y) = F(x + y) - F(x + y - 1) - f(x)$ and fix $x \in]\frac{3}{2}, \infty[$. The partial function $v(x, \cdot)$ is strictly decreasing, since $\frac{\partial v}{\partial y}(x, y) = f(x + y) - f(x + y - 1) < 0$. As *F* is strictly concave, we have v(x, 1) = F(x + 1) - F(x) - f(x) < 0. By (2) we deduce that $v(x, \frac{1}{2}) \ge 0$. Assume that $v(x, \frac{1}{2}) = 0$, that is, $f|_{|x-\frac{1}{2},x+\frac{1}{2}[}$ is affine. Since f''(x) = 0 and $\frac{f''}{f'} \le 0$ is increasing, it follows that $f''|_{[x,\infty[} \equiv 0$, hence that $f|_{[x,\infty[}$ is affine. This is absurd, because f > 0 and $\lim_{n\to\infty} f(n) = 0$. Thus, $v(x, \frac{1}{2}) > 0 > v(x, 1)$. As *v* is continuous, there exists a unique solution $y =: \Theta(x) \in]\frac{1}{2}, 1[$ of the equation v(x, y) = 0. We thus get the required implicit function $\Theta:]\frac{3}{2}, \infty[\to]\frac{1}{2}, 1[$. **Step 2.** We next prove that Θ is decreasing. Applying the implicit function theorem to v at every point $(x, \Theta(x)) \in]\frac{3}{2}, \infty[\times]\frac{1}{2}, 1[$ shows that Θ is differentiable. We also have

$$\Theta'(x) = -\frac{\frac{\partial v}{\partial x}(x,\Theta(x))}{\frac{\partial v}{\partial y}(x,\Theta(x))} = \frac{f(x+\Theta(x)) - f(x+\Theta(x)-1) - f'(x)}{f(x+\Theta(x)-1) - f(x+\Theta(x))} \leqslant 0,$$

the last inequality being a consequence of Lemma 5 (applied for g = f and $a = x + \Theta(x) - 1$, $b = x + \Theta(x)$, c = x). Hence Θ is decreasing.

Step 3. We continue by showing that $(\theta_n)_{n \ge 1}$ is decreasing and satisfies⁴

$$\theta_n \leqslant \Theta(n+1) \quad \text{for every } n \in \mathbb{N}^*.$$
 (14)

Set $T_n := S_n - F(n + \Theta(n))$ for every $n \in \mathbb{N}^*$. The following equivalent statements hold, since so does the last one:

$$T_{n+1} \ge T_n \qquad \stackrel{(13)}{\longleftrightarrow} \qquad F\left(n + \Theta(n)\right) \ge F\left(n + 1 + \Theta(n+1)\right) - f(n+1)$$
$$= F\left(n + \Theta(n+1)\right)$$
$$\stackrel{F\uparrow}{\longleftrightarrow} \qquad \Theta(n) \ge \Theta(n+1).$$

Hence the sequence $(T_n)_{n \ge 1}$ is increasing. As $\lim_{n \to \infty} T_n = S$, we have $T_n \le S$ for every $n \in \mathbb{N}^*$. The following equivalent statements hold for every $n \ge 2$, since so does the last one:

$$\begin{array}{ll} \theta_{n-1} \geqslant \theta_n & \stackrel{F\uparrow,(12)}{\longleftrightarrow} & F(n+\theta_{n-1}) \geqslant F(n+\theta_n) = F(n-1+\theta_{n-1}) + f(n) \\ & \longleftrightarrow & v(n,\theta_{n-1}) \geqslant 0 = v\left(n,\Theta(n)\right) \\ & \stackrel{v(n,\cdot)\downarrow}{\longleftrightarrow} & \theta_{n-1} \leqslant \Theta(n) \\ & \stackrel{(3),F\uparrow,(13)}{\longleftrightarrow} & S_{n-1} - S = F(n-1+\theta_{n-1}) \leqslant F\left(n-1+\Theta(n)\right) \\ & = F\left(n+\Theta(n)\right) - f(n) \\ & \longleftrightarrow & T_n \leqslant S. \end{array}$$

We conclude that $(\theta_n)_{n \ge 1}$ is decreasing, and that (14) holds.

The last part of our statement follows by Theorem 3 if we prove that the limit $\lim_{x\to\infty} \frac{f(x+t)}{f(x)}$ exists for each $t \in [0, 1]$. The function $\rho_t :]\frac{3}{2}, \infty[\rightarrow]0, 1], \rho_t(x) = \frac{f'(x+t)}{f'(x)}$ is increasing, since

$$\rho_t'(x) = \rho_t(x) \left(\frac{f''(x+t)}{f'(x+t)} - \frac{f''(x)}{f'(x)} \right) \ge 0.$$

Hence $\lim_{x\to\infty} \rho_t(x)$ exists, and so $\lim_{x\to\infty} \frac{f(x+t)}{f(x)}$ exist too, by l'Hôpital's rule. \Box

⁴ With strict inequality, if $\frac{f''}{f'}$ is strictly increasing.

Example 7.

- (a) For $f(x) = \frac{1}{x^{\alpha}}$ ($\alpha > 1$), we have $\lim_{n \to \infty} \theta_n = \frac{1}{2} = L(1)$, and $(\theta_n)_{n \ge 1}$ is strictly decreasing.
- (b) For $f(x) = a^x$ $(a \in]0, 1[)$, we have $\lim_{n \to \infty} \theta_n = L(a)$, and $(\theta_n)_{n \ge 1}$ is constant.

. 1

(c) For $f(x) = e^{-x^2}$, we have $\lim_{n \to \infty} \theta_n = 1 = L(0)$, and $(\theta_n)_{n \ge 1}$ is strictly decreasing.

That the above statements hold is clear by Theorem 6.

4. An iterative method

Let us observe that for every $n \in \mathbb{N}^*$, the expression

$$S_n - S - F\left(n + \frac{1}{2}\right) = \sum_{k=n+1}^{\infty} \left[\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} f(t) dt - f(k)\right]$$

is the *n*th remainder of a convergent series associated to a function $g : [\frac{3}{2}, \infty[\rightarrow [0, \infty[$. If g is convex, then inequalities (4) may be applied to this new series. Furthermore, under suitable assumptions we may repeat this argument again. This reasoning justifies our following construction.

For every $a \in \mathbb{R}$, let \mathcal{F}_a denote the real vector space consisting of all continuous functions $h : [a, \infty[\rightarrow \mathbb{R}]$. Let us consider the linear operator

$$J_a: \mathcal{F}_a \to \mathcal{F}_{a+\frac{1}{2}}, \qquad J_a h(x) = \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} h(t) \, dt - h(x).$$

Set $\mathcal{F} := \bigcup_{a \in \mathbb{R}} \mathcal{F}_a$ and define $J : \mathcal{F} \to \mathcal{F}$, such that $J|_{\mathcal{F}_a} = J_a$ for every $a \in \mathbb{R}$. The result of J(Jh) will be written as J^2h , and so on. The needed properties of J are collected in the following lemma.

Lemma 8. Let $h \in \mathcal{F}_a$.

(a) For all $m, n \in \mathbb{N}$ with $m > n \ge a - \frac{1}{2}$, we have

$$-\sum_{r=n+1}^{m}h(r)+\int_{n+\frac{1}{2}}^{m+\frac{1}{2}}h(t)\,dt=\sum_{r=n+1}^{m}Jh(r).$$

- (b) If h vanishes at infinity, then so does Jh.
- (c) If h is continuously differentiable, then so is Jh and (Jh)' = J(h').
- (d) If h is strictly convex, then Jh > 0.

(e) If h is twice differentiable, then for every $x \ge a + \frac{1}{2}$, there exists $\xi \in \left] -\frac{1}{2}, \frac{1}{2} \right]$, such that

$$Jh(x) = \frac{h''(x+\xi)}{24}.$$

Proof. Properties (b)–(d) are obvious, and (a) follows by a trivial computation. To prove (e), let us observe that for every $x \ge a + \frac{1}{2}$, a third order Taylor expansion of $[0, \frac{1}{2}] \ge u \mapsto \int_{x-u}^{x+u} h(t) dt \in \mathbb{R}$ at 0 shows that

$$Jh(x) = \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} h(t) dt - h(x) = \frac{h''(x+\eta) + h''(x-\eta)}{48}$$

for some $\eta \in [0, \frac{1}{2}[$. As h'' has the intermediate value property, we must have $\frac{h''(x+\eta)+h''(x-\eta)}{2} = h''(x+\xi)$ for some $\xi \in [-\eta, \eta] \subset [-\frac{1}{2}, \frac{1}{2}[$. \Box

Theorem 9. Assume f to be 2p + 2 times continuously differentiable $(p \in \mathbb{N})$, with $f^{(2p+2)} > 0$. Set

$$\sigma_p := \sum_{k=0}^p (-1)^k J^k F, \qquad \varepsilon_p(n) := J^p F(n+1) - J^p F\left(n + \frac{1}{2}\right) - \frac{J^p f(n+1)}{2}.$$

Then for every $n \ge \frac{p+1}{2}$ *we have*

$$0 < (-1)^{p+1} \left[S - S_n + \sigma_p \left(n + \frac{1}{2} \right) \right] < \varepsilon_p(n) < -\frac{f^{(2p+1)}(n - \frac{p-1}{2})}{8 \cdot 24^p}.$$
 (15)

Note that $\sigma_0 = F$, $\sigma_1 = F - JF$, $\sigma_2 = F - JF + J^2F$, and so on.

Proof. We can assume that $p \in \mathbb{N}^*$, since otherwise the conclusion follows by Remark 2(b). Fix $n \in \mathbb{N}^*$, $n \ge \frac{p+1}{2}$.

Step 1. We first prove the equality

$$(-1)^{p+1} \left[S - S_n + \sigma_p \left(n + \frac{1}{2} \right) \right] + J^p F \left(n + \frac{1}{2} \right) = -\sum_{r=n+1}^{\infty} J^p f(r).$$
(16)

Fix m > n. Repeated application of Lemma 8(b, c) yields $\lim_{x\to\infty} J^k F(x) = 0$ and $(J^k F)' = J^k f \in \mathcal{F}_{1+\frac{k}{2}}$. By Lemma 8(a) we deduce that

$$-\sum_{r=n+1}^{m} J^{k} f(r) + J^{k} F\left(m + \frac{1}{2}\right) - J^{k} F\left(n + \frac{1}{2}\right) = \sum_{r=n+1}^{m} J^{k+1} f(r),$$

hence that the series $\sum_{r \ge n+1} J^k f(r)$ converges for every $k \in \{0, 1, ..., p\}$, since it does so for k = 0 ($J^0 f = f$). We thus get

$$-\sum_{r=n+1}^{\infty} J^k f(r) - J^k F\left(n + \frac{1}{2}\right) = \sum_{r=n+1}^{\infty} J^{k+1} f(r) \quad \text{for } k \in \{0, 1, \dots, p-1\}.$$

Summation of the above equalities multiplied by $(-1)^{k+1}$ leads to (16).

Step 2. We next show the inequalities

_

$$J^{p}F\left(n+\frac{1}{2}\right) < -\sum_{r=n+1}^{\infty} J^{p}f(r) < J^{p}F\left(n+\frac{1}{2}\right) + \varepsilon_{p}(n).$$

$$(17)$$

Let us observe that $J^p f \in \mathcal{F}_{1+\frac{p}{2}}$ is convex, since according to Lemma 8(c, e), for every $x \ge 1 + \frac{p}{2}$ we have

$$(J^p f)''(x) = J^p (f'')(x) = \frac{f^{(2p+2)}(x+\xi)}{24^p} > 0$$

for some $\xi \in \left]-\frac{p}{2}, \frac{p}{2}\right]$. Therefore $J^p f$ is strictly convex and differentiable, and consequently it can be extended to a function $g: [1, \infty[\rightarrow]0, \infty[$ keeping these properties. For the convergent series $\sum_{s \ge 1} g(s + n - 1)$, applying (4) for s = 1 now gives

$$\int_{\frac{3}{2}}^{\infty} g(t+n-1) dt > \sum_{s=2}^{\infty} g(s+n-1) > \int_{2}^{\infty} g(t+n-1) dt + \frac{g(2)}{2},$$

which yields (17), since $g|_{[1+\frac{p}{2},\infty[} = J^p f$ and $n + \frac{1}{2} \ge 1 + \frac{p}{2}$.

Step 3. We finally prove (15). The first two estimates are just a combination of (16) and (17). Thus it remains to show the last inequality. As for Remark 2(b) we deduce that

$$\varepsilon_p(n) < -\frac{(J^p f)'(n+\frac{1}{2})}{8}.$$

As $f^{(2p+1)}$ is strictly increasing and a repeated application of Lemma 8(c, e) yields

$$(J^p f)' \left(n + \frac{1}{2} \right) = J^p (f') \left(n + \frac{1}{2} \right) = \dots = \frac{f^{(2p+1)} (n + \frac{1}{2} + \xi)}{24^p}$$

for some $\xi \in \left] - \frac{p}{2}, \frac{p}{2} \right]$, the inequality follows. \Box

Let us note that the last expression of (15) provides an a priori error estimate; for fixed $\varepsilon > 0$, it can be used to find suitable p, n. The following example shows that the error made by using $S_n - \sigma_p(n + \frac{1}{2})$ as an approximation for *S* may be surprisingly small even for small values of *n* and *p*.

Example 10. We shall apply Theorem 9 for $f:[1,\infty[\rightarrow]0,\infty[,f(x)=\frac{1}{x^3} \text{ and } p=1.$ Some easy computations show that

$$f'''(n) = -\frac{60}{n^6}, \qquad F(x) = -\frac{1}{2x^2}, \qquad Jf(x) = \frac{8x^2 - 1}{x^3(2x+1)^2(2x-1)^2},$$
$$JF(x) = -\frac{1}{2x^2(2x-1)(2x+1)}, \qquad \sigma_1\left(n+\frac{1}{2}\right) = -\frac{(2n+1)^2 - 2}{2n(n+1)(2n+1)^2},$$
$$\varepsilon_1(n) = \frac{10(n+1)^2 - 1}{2n(n+1)^3(2n+1)^2(2n+3)^2}.$$

By Theorem 9, we have

$$0 < S - S_n + \sigma_1\left(n + \frac{1}{2}\right) < \varepsilon_1(n) < \frac{5}{16n^6} \quad \text{for every } n \in \mathbb{N}^*.$$

Let us note that $\varepsilon_1(2) = \frac{89}{132300} < 0.7 \cdot 10^{-3}$, $\varepsilon_1(4) = \frac{83}{3267000} < 0.3 \cdot 10^{-4}$, and $\varepsilon_1(12) < 0.8 \cdot 10^{-7}$.

For high precision approximations (80 correct digits) for sums of generalized harmonic series with exponent $\alpha \in \{2, 3, ..., 251\}$ we refer the reader to [1].

References

- [1] M. Carmignani, G. Puleo, A. Tortorici Macaluso, Calculating to high precision the Euler-Mascheroni constant and generalized harmonic series. First applications to the calculation of the function $\Gamma(x)$, Atti Accad. Sci. Lett. Arti Palermo Parte I (4) 40 (1980/81) 211-223 (in Italian).
- [2] D.W. DeTemple, S.H. Wang, Half integer approximations for the partial sums of the harmonic series, J. Math. Anal. Appl. 160 (1991) 149-156.
- [3] L. Tóth, J. Bukor, On the alternating series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$, J. Math. Anal. Appl. 282 (2003) 21–25. [4] V. Timofte, On Leibniz series defined by convex functions, J. Math. Anal. Appl. 300 (2004) 160–171.