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Abstract

We prove strengthened and unified forms of vector-valued versions of the Stone—\Weierstrass the-
orem. This is possible by using an appropriate factorization of a topological space, instead of the
traditional localizability. Our main Theorem 7 generalizes and unifies humber of known results.
Applications from the last section include new versions in the scalar case, as well as simultaneous
approximation and interpolation under additional constraints.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction and notations

Throughout this papef,denotes a topological spacea Hausdorff locally convex space
over the scalar field™ € {R, C}, andC(T, X) the linear space of ak-valued continuous
functions onl. Many generalized Stone—\Weierstrass theorems are intended to describe the
closure of a subsédt C H, in vector subspacels C C(T, X) endowed with various linear
topologies. Typically, such results consider a nonempty subset (7, I'), subject to one
of the following conditions:

@E + (11— @)E C E foreveryp € S, Q)
S-ECE. 2

The generality of this approach also consists in the fact that one may takg in the case
of a subalgebr& c C(T,T).
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Let us recall that every continuogs: T — [0, 1] satisfying @), is said to be aultiplier
of E. Thus, a set of multipliers is by definition a subset of

C(T,[0,1]) :={¢: T — [0, 1]]| @ is continuous.

A setF of functions defined oiff (and taking values in various sets) is said t@bparating
if for all distinctz, s € T, we havef(t) # f(s) for somef € F. From the viewpoint of
separating capabilities & there are two kinds of results.

(A) If Sis required to be separating, thEmeeds to be Hausdorff. These assumptions lead
to powerful results. Nevertheless, such theorems cannot be applied in the simple and
very frequent case of a nonseparating subalgeb€a 6f I'), since no separatirg§can
be found.

(B) If Sis not required to be separating, the problem is reduced to a similar one on each
S-equivalence class (which is a subseflpf Since all functions frong are constant
on every such class, conditions 43 and (2) are less useful, and there is no Stone—
Weierstrass-type theorem applicable to the reduced problem.

Our purpose is to establish a good compromise between (A) and (B). We will show that the
same conclusions can be obtained if we replace the assumptions from (A) by the weaker
condition

Ps C PE» )
wherepg andp are the equivalence relations definedldoy SandE (see Sectioi2.1 for
details). Roughly speaking, (3) says t&as “more separating” thak. Note that (3) holds
whenevelSis separating. Also, (2) and (3) holdHfis a subalgebra af (7, I') andS = E.

Let Vx(0) denote the set of all convex open neighborhoods of the origiX. ilthe
following notations for vector subspaces®(7, X) are standard:

C(T, X) :={u e C(T, X)|suppu := u~1(X \ {0})) is compac},

Co(T, X) :={u e C(T, X) |u_1(X \ W) is compacty W € Vx (0)},

Cp(T, X) :={u € C(T, X) |u(T) is boundedl.
Here and elsewhereompactmeans that every open covering has a finite subcovering
(without requiring Hausdorff separation). It is obvious that

Ce(T, X) C Co(T, X) C Cp(T, X) C C(T, X).
General setting

From now on,H will mean any of the following three locally convex spaces (always
equipped with the topology specified below):

(c) C(T, X), with the topologyt. of uniform convergence on all compact subsets (he
compact-open topology),
(u) Co(T, X), with the topologyr, of uniform convergence on,
(B) Cb(T, X), with the strict topologyt g, if T is a locally compact Hausdorff space. Recall
that the strict topology is defined by all weighted seminorms of the form
pw: Co(T, X) = Ry, py(u) = suppw()u(r))
teT
with w € Co(T, R) and continuous seminorpm: X — R,.

The closure ir{ of an arbitrary subsef  H will be denoted byE,.
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Note that onCo(T, X), we haver; < 1y (meaning that the second topology is stronger).
If Tis a locally compact Hausdorff space, we also hav€ s <ty onCo(T, X). All three
above cases coincideTfis a compact Hausdorff space. Also, in the scalar ¢asel’, the
vector spacét is a subalgebra of (7, I).

For applications it is useful to note thathif ¢ Ho C H, then

E’Ho = Ey NHo.

where?H is considered as topological subspace (not necessarily linear)dr instance,
theze-closure oft in Ho D E can be described in this way.

2. Needed facts
2.1. Factorization of T
Let F be a set of functions defined dipeachf € F taking its values in a séf;. The
equivalence relatiop defined byF onT is
(t,s) € pp < f(t)= f(s) foreveryf e F.

The points, s € T are said to be ,-distinct if (¢, s) ¢ p. Foreveryr € T, letzr denote
its p --class. The quotient set and the canonical surjection are

Tr:=T/pp={tr|teT} and np : T — Tp, np(t) =tF.

A functionu : T — Y factorizes ast = u o ny for someu : Tr — Y, if and only if
pr C Py =: py,- In this caser is unique, sincerr is a surjection. In particular, every
f € F factorizes uniquely as

f=fonr, [f:Tr—7Y;
andF := {f| f € F} obviously separateBr. The quotient topology offiy is

{D C Tr | n;X(D) is open inT}. )
If Yis a topological space and: T — Y factorizes as = u o np, thenuis continuous, if

and only ifu'is, by @).

Proposition 1. If every functionf € F is continuous with respect to some Hausdorff
topology onY, then the quotient topological spa@e is Hausdorff

Proof. The proofis straightforward (everﬁis continuous on the quotient spate, whose
points are separated tfy) O

Now assumeg) holds forE andS Thus, taking in the above constructiéh= S leads
to the equivalence relatign, and consequently to

(a) the Hausdorff quotient spagg = 7'/p (even ifT is not Hausdorff),
(b) the subset& = {v|ve E} C C(Ts,X)andS = {¢ | @ € S} C C(Ts.T).
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Note thatS separateds, and thatu € Co(Ts, X) wheneveru € Co(T, X) (because
1 1G) = ng(uY(G)) for everyG c X).

Remark 2. An important role in our study will be played by the set
E:={veC(T,X)|pg Cp, v(t) € Eq) foreveryr € T}, (5)

whereE(t) := {v(r) | v € E} for everyt € T. Each functiornv € E factorizes uniquely as
v = o 7g, for somev € C(Ts, X). We have the inclusion

Ey C ENH. (6)

Indeed, ifu € E3, thenu belongs to the closure &in H with respect to the pointwise
convergence topology (weaker than the topolog${9f Hence,u is constant on eachy-
class,and so € E.

The setE is important because Stone—Weierstrass theorems typically state that various
hypotheses imply equality ir6J.

Proposition 3. Assumé&3) holds together with one of conditiof$),(2).Letu : T — X,
such thatu(¢) € E(¢) for everyt € T. Then

PE Cpu — Ps Cpu'

Hencein the definition5) of E we can replace g bypg. If one of the set#, S is separating
and if E(¢) is dense in X for eache T, thenE = C(T, X).

Proof. Since (3) holds, we only need to prove=". To show this, suppose that C p,,
but there existsz, s) € pp \ p, C pr \ ps. Hence,p(r) # ¢(s) for somegp € S. Fix
v,w € E, and sek := v(t) = v(s), y := w(t) = w(s). We claim thatt = y. We need to
analyze two cases.

Casel: If (1) holds forS andE, then(1 — ¢)v + ow € E leads by(t,s) € pg to
A= o@®)x + o)y = (L= @(s))x + @(s)y, which yieldsx = y.

Case2: If (2) holds, thempv € E leads by(z, s) € pg to ¢(t)x = ¢(s)x, which yields
x = 0. Similarly, pw € E forcesy = 0, and consequently, = y

We conclude that = y. Sincev andw were arbitrarily fixed, it follows thaE (1) =
E(s) = {x}. We thus gei«(r) = x = u(s), which contradictsz, s) ¢ p,. Hence, we must
havepr C p,. The last part is immediate.[]

The last part of the above proposition may be used in order to convert results describing
the closureE 4 into density results. Indeed, if equality holds in (6) an&'it= C(T, X),
thenE is dense irH. The following remark is useful.

Remark 4. Letu € C(T, X) be fixed. If for all pointst, s € T and each neighborhood
W € Vx(0) there existe € E such that

v(t) —u(t) e W and v(s) —u(s) € W,

thenu ¢ E.
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A first application of the factorization described in this section: it leads at once from
Theorem 2 of Jewef{6] to Theorem 2 of Prolla [7]. Our discussion from Section 4.4 will
show that factorization is by itself an efficient tool for the study of density problems in
functions spaces.

For various considerations on topological spaces with equivalence relations, we refer the
reader to Dugundji [5, pp. 125-130].

2.2. Self-adjoint sets

In Section 4, we will describe the closure of a vector subsgace?, in the presence of
a setSsatisfying (2). In the complex cask & C) it is natural to impose self-adjointness
conditions orSor E.

Definition 5. (i) By involutiononX we will mean anyR-linear operatoX > x — x* € X,
such that(x*)* = x and(Ax)* = V*x* forall x ¢ X andA € T", wherel* stands for the
complex conjugate of the numbérAny continuous involution oiX induces onC (T, X)
an associated involution

v vY, (@) = (w@) forallv e C(T, X),t € T. @)

On the field” we always consider the complex conjugation as involution.
(ii) The setE c C(T, X) is calledself-adjointwith respect to the continuous involution
x — x* onX, if and only if E is invariant for the associated involutiof)( that is,

{v|ve E}=E.
Self-adjointness of c C(T,T) is defined in the same waly.

Letus note thatany c C(T, R) is automatically self-adjoint. Also, the identity operator
of any real vector space is an involution. Because of these facts, we will be able to state
our results without distinction between the complex and the real case, since in the latter
self-adjointness produces no restriction.

2.3. A known approximation lemma

The following lemma is taken from Prolla [8, Lemma 3, p. 302]; see also Prolla [10,
Lemma 2.2, p. 174].

Lemma 6. Assumd’ is a compact Hausdorff space. Lt c C(T, [0, 1]) be a separating
subset satisfying the property of von Neumann

1—peMandoy e M forall o, € M. (8)

Lwith respect to the complex conjugation bnc C.
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Lets € V C T, with V open. TherV contains an open neighborho@dof s, such that for
everyo €10, %[, there exists a functiop € M, with

@(t) > 1— 9 foreveryr € U,
@(t) < dforeveryt e T\ V.

The above result in the case &f = C(T, [0, 1]) was first proved by Brosowski and
Deutsch2, Lemma 1, p. 90].

3. Stone-Weierstrass theorems for subsets

Our following result generalizes the main Theorem 1 from Prolla [8] in three ways:

1. Tis arbitrary (not necessarily compact or Hausdorff),
2. Xis locally convex (not necessarily normable),
3. Sneed not be separating.

This makes it able to subsume various known results; see for instance [Brdilzeorem
1.11, p. 13, Corollary 6.3, p. 118, Corollary 7.3, p. 127] and Timofte [12, Corollary 1 and
Theorem 2, p. 294]. Also, our theoredeals with six caseswo for the scalar field",
combined with three for the locally convex spdde

Theorem 7. Assumé3) holds for some set of multipliers &f ¢ 4. Then
Ey=ENH.

In particular, if E is separating andE (¢) is dense inX for everyr € T, then the subset E
is dense irH.

Proof. By (6), we only need to prove in each case tha; > E N 7. Throughout the
proofs we shall write the closure of a set of functions by using a lower index specifying
the space in which the closure is considered, as well as an upper index ()dpothe
topology of this space. _

Case(u): H = Co(T, X). We need to prove that N Co(T, X) C F%O(T,X). Fixu €
EN Co(T, X) andW € Vx(0). In order to show thatv — u)(T') C W forsomev € E, we
shall analyze two subcases.

Subcaséul): If Sis separating (and hendds Hausdorff), let¥ c C(T, [0, 1]) denote
the set of all multipliers oE. We haveS c M, andM satisfies (8) (see Prolla [8, p. 301]).
Let Wo := 1W € Vx(0). The setk := u~1(X \ Wp) is compact, since € Co(T, X). For
eachs € T, choose

vy € E, such thatvy, — u)(s) € Wo,
Ky :=KUv Y X\ Wo). Gy := (v —u) 1 (Wo).

Hence,K; is compact ands, is open inT. Select a poinky € T arbitrarily. For every
s € K, \ Gy, set

T, =K, UKy, Vi:=G,NT,.
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We haves € V; C T. SinceT; is compactV; is open inTy, and the separating s&f|7, C
C(Ty, [0, 1)) satisfies 8), we can choose a neighborhadgof sin Ts, with U C V;, and
with the property from Lemma 6. We hawg = D; N T, for some openD; C G,. As
K, \ Gy, is compact, we hav&, \ G, C U;l':z Dy, for some finite sefsz, ..., sy} C
K, \ Gy, . For simplicity of notation, we will writev;, K;, G;, T;, V;, Uj, D; instead of
vs;» Ks;» Gs;, T Vs, Us;, Dy, forallj. Since the seB := U’;Zl(vj —u)(T) is bounded
in X, we haveB c uWy for someu > 0. Choose € ]0, %[, such thavnu < 1. According

to Lemma 6, for eachi € {2,...,n — 1}, there existspj € M, such that
¢;(t)>1-0 foreveryt e Uj, 9)
¢;(t) <o foreveryr e T;\ Vj, (10)
SinceM satisfies §), we can defing, ..., ¥, € M,
Yo = o,

V3= (1— @) s,
V= Q=)A= @3) (1= 0, 1)@,
U1:=01=0)(1—q3)---(1— ¢, D1—0,).

It is easily seen thaZ’}:1 ¥, = 1. Letus define := 3_; ¥;v; € Co(T, X). In order
to prove that € E, consider

wo = v1, Wit1 = @,_jvn—i + (1 —¢,_w; foreveryi € {O,...,n—2}.

An easy induction shows that

n—i n—i
wi € E, v= Z Yiv;+ H(l_‘/’j)wi foreveryi € {0,...,n — 2}.
) j=2

We thus gev = ov2 + (1 — ¢pr)wu—2 = @ov2+ (1 — @o)w,—2 € E. Letus finally prove
that(v —u)(T) c W.Fixt € T. We obviously havév — u) (1) = Z’}:l wj(t)(vj —u)(1)
and{1,...,n} = J1U Jo U J3, where '

Ji={jlteV;}), Ja={jlteTj\V;}, Ja:={jlteT\Tj}.

For everyj € J; we haver € V; C G, and so(v; — u)(t) € Wo. For j € J3 we have
t ¢ K;,and sau(t), v;(t) € Wo, which yields(v; — u)(t) € 2Wp. Thus,

Y YO —w@ e Y Y OWo+2 Y (0 Wo C 2Wo. (11)
jeJiUJ3 jes1 jeJ3
Letj € Jo.We claimthat//j(t) < d.Indeed, ifj >2,therr € T;\V; forces//j(t)<<pj(t) <
0, by (10).If j = 1, thent € T1\ V1 = K1\ G1 C U;_, Di, and sa € D; for somei > 2.
This yieldsr € D; N K1 € D; N T; = U;, which leads by (9) t@/1 (1) <1 — ¢; () < 0. It
follows that

Do U@~ € Y W 0B Cp Yy wi(OWo ConpWo C Wo.  (12)

j€J2 j€Jt2 JjeJ2
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According to 1) and (12), we hav& — u)(t) € 2Wp + Wo = 3Wp = W. We conclude
that(v —u)(T) C W.
Subcasgu?): If Sis not separating, singe; C p, C p,, We can consider

Ts=T/p,, SCC(Ts,[0,1), E C Co(Ts,X), @ e Co(Ts,X).

But S is a separating set of multipliers &, andi(rs) = u(t) € E(r) = E(ts) for every
t e T, thatis,i € E. By the conclusion of subcase (ul), it follows that— u)(7T) =
v —u)(Ts) C W for somev € E. _ ~
Case(c): H = C(T, X). We need to prove tha C FZ(T.X). Fixu € E, and a compact
K C T.SinceE|g C C(K, X) = Co(K, X) andpg|, C pg|,, by the already proved case

(u) we get(E|K)CO(K x) = (Elg) N Co(K, X) > u|k, and the conclusion follows.

Case(p): H = Cp(T, X). We need to prove that N Cyp(T, X) C E/Cb(T x)- FiXu €

EN Cp(T, X), andw € Co(T, F) SincewE E C Co(T, X) andpg C p,, g, by the already

proved case (u) we ge{tuE)Co(T x) = (wE) N Co(T, X) > wu, and the conclusion
follows. O

4. Applications
4.1. Stone-Weierstrass theorem for vector subspaces

In this section, we assunteto be a vector subspace #f. In this case, conditionsl]
and (2) are equivalent for any subsett C(7T, I).

The following corollary generalizes Theorem 3 from Prolla [8] in the same three ways
indicated in the previous section, as well as by considering 8afetcalar functions which
are not necessarily real-valued (see also Remark 9).

Corollary 8. Assumé2) and(3) hold for some self-adjoirt c C(T, I').If H # C(T, X),
also assume that c Cp(T, I'). Then

EH:EH'H.

In particular, if E is separating andE(¢) is dense in X for every € T, then the subspace
E is dense irt{.

Proof. Cases(u) and {0): H = Co(T, X) or H = Cp(T, X). Let us first observe that
S C Cp(T, T). Therefore, we can consider

. P+ o+ 20l 1(@* =)+ 20l
SO'_U{ 1+ 4| CT 1 }
025 ¢lloc + 4l ¢llo
where|| || stands for the supremum norm (aqd for the complex conjugate af). We
see thatSo C C(7, [0, 1)) is a set of multipliers oE, and thatps, = pg C pg. Thus, the

conclusion follows by Theorem.
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Case(c): H = C(T, X). By (6), we only need to prove thiZ(T,X) > E.The proof
is similar to that for the corresponding case of Theorem 7, and uses the conclusion of the
above case (u).

Remark 9. If E is self-adjoint with respect to a continuous involution XnthenS need
not be self-adjoint in Corollarg.

Proof. SetS* := {¢*| @ € S}. If §- E C E and E* = E with respect to the involution
associated to that ox, then

S*.E=S"-E*=(S-E)* CE*=E,

and so(S + S*) - E C E. Therefore, we can repla@by S + $* O S, sincepg, ¢« C pyg,
andS* Cc Cp(T, D) if Sc Cp(T,IN). O

4.2. The scalarcaseX =1

In this section we assume that bdthand O E are vector subspaces 67, I').
According to our general setting from Sectiby# is a subalgebra af (7, I'). Let us note
that for everyr € T, we haveE (r) = I" or E(¢t) = {0}, and so

E={veC(T.T)|pgC p, v(t)=0whenever () = {0}}.

Definition 10. We define theritical set A(E) of E to be the set of all scalarse I" with
|A| = 1, such that there exigt;-distinct points, s € T satisfying

v(s) = Av(t) foreveryv € E.
Remark 11. We have 1¢ A(E). If I’ = R, thenA(E) c {—1}.

In the following theorem, the critical s@t(E) is subject to a fairly general condition, as
Remark13 will show.

Theorem 12. Let the nonempty set of functioGsc C(I™", I') \ I satisfy
glvy,...,v) -we Eforallge Gandvy,...,v,, w € E. (13)

Assume that for eache A(E), we haveg(1x) # g(x) for someg € G, x € I'*, and that
one of the set&, E is self-adjoint. Then

EHZEQH.

In particular, if E is separating andz(r) # {0} for everyr € T, then the subspacE is
dense irH.

Proof. In (13), we used the notatigy(vy, . . ., v,) for the map

Tt gr@),...,v,0)) eT.
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Let us first observe that we can assume tha®. Indeed, if= = 1 we may replace the set
GbyG ={3|geG}cCT?T)\T,where

g(x1,x2) = g(x1) forallg € Gandxy, xp €T

SetS = {g(v1,...,v) g € G, v1,...,v, € E} Cc C(T,I'). We haveS - E C E
by 13). If E Cc Cn(T,T), thenS c Cu(T, I, sincev(T) is compact in[” for every
v = (v1,...,v,) € E" C Co(T,I"™). The conclusion will follow by Corollary 8 and
Remark 9, if we prove that; C pg. Suppose that there exidis s) € pg \ pg. Hence,
w(t) # w(s) for somew € E, and we can assume thatr) = 1. We now need to consider
two cases.

Casel: If for somev = (v1,...,v,) € E", the vectorsv(¢), v(s) € I are linearly
independent, let us fix € G. For arbitraryx € I'", there exists alinearmap: I'" — I,
such thatA (v(¢)) = x andA(v(s)) = 0.AsAov € E" yieldsp := g(Aov) € S, we have
g(x) = @(t) = @(s) = g(0), since(z, s) € ps. We thus geg = g(0) € I', a contradiction.

Case2: If (¢, s) is not as in the first case, then there exists I, such thav (s) = Av(r)
for everyv € E, because >2. Hencew(s) = Aw(t) = 4. We claim that1| = 1, and that

g(lx)=g(x) forallge G, x eI™. (14)

Letusfixg € Gandx € " Asw ® x € E" yieldsp := g(w ® x) € S, we have
g(x) = @) = p(s) = g(Jx), since(t,s) € pg. Hence, 14) holds. Now suppose that
|A| # 1. We can assume that| < 1, since otherwise we can use (14) withlinstead of
A As g(x) = g(J¥x) for everyk € N, we haveg(x) = limy_ o g(4*x) = g(0). Since
g = g(0) € I' is a contradiction, we conclude thgtf = 1. It follows that/l € A(E).
According to the hypothesis, we haui€ly) # h(y) for someh € G,y € I'", which
contradicts (14). I

As both cases lead to contradictions, we conclude ghat p;. The conclusion now
follows by Corollary 8 and Remark 9.00

Remark 13. The hypothesis oA(E) from Theoreni?2 is satisfied in each of the following
cases:

(@) A(E) =9,
(b) Eis a subalgebra of (T, I),
(c) 1€ E,

(d) Forallpg-distinctz, s € T, there exist functionsy, v, € E, such that

v1(t) vi(s)
v2(1) v2(s)

() pig| C pg (Where|E| := {|v||v € E} C C(T, R)),

(f) Gly is separating for some neighborho@de V- (0),

(9) I' = R, and for all pz-distinct pointst, s € T, we havev(r) 4+ v(s) # 0 for some
functionv € E,

(h) T = R, and the functions fror® are not all even.

£0,

Proof. The proof is straightforward. [
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Since the case of a subalgebra is particularly important, we next state the corresponding
corollary.

Corollary 14. AssumeE is a self-adjoint subalgebra ¢f. Then
Ey=ENH.

In particular, if E is separating and (¢) # {0} for everyt € T, then the subalgebr& is
dense inH.

Theoreml2 and Remark 13 generate various Stone—Weierstrass-type results for vector
subspace® c C(T,I). Some of them are quite strange, and far from being trivial. For
instance, we can takE = R, n = 1, andG = {g} for any of the following functions
g € C(R,R):

3

gx) =x|x|, gx) =x>, gx) =¢€", g(x)=sinx, g(x) =€ cosx.

We also have results of the following type:

Corollary 15. If the subspacé& C H is self-adjoint and satisfies

E-E-----ECE, (15)
—_—

2n factors

for some fixed > 1, then the conclusions of Theorer hold.

Proof. Forg : T' — T, g(x) = x|x|? 2, the setG := {g} c C(T', T is clearly separat-
ing, andE satisfies (13). Indeed, for all w € E, we have

v2—1y ifI'=R

T
(gov)w = |v| Uw—{(v*)'l—lv”w ifI’'=C

:|EE-E-----ECE,

and so 13) holds. Therefore, Theorem 12 can be applied.

The above corollary is false for the product af 2 1 factorsk in (15). To see this, take
E C C([-1, 1], R) consisting of all odd continuous functions, aid= C([-1, 1], R).
ThenE is closed, butt # E = {v € H|v(0) = 0}.

4.3. Approximations with constraints

In Timofte [12,13], special uniform approximations were considered (we should have
called them Support-range approximatiofys It was pointed out in [12] that uniform ap-
proximations satisfying relation (21) below have interesting applications:

e an equivalence between the possibility of vector-valued extension and that of uniform
approximation, and some Tietze—Dugundji-type extension theorems (see DUgupdji
188] for the classical one),

e a short new proof of the Schauder—Tihonov fixed point theorem.
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These were possible because of the particularly good control on approximant’s range pro-
vided by (L7) and (21). This motivates our next two results combining Theorems 2 and 3
from [12] with interpolation.

Theorem 16. Consider a functiont € Co(T, X), a finite subset’ ¢ T, and a neigh-
borhoodW € Vx(0). Then there exists a functiane C(T,I') ® X (algebraical tensor
produc), such thaw|r = u|r, p, C p,,and

(v—u)(T)C W, suppvCu1(X\{0}), (16)
v(T) C cou(T) U {0}). (17)

Proof. The proof will be divided into 5 steps.

Stepl (Reduction by factorization): Consider the quotient topological space T/p,
(which is Hausdorff), the canonical surjectiap : T — T,, the finite setF, := =n,(F),
and the functiono € Co(T,, X), such thatt = w o 7, (that is,«w = u). We claim that
L := o 1(X \ {0}) is locally compact. To prove this, fi& € L. Sincew() # 0, choose
V € Vx(0), such thaiw(0) ¢ V. We clearly havé) € o 1(X \ V) c o 1(X \ V) C L.
Asw~1(X \ V) isopeninT,, the setv~1(X \ V) is a compact neighborhood 6in L. We
conclude that is locally compact.

Step2 (Construction of the appropriaieandS): Let E c Co(T,, X) denote the set
consisting of all functions € C¢(7,, I') ® X satisfying

alp, = wlp,, o(T,) C co(w(T,)U{0}), suppxC L. (18)

Itis easily seenthd := C(T,, [0, 1]) is a set of multipliers oE. We shall have established
the theorem if we prove that

—=u
w € Ecyr, x)- (29)

Indeed, assumé ©) holds, and choose € E, such thata — w)(7,) C W. Let us define
v:i=oom, € Cp(T,I") ® X. By (18), we deduce that

olF =ulp, Py =pg, Cpp W—w)(T)=(@—)T) CW.
o(T) = a(T,)) C co(@(T,) U {0}) = co(u(T) U {0}).

We claim thatv € Co(T,I) ® X. As K := suppx is compact and ¢¢ o(K), choose
V € Vx(0), such thatV N w(K) = ¥. Thus,K C o~ 1(X \ V) C L. SinceK is compact
andw~1(X \ V) is open in the locally compadt, there exists) € C(L, [0, 1]), such
thaty|x = 1 and supg C o (X \ V). Hence,p : T, — [0, 1] defined byo|;, =

v, olr,\. = 0is continuousp|x = 1, and supp C o™X \ V). Thereforex = ¢uo

yieldsv = (¢ o m,)v, which leads to

Suppy C SUPRQ o 1,) C m, (SUpPP) C 7, (@ H(X \ V) Cu H(X \ V).

Asu~1(X \ V) is compact, we have = (¢ o m,)v € Co(T, T') ® X, and sov satisfies all
required properties. We are thus reduced to provir).(

Step3: We show that for every finite subsdt C 7, there existsx € E, such that
a4 = w|4. To prove this, fix suckd C 7, and set := (F, U A) N L. Thus,M is a finite
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subset of the locally compaktt which is open irT,,. Therefore, we can find ih pairwise
disjoint compact neighborhood&y) ., of the pointd) € M. Foreach) € M, there exists
@y € C(T,, [0, 1]), with ¢, (0) = 1 and the support supg, contained in the interior ¥y
(and hence, contained k). Now define the function

ni= Y g e C(T,. T)®X.
OeM

Clearly,a(T,) C co(w(M)U{0}) and supp C |J supppy C L. We also have|p,ua =
OeM
w|F,ua, sinceoly = o|ly anda|r,\ = |\ = 0. We conclude that € E and

ala = w|4. By Remarkd, it follows thatw € E.
Step4: We prove thapg C pg. Let X* denote the dual oK (that is, the set of all linear
f e CX,I), and set

So:={foualfeX* aeE}CCp(Ty D).

As Xis Hausdorff, we have ;. = pg, D pe,r,.) = pPs- The last equality follows from
Co(T,, ) ={av+bw+c|v,w e C(T,,[0,1]), a,b,c € T'}.
Step5 (Conclusion): Applying Theorem finally shows that (19) holds.

Corollary 17. Assumel is compact. Consider a functian € C(T, X), a finite subset
F C T, and a neighborhoodV € Vx(0). Then there exists a functiane C(7,T') ® X,
such thaw|r = ulr, p, C p,, and

(v—u)(T)C W, suppvCu 1(X\ {0}, (20)
v(T) C co(u(T)). (22)

Proof. If 0 € u(T), the conclusion follows easily by applying Theord®. If O ¢ u(T),
choosex € u(T). Applying Theorem 16 fon, := u—x € C(T, X) shows that there exists
w e C(T,I') ® X, such thap, C p,, and

wlr=ulp—x, x+w-—-uw)(T)cW, w()cCcou(T))—x.

It is easy to check that := w + x € C(T, ') ® X satisfies all required properties, since
Pu = Pu, C Py =pyandsupp C 7 =u" XX\ {0). O

4.4, Afinal discussion

We shall now focus our attention on the connection between our results from S&8&jion
and a very general theorem on simultaneous approximation and interpolation in topological
vector spaces, from Deutsch [4] and Singer [11]. We shall see that the factorization from
Section 2.1 is a surprising key ingredient in establishing this connection.
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Remark 18. For X = I'", replacind? (17) and (21) by
v(T) C Spanu(T)),

leads to weakened results which are consequences of the theoreifd ftdin

Indeed, assume the hypothesis of Theorem 16 holds, with givenO instead of the
neighborhoodV. Let us consider the vector spadésc Z C Co(T, ™),

Z == {v|v(T) C Sparu(T)), v I\ {0}) C u~X(T™ \ {0}, p, C p,},
E :=Ce(T,T")N{v e Z|suppv C u" X"\ {O})},

equipped with the supremum norjw|lc = supcr llv(®)ll, the functionalsL; ; € Z*
(t € F, 1<j<n) defined byL, jv := v;(t) (thejth component ob(r) € I'"), and the
neighborhood/ :={v € Z | ||lv — u|lc < €} Of uin Z If Eis dense iz, then applying the
cited theorem from [4,11] shows the existence of a functi@nE, such thatjv —u|~ < ¢
andv|p = ul|f.

It remains to prove th& is dense irZ. Asu € Z, we havep, = p, C py. We see that
(2) holds for the self-adjoint set

S:={p € Co(T, )| p, C py}

As S contains all components of functions frafh we also havepg = p,, and so 8)
holds. By Corollary 8, we deduce thEﬂO(Tan) = ENCo(T, ™), and consequently that

E, = E N Z. We are thus reduced to prove thiatc E, which is equivalent to
PE C Py Z(t) C E(t) foreveryt € T.

We see now exactly where the problem is. We should $afficiently man/functions from
E, and so we would need to apply Urysohn’s lemma. We cannot do this djisiote T is
arbitrary. As we shall seghe solution is to factorize the topological spaceas well as the
functions spaces Z and E

We can first simplify the original density problem by two successive reductions.

1. We can assume the subspace $péh)) is I, for if not, we may replacé™ by this
subspace containing all ranges of functions from

2. We can assume that = »~1(I™ \ {0}), since all functions fronZ vanish on the
complement of the latter open set.

Under the above assumptions we have
Z={veCo(T.T")|p, Cp,}. E=C(T,T")NZ.

Now the task seems to be simpler, but the problem is the samidl is arbitrary. Let us
consider the Hausdorff quotient spafie:= T/p,. Sincep, = p, C p, all functions
from Z O E factorize as described in Secti@rl, thus leading to the functions spaces

Z={|veZ)=Co(T,.,T"), E=Co(T,,T") =Ce(T,, ) @T". (22)

2 These restrictions do not fit well into the theorem frgi1].
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The density ofE in Z is equivalent to that of inZ.As7 e Co(T,, 1“”) we deduce that
T, = u XTI\ {0}) is locally compact. Now by22) it is clear thatE is dense inZ (this
being a known Stone—\Weierstrass-type result).

From the above discussion we may conclude that factorization is by itself an interesting
and efficient tool. It fits very well with Stone—Weierstrass results by establishing an optimal
agreement between sets of vector-valued functions and sets of multipliers. Also, factoriza-
tion converts sets of multipliers into separating sets of multipliers defined on Hausdorff
spaces. Stone—Weierstrass theorems obtained via factorization are general and powerful.

For other recent Stone—Weierstrass-type results for continuous functions, but in a different
approach, we refer the reader to Bustamante and Montalvo [3], and Briem [1].
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