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Abstract

We prove strengthened and unified forms of vector-valued versions of the Stone–Weierstrass the-
orem. This is possible by using an appropriate factorization of a topological space, instead of the
traditional localizability. Our main Theorem 7 generalizes and unifies number of known results.
Applications from the last section include new versions in the scalar case, as well as simultaneous
approximation and interpolation under additional constraints.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction and notations

Throughout this paper,Tdenotes a topological space,Xa Hausdorff locally convex space
over the scalar field� ∈ {R,C}, andC(T ,X) the linear space of allX-valued continuous
functions onT. Many generalized Stone–Weierstrass theorems are intended to describe the
closure of a subsetE ⊂ H, in vector subspacesH ⊂ C(T ,X) endowed with various linear
topologies. Typically, such results consider a nonempty subsetS ⊂ C(T ,�), subject to one
of the following conditions:

�E + (1− �)E ⊂ E for every� ∈ S, (1)

S · E ⊂ E. (2)

The generality of this approach also consists in the fact that one may takeS = E in the case
of a subalgebraE ⊂ C(T ,�).
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Let us recall that every continuous� : T → [0,1] satisfying (1), is said to be amultiplier
of E. Thus, a set of multipliers is by definition a subset of

C(T , [0,1]) := {� : T → [0,1] |� is continuous}.
A setF of functions defined onT (and taking values in various sets) is said to beseparating,
if for all distinct t, s ∈ T , we havef (t) �= f (s) for somef ∈ F . From the viewpoint of
separating capabilities ofS, there are two kinds of results.

(A) If Sis required to be separating, thenT needs to be Hausdorff. These assumptions lead
to powerful results. Nevertheless, such theorems cannot be applied in the simple and
very frequent case of a nonseparating subalgebra ofC(T ,�), since no separatingScan
be found.

(B) If S is not required to be separating, the problem is reduced to a similar one on each
S-equivalence class (which is a subset ofT). Since all functions fromSare constant
on every such class, conditions as (1) and (2) are less useful, and there is no Stone–
Weierstrass-type theorem applicable to the reduced problem.

Our purpose is to establish a good compromise between (A) and (B).We will show that the
same conclusions can be obtained if we replace the assumptions from (A) by the weaker
condition

�S ⊂ �E, (3)

where�S and�E are the equivalence relations defined onT bySandE (see Section2.1 for
details). Roughly speaking, (3) says thatS is “more separating” thanE. Note that (3) holds
wheneverSis separating.Also, (2) and (3) hold ifE is a subalgebra ofC(T ,�) andS = E.

Let VX(0) denote the set of all convex open neighborhoods of the origin inX. The
following notations for vector subspaces ofC(T ,X) are standard:

Cc(T ,X) := {u ∈ C(T ,X) | suppu := u−1(X \ {0}) is compact},
C0(T ,X) := {u ∈ C(T ,X) | u−1(X \ W) is compact∀W ∈ VX(0)},
Cb(T ,X) := {u ∈ C(T ,X) | u(T ) is bounded}.

Here and elsewhere,compactmeans that every open covering has a finite subcovering
(without requiring Hausdorff separation). It is obvious that

Cc(T ,X) ⊂ C0(T ,X) ⊂ Cb(T ,X) ⊂ C(T ,X).

General setting:
From now on,H will mean any of the following three locally convex spaces (always

equipped with the topology specified below):

(c) C(T ,X), with the topology�c of uniform convergence on all compact subsets ofT (the
compact-open topology),

(u) C0(T ,X), with the topology�u of uniform convergence onT,
(�) Cb(T ,X), with the strict topology��, if T is a locally compact Hausdorff space. Recall

that the strict topology is defined by all weighted seminorms of the form

pw : Cb(T ,X) → R+, pw(u) := sup
t∈T

p(w(t)u(t))

with w ∈ C0(T ,R) and continuous seminormp : X → R+.
The closure inH of an arbitrary subsetE ⊂ H will be denoted byEH.
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Note that onC0(T ,X), we have�c��u (meaning that the second topology is stronger).
If T is a locally compact Hausdorff space, we also have�c�����u onC0(T ,X). All three
above cases coincide ifT is a compact Hausdorff space. Also, in the scalar caseX = �, the
vector spaceH is a subalgebra ofC(T ,�).
For applications it is useful to note that ifE ⊂ H0 ⊂ H, then

EH0 = EH ∩ H0,

whereH0 is considered as topological subspace (not necessarily linear) ofH. For instance,
the�c-closure ofE in H0 ⊃ E can be described in this way.

2. Needed facts

2.1. Factorization of T

Let F be a set of functions defined onT, eachf ∈ F taking its values in a setYf . The
equivalence relation�F defined byF onT is

(t, s) ∈ �F ⇐⇒ f (t) = f (s) for everyf ∈ F.

The pointst, s ∈ T are said to be�F -distinct, if (t, s) /∈ �F . For everyt ∈ T , let tF denote
its �F -class. The quotient set and the canonical surjection are

TF := T/�F = {tF | t ∈ T } and �F : T → TF , �F (t) = tF .

A function u : T → Y factorizes asu = û ◦ �F for someû : TF → Y , if and only if
�F ⊂ �{u} =: �u. In this casêu is unique, since�F is a surjection. In particular, every
f ∈ F factorizes uniquely as

f = f̂ ◦ �F , f̂ : TF → Yf

andF̂ := {f̂ | f ∈ F } obviously separatesTF . The quotient topology onTF is

{D ⊂ TF |�−1
F (D) is open inT }. (4)

If Y is a topological space andu : T → Y factorizes asu = û ◦ �F , thenu is continuous, if
and only ifû is, by (4).

Proposition 1. If every functionf ∈ F is continuous with respect to some Hausdorff
topology onYf , then the quotient topological spaceTF is Hausdorff.

Proof. The proof is straightforward (everŷf is continuous on the quotient spaceTF , whose

points are separated bŷF ). �

Now assume (3) holds forE andS. Thus, taking in the above constructionF = S leads
to the equivalence relation�S , and consequently to

(a) the Hausdorff quotient spaceTS = T/�S (even ifT is not Hausdorff),
(b) the subsetŝE = {̂v | v ∈ E} ⊂ C(TS,X) andŜ = {�̂ |� ∈ S} ⊂ C(TS,�).
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Note thatŜ separatesTS , and that̂u ∈ C0(TS,X) wheneveru ∈ C0(T ,X) (because
û−1(G) = �S(u−1(G)) for everyG ⊂ X).

Remark 2. An important role in our study will be played by the set

Ẽ := {v ∈ C(T ,X) |�E ⊂ �v, v(t) ∈ E(t) for everyt ∈ T }, (5)

whereE(t) := {v(t) | v ∈ E} for everyt ∈ T . Each functionv ∈ Ẽ factorizes uniquely as
v = v̂ ◦ �S , for somêv ∈ C(TS,X). We have the inclusion

EH ⊂ Ẽ ∩ H. (6)

Indeed, ifu ∈ EH, thenu belongs to the closure ofE in H with respect to the pointwise
convergence topology (weaker than the topology ofH). Hence,u is constant on each�E-
class, and sou ∈ Ẽ.
The setẼ is important because Stone–Weierstrass theorems typically state that various

hypotheses imply equality in (6).

Proposition 3. Assume(3) holds together with one of conditions(1),(2).Letu : T → X,
such thatu(t) ∈ E(t) for everyt ∈ T . Then

�E ⊂ �u ⇐⇒ �S ⊂ �u.

Hence, in the definition(5)of Ẽ wecan replace�E by�S . If one of the setsE, S is separating
and ifE(t) is dense in X for eacht ∈ T , thenẼ = C(T ,X).

Proof. Since (3) holds, we only need to prove “⇐”. To show this, suppose that�S ⊂ �u,
but there exists(t, s) ∈ �E \ �u ⊂ �E \ �S . Hence,�(t) �= �(s) for some� ∈ S. Fix
v,w ∈ E, and setx := v(t) = v(s), y := w(t) = w(s). We claim thatx = y. We need to
analyze two cases.
Case1: If (1) holds forS andE, then(1 − �)v + �w ∈ E leads by(t, s) ∈ �E to

(1− �(t))x + �(t)y = (1− �(s))x + �(s)y, which yieldsx = y.
Case2: If (2) holds, then�v ∈ E leads by(t, s) ∈ �E to �(t)x = �(s)x, which yields

x = 0. Similarly,�w ∈ E forcesy = 0, and consequently,x = y.
We conclude thatx = y. Sincev andw were arbitrarily fixed, it follows thatE(t) =

E(s) = {x}. We thus getu(t) = x = u(s), which contradicts(t, s) /∈ �u. Hence, we must
have�E ⊂ �u. The last part is immediate.�

The last part of the above proposition may be used in order to convert results describing
the closureEH into density results. Indeed, if equality holds in (6) and ifẼ = C(T ,X),
thenE is dense inH. The following remark is useful.

Remark 4. Let u ∈ C(T ,X) be fixed. If for all pointst, s ∈ T and each neighborhood
W ∈ VX(0) there existsv ∈ E such that

v(t) − u(t) ∈ W and v(s) − u(s) ∈ W,

thenu ∈ Ẽ.
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A first application of the factorization described in this section: it leads at once from
Theorem 2 of Jewett[6] to Theorem 2 of Prolla [7]. Our discussion from Section 4.4 will
show that factorization is by itself an efficient tool for the study of density problems in
functions spaces.
For various considerations on topological spaces with equivalence relations, we refer the

reader to Dugundji [5, pp. 125–130].

2.2. Self-adjoint sets

In Section 4, we will describe the closure of a vector subspaceE ⊂ H, in the presence of
a setSsatisfying (2). In the complex case (� = C) it is natural to impose self-adjointness
conditions onSorE.

Definition 5. (i) By involutiononXwewill mean anyR-linear operatorX � x �→ x� ∈ X,
such that(x�)� = x and(�x)� = ��x� for all x ∈ X and� ∈ �, where�� stands for the
complex conjugate of the number�. Any continuous involution onX induces onC(T ,X)
an associated involution

v �→ v�, v�(t) := (v(t))� for all v ∈ C(T ,X), t ∈ T . (7)

On the field� we always consider the complex conjugation as involution.
(ii) The setE ⊂ C(T ,X) is calledself-adjointwith respect to the continuous involution
x �→ x� onX, if and only ifE is invariant for the associated involution (7), that is,

{v� | v ∈ E} = E.

Self-adjointness ofS ⊂ C(T ,�) is defined in the same way.1

Let us note that anyS ⊂ C(T ,R) is automatically self-adjoint.Also, the identity operator
of any real vector space is an involution. Because of these facts, we will be able to state
our results without distinction between the complex and the real case, since in the latter
self-adjointness produces no restriction.

2.3. A known approximation lemma

The following lemma is taken from Prolla [8, Lemma 3, p. 302]; see also Prolla [10,
Lemma 2.2, p. 174].

Lemma 6. AssumeT is a compact Hausdorff space. LetM ⊂ C(T , [0,1]) be a separating
subset satisfying the property of von Neumann

1− � ∈ M and�� ∈ M for all �,� ∈ M. (8)

1With respect to the complex conjugation on� ⊂ C.
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Let s ∈ V ⊂ T ,withV open. ThenV contains an open neighborhoodU of s, such that for
every� ∈ ]0, 1

2[, there exists a function� ∈ M, with{
�(t) > 1− � for everyt ∈ U,

�(t) < � for everyt ∈ T \ V.
The above result in the case ofM = C(T , [0,1]) was first proved by Brosowski and

Deutsch[2, Lemma 1, p. 90].

3. Stone–Weierstrass theorems for subsets

Our following result generalizes the main Theorem 1 from Prolla [8] in three ways:

1. T is arbitrary (not necessarily compact or Hausdorff),
2. X is locally convex (not necessarily normable),
3. Sneed not be separating.

This makes it able to subsume various known results; see for instance Prolla[9, Theorem
1.11, p. 13, Corollary 6.3, p. 118, Corollary 7.3, p. 127] and Timofte [12, Corollary 1 and
Theorem 2, p. 294]. Also, our theoremdeals with six cases: two for the scalar field�,
combined with three for the locally convex spaceH.

Theorem 7. Assume(3) holds for some set of multipliers ofE ⊂ H. Then

EH = Ẽ ∩ H.

In particular, if E is separating andE(t) is dense inX for everyt ∈ T , then the subset E
is dense inH.

Proof. By (6), we only need to prove in each case thatEH ⊃ Ẽ ∩ H. Throughout the
proofs we shall write the closure of a set of functions by using a lower index specifying
the space in which the closure is considered, as well as an upper index (u,c, or�) for the
topology of this space.
Case(u): H = C0(T ,X). We need to prove that̃E ∩ C0(T ,X) ⊂ E

u
C0(T ,X)

. Fix u ∈
Ẽ ∩C0(T ,X) andW ∈ VX(0). In order to show that(v− u)(T ) ⊂ W for somev ∈ E, we
shall analyze two subcases.
Subcase(u1): If S is separating (and henceT is Hausdorff), letM ⊂ C(T , [0,1]) denote

the set of all multipliers ofE. We haveS ⊂ M, andM satisfies (8) (see Prolla [8, p. 301]).
LetW0 := 1

3W ∈ VX(0). The setK := u−1(X \W0) is compact, sinceu ∈ C0(T ,X). For
eachs ∈ T , choose

vs ∈ E, such that(vs − u)(s) ∈ W0,

Ks := K ∪ v−1
s (X \ W0), Gs := (vs − u)−1(W0).

Hence,Ks is compact andGs is open inT. Select a points1 ∈ T arbitrarily. For every
s ∈ Ks1 \ Gs1, set

Ts := Ks ∪ Ks1, Vs := Gs ∩ Ts.
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We haves ∈ Vs ⊂ Ts . SinceTs is compact,Vs is open inTs , and the separating setM|Ts ⊂
C(Ts, [0,1]) satisfies (8), we can choose a neighborhoodUs of s in TS , with Us ⊂ Vs , and
with the property from Lemma 6. We haveUs = Ds ∩ Ts for some openDs ⊂ Gs . As
Ks1 \ Gs1 is compact, we haveKs1 \ Gs1 ⊂ ⋃n

j=2 Dsj for some finite set{s2, . . . , sn} ⊂
Ks1 \ Gs1. For simplicity of notation, we will writevj ,Kj ,Gj , Tj , Vj , Uj ,Dj instead of
vsj ,Ksj ,Gsj , Tsj , Vsj , Usj ,Dsj , for all j. Since the setB := ⋃n

j=1(vj − u)(T ) is bounded

in X, we haveB ⊂ 	W0 for some	 > 0. Choose� ∈ ]0, 1
2[, such that�n	 < 1. According

to Lemma 6, for eachj ∈ {2, . . . , n − 1}, there exists�j ∈ M, such that

�j (t) > 1− � for everyt ∈ Uj , (9)

�j (t) < � for everyt ∈ Tj \ Vj , (10)

SinceM satisfies (8), we can define�1, . . . ,�n ∈ M,

�2 := �2,

�3 := (1− �2)�3,

· · ·
�n := (1− �2)(1− �3) · · · (1− �n−1)�n,

�1 := (1− �2)(1− �3) · · · (1− �n−1)(1− �n).

It is easily seen that
∑n

j=1 �j = 1. Let us definev := ∑n
j=1 �j vj ∈ C0(T ,X). In order

to prove thatv ∈ E, consider

w0 = v1, wi+1 = �n−ivn−i + (1− �n−i )wi for everyi ∈ {0, . . . , n − 2}.
An easy induction shows that

wi ∈ E, v =
n−i∑
j=2

�j vj +
n−i∏
j=2

(1− �j )wi for everyi ∈ {0, . . . , n − 2}.

We thus getv = �2v2 + (1− �2)wn−2 = �2v2 + (1− �2)wn−2 ∈ E. Let us finally prove
that(v− u)(T ) ⊂ W . Fix t ∈ T . We obviously have(v− u)(t) = ∑n

j=1 �j (t)(vj − u)(t)

and{1, . . . , n} = J1 ∪ J2 ∪ J3, where

J1 := {j | t ∈ Vj }, J2 := {j | t ∈ Tj \ Vj }, J3 := {j | t ∈ T \ Tj }.
For everyj ∈ J1 we havet ∈ Vj ⊂ Gj , and so(vj − u)(t) ∈ W0. For j ∈ J3 we have
t /∈ Kj , and sou(t), vj (t) ∈ W0, which yields(vj − u)(t) ∈ 2W0. Thus,∑

j∈J1∪J3
�j (t)(vj − u)(t) ∈

∑
j∈J1

�j (t)W0 + 2
∑
j∈J3

�j (t)W0 ⊂ 2W0. (11)

Letj ∈ J2.Weclaim that�j (t) < �. Indeed, ifj�2, thent ∈ Tj\Vj forces�j (t)��j (t) <

�, by (10). If j = 1, thent ∈ T1 \V1 = K1 \G1 ⊂ ⋃n
i=2Di , and sot ∈ Di for somei�2.

This yieldst ∈ Di ∩ K1 ⊂ Di ∩ Ti = Ui , which leads by (9) to�1(t)�1− �i (t) < �. It
follows that∑

j∈J2
�j (t)(vj − u)(t) ∈

∑
j∈J2

�j (t)B ⊂ 	
∑
j∈J2

�j (t)W0 ⊂ �n	W0 ⊂ W0. (12)
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According to (11) and (12), we have(v − u)(t) ∈ 2W0 + W0 = 3W0 = W . We conclude
that(v − u)(T ) ⊂ W .
Subcase(u2): If S is not separating, since�S ⊂ �E ⊂ �u, we can consider

TS = T/�s , Ŝ ⊂ C(TS, [0,1]), Ê ⊂ C0(TS,X), û ∈ C0(TS,X).

But Ŝ is a separating set of multipliers of̂E, andû(tS) = u(t) ∈ E(t) = Ê(tS) for every

t ∈ T , that is,û ∈ ˜̂
E. By the conclusion of subcase (u1), it follows that(v − u)(T ) =

(̂v − û)(TS) ⊂ W for somev ∈ E.
Case(c):H = C(T ,X). We need to prove that̃E ⊂ E

c
C(T ,X). Fix u ∈ Ẽ, and a compact

K ⊂ T . SinceE|K ⊂ C(K,X) = C0(K,X) and�S|K ⊂ �E|K , by the already proved case

(u) we get(E|K)uC0(K,X) = (̃E|K) ∩ C0(K,X) � u|K , and the conclusion follows.

Case(�): H = Cb(T ,X). We need to prove that̃E ∩ Cb(T ,X) ⊂ E
�
Cb(T ,X)

. Fix u ∈
Ẽ ∩ Cb(T ,X), and
 ∈ C0(T ,�). Since
E ⊂ C0(T ,X) and�S ⊂ �
E , by the already

proved case (u) we get(
E)
u
C0(T ,X)

= (̃
E) ∩ C0(T ,X) � 
u, and the conclusion
follows. �

4. Applications

4.1. Stone–Weierstrass theorem for vector subspaces

In this section, we assumeE to be a vector subspace ofH. In this case, conditions (1)
and (2) are equivalent for any subsetS ⊂ C(T ,�).
The following corollary generalizes Theorem 3 from Prolla [8] in the same three ways

indicated in the previous section, as well as by considering a setSof scalar functions which
are not necessarily real-valued (see also Remark 9).

Corollary 8. Assume(2)and(3)hold for some self-adjointS ⊂ C(T ,�). If H �= C(T ,X),
also assume thatS ⊂ Cb(T ,�). Then

EH = Ẽ ∩ H.

In particular, if E is separating andE(t) is dense in X for everyt ∈ T , then the subspace
E is dense inH.

Proof. Cases(u) and (�): H = C0(T ,X) or H = Cb(T ,X). Let us first observe that
S ⊂ Cb(T ,�). Therefore, we can consider

S0 :=
⋃
�∈S

{
�� + � + 2‖�‖∞

1+ 4‖�‖∞
,
i(�� − �) + 2‖�‖∞

1+ 4‖�‖∞

}
,

where‖ ‖∞ stands for the supremum norm (and�� for the complex conjugate of�). We
see thatS0 ⊂ C(T , [0,1]) is a set of multipliers ofE, and that�S0 = �S ⊂ �E . Thus, the
conclusion follows by Theorem7.
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Case(c): H = C(T ,X). By (6), we only need to prove thatE
c
C(T ,X) ⊃ Ẽ. The proof

is similar to that for the corresponding case of Theorem 7, and uses the conclusion of the
above case (u).

Remark 9. If E is self-adjoint with respect to a continuous involution onX, thenSneed
not be self-adjoint in Corollary8.

Proof. SetS� := {��|� ∈ S}. If S · E ⊂ E andE� = E with respect to the involution
associated to that onX, then

S� · E = S� · E� = (S · E)� ⊂ E� = E,

and so(S + S�) · E ⊂ E. Therefore, we can replaceSby S + S� ⊃ S, since�S+S� ⊂ �S ,
andS� ⊂ Cb(T ,�) if S ⊂ Cb(T ,�). �

4.2. The scalar case(X = �)

In this section we assume that bothE andH ⊃ E are vector subspaces ofC(T ,�).
According to our general setting from Section1,H is a subalgebra ofC(T ,�). Let us note
that for everyt ∈ T , we haveE(t) = � orE(t) = {0}, and so

Ẽ = {v ∈ C(T ,�) |�E ⊂ �v, v(t) = 0 wheneverE(t) = {0}}.

Definition 10. We define thecritical set�(E) of E to be the set of all scalars� ∈ � with
|�| = 1, such that there exist�E-distinct pointst, s ∈ T satisfying

v(s) = �v(t) for everyv ∈ E.

Remark 11. We have 1/∈ �(E). If � = R, then�(E) ⊂ {−1}.

In the following theorem, the critical set�(E) is subject to a fairly general condition, as
Remark13 will show.

Theorem 12. Let the nonempty set of functionsG ⊂ C(�n,�) \ � satisfy

g(v1, . . . , vn) · w ∈ E for all g ∈ G andv1, . . . , vn, w ∈ E. (13)

Assume that for each� ∈ �(E), we haveg(�x) �= g(x) for someg ∈ G, x ∈ �n, and that
one of the setsG,E is self-adjoint. Then

EH = Ẽ ∩ H.

In particular, if E is separating andE(t) �= {0} for everyt ∈ T , then the subspaceE is
dense inH.

Proof. In (13), we used the notationg(v1, . . . , vn) for the map

T � t �→ g(v1(t), . . . , vn(t)) ∈ �.
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Let us first observe that we can assume thatn�2. Indeed, ifn = 1 we may replace the set
G by G̃ = {g̃ | g ∈ G} ⊂ C(�2,�) \ �, where

g̃(x1, x2) = g(x1) for all g ∈ G andx1, x2 ∈ �.

Set S := {g(v1, . . . , vn) | g ∈ G, v1, . . . , vn ∈ E} ⊂ C(T ,�). We haveS · E ⊂ E

by (13). If E ⊂ Cb(T ,�), thenS ⊂ Cb(T ,�), since�(T ) is compact in�n for every
� = (v1, . . . , vn) ∈ En ⊂ Cb(T ,�n). The conclusion will follow by Corollary 8 and
Remark 9, if we prove that�S ⊂ �E . Suppose that there exists(t, s) ∈ �S \ �E . Hence,
w(t) �= w(s) for somew ∈ E, and we can assume thatw(t) = 1.We now need to consider
two cases.
Case1: If for some� = (v1, . . . , vn) ∈ En, the vectors�(t), �(s) ∈ �n are linearly

independent, let us fixg ∈ G. For arbitraryx ∈ �n, there exists a linear mapA : �n → �n,
such thatA(�(t)) = x andA(�(s)) = 0. AsA ◦ � ∈ En yields� := g(A ◦ �) ∈ S, we have
g(x) = �(t) = �(s) = g(0), since(t, s) ∈ �S .We thus getg ≡ g(0) ∈ �, a contradiction.
Case2: If (t, s) is not as in the first case, then there exists� ∈ �, such thatv(s) = �v(t)

for everyv ∈ E, becausen�2. Hence,w(s) = �w(t) = �. We claim that|�| = 1, and that

g(�x) = g(x) for all g ∈ G, x ∈ �n. (14)

Let us fix g ∈ G andx ∈ �n. As w ⊗ x ∈ En yields� := g(w ⊗ x) ∈ S, we have
g(x) = �(t) = �(s) = g(�x), since(t, s) ∈ �S . Hence, (14) holds. Now suppose that
|�| �= 1. We can assume that|�| < 1, since otherwise we can use (14) with 1/� instead of
�. As g(x) = g(�kx) for everyk ∈ N, we haveg(x) = limk→∞ g(�kx) = g(0). Since
g ≡ g(0) ∈ � is a contradiction, we conclude that|�| = 1. It follows that� ∈ �(E).
According to the hypothesis, we haveh(�y) �= h(y) for someh ∈ G, y ∈ �n, which
contradicts (14). �
As both cases lead to contradictions, we conclude that�S ⊂ �E . The conclusion now

follows by Corollary 8 and Remark 9.�

Remark 13. The hypothesis on�(E) fromTheorem12 is satisfied in each of the following
cases:

(a) �(E) = ∅,
(b) E is a subalgebra ofC(T ,�),
(c) 1∈ E,
(d) For all�E-distinctt, s ∈ T , there exist functionsv1, v2 ∈ E, such that∣∣∣∣ v1(t) v1(s)v2(t) v2(s)

∣∣∣∣ �= 0,

(e) �|E| ⊂ �E (where|E| := {|v| | v ∈ E} ⊂ C(T ,R)),
(f) G|V is separating for some neighborhoodV ∈ V�n(0),
(g) � = R, and for all�E-distinct pointst, s ∈ T , we havev(t) + v(s) �= 0 for some

functionv ∈ E,
(h) � = R, and the functions fromG are not all even.

Proof. The proof is straightforward.�
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Since the case of a subalgebra is particularly important, we next state the corresponding
corollary.

Corollary 14. AssumeE is a self-adjoint subalgebra ofH. Then

EH = Ẽ ∩ H.

In particular, if E is separating andE(t) �= {0} for everyt ∈ T , then the subalgebraE is
dense inH.

Theorem12 and Remark 13 generate various Stone–Weierstrass-type results for vector
subspacesE ⊂ C(T ,�). Some of them are quite strange, and far from being trivial. For
instance, we can take� = R, n = 1, andG = {g} for any of the following functions
g ∈ C(R,R):

g(x) = x|x|, g(x) = x3, g(x) = ex, g(x) = sinx, g(x) = ex cosx.

We also have results of the following type:

Corollary 15. If the subspaceE ⊂ H is self-adjoint and satisfies

E · E · · · · · E︸ ︷︷ ︸
2n factors

⊂ E, (15)

for some fixedn�1, then the conclusions of Theorem12hold.

Proof. Forg : � → �, g(x) = x|x|2n−2, the setG := {g} ⊂ C(�,�) is clearly separat-
ing, andE satisfies (13). Indeed, for allv,w ∈ E, we have

(g ◦ v)w = |v|2n−2vw =
{
v2n−1w if � = R

(v�)n−1vnw if � = C

]
∈ E · E · · · · · E ⊂ E,

and so (13) holds. Therefore, Theorem 12 can be applied.�

The above corollary is false for the product of 2n + 1 factorsE in (15). To see this, take
E ⊂ C([−1,1],R) consisting of all odd continuous functions, andH = C([−1,1],R).
ThenE is closed, butE �= Ẽ = {v ∈ H | v(0) = 0}.

4.3. Approximations with constraints

In Timofte [12,13], special uniform approximations were considered (we should have
called them “support-range approximations”). It was pointed out in [12] that uniform ap-
proximations satisfying relation (21) below have interesting applications:

• an equivalence between the possibility of vector-valued extension and that of uniform
approximation, and some Tietze–Dugundji-type extension theorems (see Dugundji[5, p.
188] for the classical one),

• a short new proof of the Schauder–Tihonov fixed point theorem.
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These were possible because of the particularly good control on approximant’s range pro-
vided by (17) and (21). This motivates our next two results combining Theorems 2 and 3
from [12] with interpolation.

Theorem 16. Consider a functionu ∈ C0(T ,X), a finite subsetF ⊂ T , and a neigh-
borhoodW ∈ VX(0). Then there exists a functionv ∈ Cc(T ,�) ⊗ X (algebraical tensor
product), such thatv|F = u|F , �u ⊂ �v, and

(v − u)(T ) ⊂ W, suppv ⊂ u−1(X \ {0}), (16)

v(T ) ⊂ co(u(T ) ∪ {0}). (17)

Proof. The proof will be divided into 5 steps.
Step1 (Reduction by factorization): Consider the quotient topological spaceTu := T/�u

(which is Hausdorff), the canonical surjection�u : T → Tu, the finite setFu := �u(F ),
and the function
 ∈ C0(Tu,X), such thatu = 
 ◦ �u (that is,
 = û). We claim that
L := 
−1(X \ {0}) is locally compact. To prove this, fix� ∈ L. Since
(�) �= 0, choose
V ∈ VX(0), such that
(�) /∈ V . We clearly have� ∈ 
−1(X \ V ) ⊂ 
−1(X \ V ) ⊂ L.
As
−1(X \V ) is open inTu, the set
−1(X \V ) is a compact neighborhood of� in L. We
conclude thatL is locally compact.
Step2 (Construction of the appropriateE andS): Let E ⊂ C0(Tu,X) denote the set

consisting of all functions ∈ Cc(Tu,�) ⊗ X satisfying

|Fu = 
|Fu, (Tu) ⊂ co(
(Tu) ∪ {0}), supp ⊂ L. (18)

It is easily seen thatS := C(Tu, [0,1]) is a set of multipliers ofE.We shall have established
the theorem if we prove that


 ∈ E
u
C0(Tu,X)

. (19)

Indeed, assume (19) holds, and choose ∈ E, such that( − 
)(Tu) ⊂ W . Let us define
v :=  ◦ �u ∈ Cb(T ,�) ⊗ X. By (18), we deduce that

v|F = u|F , �u = ��u ⊂ �v, (v − u)(T ) = ( − 
)(Tu) ⊂ W,

v(T ) = (Tu) ⊂ co(
(Tu) ∪ {0}) = co(u(T ) ∪ {0}).
We claim thatv ∈ Cc(T ,�) ⊗ X. As K := supp is compact and 0/∈ 
(K), choose
V ∈ VX(0), such thatV ∩ 
(K) = ∅. Thus,K ⊂ 
−1(X \ V ) ⊂ L. SinceK is compact
and
−1(X \ V ) is open in the locally compactL, there exists� ∈ C(L, [0,1]), such
that�|K ≡ 1 and supp� ⊂ 
−1(X \ V ). Hence,� : Tu → [0,1] defined by�|L =
�, �|Tu\L ≡ 0 is continuous,�|K ≡ 1, and supp� ⊂ 
−1(X \ V ). Therefore, = �
yieldsv = (� ◦ �u)v, which leads to

suppv ⊂ supp(� ◦ �u) ⊂ �−1
u (supp�) ⊂ �−1

u (
−1(X \ V )) ⊂ u−1(X \ V ).
As u−1(X \ V ) is compact, we havev = (� ◦ �u)v ∈ Cc(T ,�) ⊗ X, and sov satisfies all
required properties. We are thus reduced to proving (19).
Step3: We show that for every finite subsetA ⊂ Tu, there exists ∈ E, such that

|A = 
|A. To prove this, fix suchA ⊂ Tu, and setM := (Fu ∪A)∩L. Thus,M is a finite
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subset of the locally compactL, which is open inTu. Therefore, we can find inL pairwise
disjoint compact neighborhoods(U�)�∈M of the points� ∈ M. For each� ∈ M, there exists
�� ∈ C(Tu, [0,1]), with��(�) = 1 and the support supp�� contained in the interior ofU�
(and hence, contained inL). Now define the function

 :=
∑
�∈M

�� ·
(�) ∈ Cc(Tu,�) ⊗ X.

Clearly,(Tu) ⊂ co(
(M)∪ {0}) and supp ⊂ ⋃
�∈M

supp�� ⊂ L. We also have|Fu∪A =

|Fu∪A, since|M = 
|M and |Tu\L = 
|Tu\L ≡ 0. We conclude that ∈ E and
|A = 
|A. By Remark4, it follows that
 ∈ Ẽ.
Step4: We prove that�S ⊂ �E . LetX

∗ denote the dual ofX (that is, the set of all linear
f ∈ C(X,�)), and set

S0 := {f ◦  | f ∈ X∗,  ∈ E} ⊂ Cb(Tu,�).

As X is Hausdorff, we have�E = �S0 ⊃ �Cb(Tu,�) = �S . The last equality follows from
Cb(Tu,�) = {av + bw + c | v,w ∈ C(Tu, [0,1]), a, b, c ∈ �}.
Step5 (Conclusion): Applying Theorem7 finally shows that (19) holds.�

Corollary 17. AssumeT is compact. Consider a functionu ∈ C(T ,X), a finite subset
F ⊂ T , and a neighborhoodW ∈ VX(0). Then there exists a functionv ∈ C(T ,�) ⊗ X,
such thatv|F = u|F , �u ⊂ �v, and

(v − u)(T ) ⊂ W, suppv ⊂ u−1(X \ {0}), (20)

v(T ) ⊂ co(u(T )). (21)

Proof. If 0 ∈ u(T ), the conclusion follows easily by applying Theorem16. If 0 /∈ u(T ),
choosex ∈ u(T ). Applying Theorem 16 forux := u−x ∈ C(T ,X) shows that there exists
w ∈ C(T ,�) ⊗ X, such that�ux ⊂ �w, and

w|F = u|F − x, x + (w − u)(T ) ⊂ W, w(T ) ⊂ co(u(T )) − x.

It is easy to check thatv := w + x ∈ C(T ,�) ⊗ X satisfies all required properties, since
�u = �ux ⊂ �w = �v and suppv ⊂ T = u−1(X \ {0}). �

4.4. A final discussion

We shall now focus our attention on the connection between our results from Section4.3,
and a very general theorem on simultaneous approximation and interpolation in topological
vector spaces, from Deutsch [4] and Singer [11]. We shall see that the factorization from
Section 2.1 is a surprising key ingredient in establishing this connection.
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Remark 18. ForX = �n, replacing2 (17) and (21) by

v(T ) ⊂ Span(u(T )),

leads to weakened results which are consequences of the theorem from[4,11].

Indeed, assume the hypothesis of Theorem 16 holds, with givenε > 0 instead of the
neighborhoodW. Let us consider the vector spacesE ⊂ Z ⊂ C0(T ,�n),

Z := {v | v(T ) ⊂ Span(u(T )), v−1(�n \ {0}) ⊂ u−1(�n \ {0}), �u ⊂ �v},
E := Cc(T ,�n) ∩ {v ∈ Z | suppv ⊂ u−1(�n \ {0})},

equipped with the supremum norm‖v‖∞ = supt∈T ‖v(t)‖, the functionalsLt,j ∈ Z∗
(t ∈ F, 1�j�n) defined byLt,j v := vj (t) (the jth component ofv(t) ∈ �n), and the
neighborhoodV := {v ∈ Z | ‖v − u‖∞ < ε} of u in Z. If E is dense inZ, then applying the
cited theorem from [4,11] shows the existence of a functionv ∈ E, such that‖v−u‖∞ < ε

andv|F = u|F .
It remains to prove thatE is dense inZ. As u ∈ Z, we have�Z = �u ⊂ �E . We see that

(2) holds for the self-adjoint set

S := {� ∈ Cb(T ,�) |�u ⊂ ��}.
As S contains all components of functions fromZ, we also have�S = �u, and so (3)
holds. By Corollary 8, we deduce thatE

u
C0(T ,�n) = Ẽ ∩ C0(T ,�n), and consequently that

E
u
Z = Ẽ ∩ Z. We are thus reduced to prove thatZ ⊂ Ẽ, which is equivalent to

�E ⊂ �u, Z(t) ⊂ E(t) for everyt ∈ T .

We see now exactly where the problem is.We should find“sufficiently many” functions from
E, and so we would need to apply Urysohn’s lemma. We cannot do this directly, since T is
arbitrary. As we shall see, the solution is to factorize the topological space T, as well as the
functions spaces Z and E.
We can first simplify the original density problem by two successive reductions.

1. We can assume the subspace Span(u(T )) is �n, for if not, we may replace�n by this
subspace containing all ranges of functions fromZ.

2. We can assume thatT = u−1(�n \ {0}), since all functions fromZ vanish on the
complement of the latter open set.

Under the above assumptions we have

Z = {v ∈ C0(T ,�n) |�u ⊂ �v}, E = Cc(T ,�n) ∩ Z.

Now the task seems to be simpler, but the problem is the same:T still is arbitrary. Let us
consider the Hausdorff quotient spaceTu := T/�u. Since�u = �Z ⊂ �E , all functions
fromZ ⊃ E factorize as described in Section2.1, thus leading to the functions spaces

Ẑ = {̂v | v ∈ Z} = C0(Tu,�n), Ê = Cc(Tu,�n) = Cc(Tu,�) ⊗ �n. (22)

2 These restrictions do not fit well into the theorem from[4,11].



V. Timofte / Journal of Approximation Theory 136 (2005) 45–59 59

The density ofE in Z is equivalent to that of̂E in Ẑ. As û ∈ C0(Tu,�n), we deduce that
Tu = û−1(�n \ {0}) is locally compact. Now by (22) it is clear that̂E is dense in̂Z (this
being a known Stone–Weierstrass-type result).
From the above discussion we may conclude that factorization is by itself an interesting

and efficient tool. It fits very well with Stone–Weierstrass results by establishing an optimal
agreement between sets of vector-valued functions and sets of multipliers. Also, factoriza-
tion converts sets of multipliers into separating sets of multipliers defined on Hausdorff
spaces. Stone–Weierstrass theorems obtained via factorization are general and powerful.
For other recentStone–Weierstrass-type results for continuous functions, but in adifferent

approach, we refer the reader to Bustamante and Montalvo [3], and Briem [1].
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