
Indag. Mathem., N.S., 18 (3), 455–469 September 24, 2007
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ABSTRACT

We prove a representation theorem for Hausdorff locally convex (M)-lattices which are Dedekind
σ -complete, and whose topologies are order σ -continuous and monotonically complete. These turn out
to be the weighted spaces c0(T ,H), defined in the paper for T �= ∅ and H ⊂ R

T+. We also characterize the
dual of c0(T ,H), as the space l1(T ,H) defined in the last section. The known representation (on c0(T ))
of Banach (M)-lattices with order continuous norm follows as a particular case. We obtain these results
by first proving a new general isomorphism theorem, which seems to be of independent interest. Our
notion of “monotonic topological completeness” is weaker than the usual completeness and seems to be
very convenient in the framework of topological ordered vector spaces.

1. INTRODUCTION AND NOTATIONS

As for prerequisites, the reader is expected to be familiar with notions, basic
properties, and some results on ordered vector spaces from [2–5,7].

By ordered topological vector space (OTVS*) we mean any partially ordered
topological vector space. No connection between ordering and topology is as-
sumed.3 On the other hand, by topological ordered vector space (TOVS) we mean,
as usual, any OTVS* with locally full topology. Following [2], we will use the
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notation Xτ for an OTVS* X with topology τ . If two such spaces Xτ and Yη are
isomorphic as OTVS* (algebraically, topologically, and as ordered sets), we will
write this as Xτ � Yη. The aim of this paper is to describe a class of locally convex
(M)-lattices; these are TOVS and lattices, with the topology defined by a family of
solid (M)-seminorms. Recall that a seminorm p defined on a vector lattice X is
called an (M)-seminorm, if and only if

p(x ∨ y) = p(x) ∨ p(y) for all x, y ∈ X+.

The seminorm p is said to be solid, if and only if

|x| � |y| �⇒ p(x) � p(y) (x, y ∈ X).

For arbitrary set T �= ∅, the function spaces

R
T = {f |f : T → R is a function},

c0(T ) = {
f ∈ R

T |f −1(R \ [−ε, ε]) is finite for every ε > 0
}
,

c00(T ) = {
f ∈ R

T |f −1(R \ {0}) is finite
}
,

l∞(T ) = {
f ∈ R

T |f is bounded
}
,

lp(T ) =
{
f ∈ R

T
∣∣∣
∑

t∈T

|f (t)|p < ∞
}

(p > 0),

are vector lattices (Riesz spaces in [4,7]) with respect to the pointwise ordering. We
have the obvious inclusions

c00(T ) ⊂ lp(T ) ⊂ c0(T ) ⊂ l∞(T ) ⊂ R
T .

Definition 1. For any subset H ⊂ R
T+ satisfying the restriction

⋂

h∈H
h−1({0}) = ∅,(1)

let us consider the vector space

c0(T ,H) := {
ψ ∈ R

T |ψ ·H ⊂ c0(T )
}
.

On c0(T ,H) we consider the pointwise ordering, as well as the topology θ defined
by the family of solid (M)-seminorms (‖‖h)h∈H, where

‖‖h : c0(T ,H) → R+, ‖ψ‖h = ‖ψh‖∞ = sup
t∈T

∣∣ψ(t)h(t)
∣∣.

If needed, we can assume H to be directed upwards. Indeed, we have

c0(T ,H) = c0
(
T ,H∨) = c0

(
T , I(H)+

)
,

where H∨ denotes the set consisting of all pointwise supremums of nonempty finite
subsets of H, and I(H) ⊂ R

T is the ideal (normal subspace in [2]) generated by H.
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Proposition 2.
(i) c0(T ,H) is a Hausdorff locally convex (M)-lattice and an ideal in R

T (hence
Dedekind complete). Also, c0(T ,H) is an l∞(T )-module containing c00(T ).

(ii) The topology θ is complete and order continuous.4

(iii) For every ψ ∈ c0(T ,H)+, there exists an increasing net (ψδ)δ∈	 ⊂ c00(T )+,
such that

∨
δ∈	 ψδ = ψ . For every such net, we have (θ)-limδ∈	 ψδ = ψ .

(iv) If H ⊂ c0(T )+, then R ⊂ l∞(T ) ⊂ c0(T ,H), and 1 ∈ R is a weak order unit5

in c0(T ,H).

Proof. The proof is routine. �
In the last section, Example 26 will deal with some particular spaces c0(T ,H).

2. MONOTONIC TOPOLOGICAL COMPLETENESS

In this section we introduce the notion of “monotonic topological completeness”. It
is worth pointing out that a large amount of known results on TOVS still hold if we
replace the usual topological completeness by monotonic completeness.

Definition 3 (Monotonic completeness). Let X be an OTVS*. The topology τ of
X is said to be monotonically complete, if and only if every monotonic (τ )-Cauchy
net in X is (τ )-convergent. In the same way we define monotonic σ -completeness
of the topology, by considering sequences instead of nets.

Example 4. The vector space

BV ([0,1]) = {x : [0,1] → R |x has bounded variation},

is a Dedekind complete lattice with respect to the usual ordering defined by the cone

BV ([0,1])+ = {x : [0,1] → R+ |x is increasing}.

The supremum norm ‖‖∞ : BV ([0,1]) → R+ is an (L)-norm, is order continuous
and monotonically complete, but not complete.

As the previous example shows, monotonic completeness of the topology is not
equivalent to, but weaker than its usual completeness.

Proposition 5. Let X be a metrizable OTVS*. The topology of X is monotonically
complete, if and only if it is monotonically σ -complete.

Proof. We only need to prove the implication “⇐”. According to the hypothesis,
there is a quasinorm q : X → R+ defining the topology of X. Let (xδ)δ∈	 ⊂ X be

4 Order continuous topology: for every increasing net xδ ↑ x, we have xδ → x topologically.
5 Weak order unit: element u � 0 with zero orthocomplement, that is, u⊥ := {x | u ∧ |x| = 0} = {0}.
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a monotonic (q)-Cauchy net. We can choose an increasing sequence (δn)n∈N ⊂ 	,
such that

q(xδ′ − xδ′′) <
1

n
for all n � 1 and δ′, δ′′ � δn.

Thus, (xδn)n∈N ⊂ X is a monotonic (q)-Cauchy sequence. As q is monotonically
σ -complete, we have limn→∞ q(xδn − x) = 0 for some x ∈ X. For all n � 1 and
δ � δn, we have

q(xδ − x) � q(xδ − xδn) + q(xδn − x) � 1

n
+ q(xδn − x).

This yields limδ∈	 q(xδ − x) = 0. We conclude that q is monotonically σ -
complete. �
Proposition 6. Let X be a TOVS, with monotonically complete topology and
closed positive cone. The following two statements are equivalent:

(a) X is Dedekind σ -complete, with order σ -continuous topology,
(b) X is Dedekind complete, with order continuous topology.

Proof. We only need to prove (a) ⇒ (b). Let (xδ)δ∈	 ⊂ X be an upper bounded
increasing net. We claim that (xδ)δ∈	 is (τ )-Cauchy in X, where τ denotes the
topology of X. On the contrary suppose that there is a neighborhood W ∈ V(0),
such that for every δ ∈ 	, there exist δ′, δ′′ � δ, with xδ′ − xδ′′ /∈ W . Let us choose
a balanced full neighborhood W0 ∈ V(0), such that W0 + W0 + W0 ⊂ W . Fix δ ∈ 	.
Choose δ′, δ′′ � δ as above and γ (δ) � δ′, δ′′. We must have xγ (δ) −xδ /∈ W0. Indeed,
xγ (δ) − xδ ∈ W0 would lead to

xδ′ − xδ′′ = (xγ (δ) − xδ′′) + (xδ′ − xδ) + (xδ − xγ (δ)) ∈ W0 + W0 − W0 ⊂ W,

a contradiction. We thus get the existence of a function γ : 	 → 	, such that
γ (δ) > δ and xγ (δ) − xδ /∈ W0, for every δ ∈ 	. Consequently, there is an increasing
sequence (δn)n∈N ⊂ 	, such that xδn+1 − xδn /∈ W0 for every n ∈ N. According
to the hypothesis (a), the upper bounded increasing sequence (xδn)n∈N ⊂ X is
(τ )-convergent, and hence (τ )-Cauchy, which is impossible. Our claim is proved.
Since τ is monotonically complete, we have (τ )-limδ∈	 xδ = x, for some x ∈ X. As
X+ is closed, we have x = ∨

δ∈	 xδ . We conclude that (b) holds. �
3. A GENERAL ISOMORPHISM THEOREM

The isomorphism theorem from this section was inspired by some parts of the
proofs of several representation theorems for Banach lattices. This theorem together
with a result from [6] (restated here as Theorem 17) are the most important
ingredients of the representation theorem from Section 4. We first introduce a
density notion that fits well with monotonic completeness.
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Definition 7 (Monotonic density). Let Xτ be a directed OTVS*. A vector sub-
space G ⊂ X is said to be monotonically (τ )-dense (or top-dense), if and only if the
following two conditions hold:

(i) G+ is (τ )-dense in X+.
(ii) If X0 ⊂ X is a vector subspace containing G and all limits of (τ )-convergent

monotonic nets from X0, then X0 = X.

In the same way we define σ -monotonic top-density of a vector subspace, by
considering sequences instead of nets.

Let us observe that a monotonically (τ )-dense subspace G is necessarily
(τ )-dense, because G ⊃ G contains all limits of (τ )-convergent nets from G, and
consequently, G = X. Since our notion of monotonic top-density is somewhat
encrypted, we next clarify its relation with some more intuitive conditions, which
are stronger but also easier to be checked. Proposition 9 will point out a special
case when monotonic top-density reduces to the usual topological density.

Proposition 8. Let Xτ be a directed OTVS*. For a vector subspace G ⊂ X, let us
consider the following conditions:

(a+) Every element of X+ is the (τ )-limit of an increasing net from G+.
(a−) Every element of X+ is the (τ )-limit of a decreasing net from G+.

(b) Every element of X+ is the (τ )-limit of a monotonic net from G+.
(c) Every element of X+ is the (τ )-limit of a sum (ξδ + ζδ)δ∈	 of monotonic

(τ )-Cauchy nets from G+.
(c′) Every element of X+ is the (τ )-limit of a “cross-sum” (ξδ + ζλ)(δ,λ)∈	×� of

monotonic (τ )-Cauchy nets from G+.
(d) G is monotonically (τ )-dense in X.
(e) G+ is (τ )-dense in X+, and there is no proper vector subspace X0 � X

containing G and all limits of (τ )-convergent sums (ξδ + ζδ)δ∈	 of monotonic
(τ )-Cauchy nets from X0.

We have (a±) ⇒ (b) ⇒ (c) ⇔ (c′) ⇒ (e) and (b) ⇒ (d) ⇒ (e). If X is monotonically
(τ )-complete, then (d) ⇔ (e). The same implications hold between the correspond-
ing sequential conditions.

Proof. The proof is straightforward. �
Proposition 9. Let Xτ be a topological lattice.6 For any ideal G ⊂ X, the
following statements are equivalent (as well as the corresponding sequential
conditions):

6 According to the usual terminology, this also means that the topology τ is locally solid.
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(i) G is monotonically (τ )-dense in X.
(ii) G+ is (τ )-dense in X+.

(iii) G is (τ )-dense in X.
(a+) The condition (a+) from Proposition 8 holds.

Proof. The implications (a+) ⇒ (i) ⇒(ii) ⇒ (iii) are immediate. In order to
prove (iii) ⇒ (a+), let us fix x ∈ X+. By (iii), choose a net (ξδ)δ∈	 ⊂ G, with
(τ )- limδ∈	 ξδ = x. Set xδ := (0 ∨ ξδ) ∧ x ∈ G+ for every δ ∈ 	. As the lattice
operations are (τ )-continuous on X, we have (τ )- limδ∈	 xδ = x. Let F denote the
set of all nonempty finite subsets F ⊂ 	. Set xF := ∨

δ∈F xδ ∈ G+ for every F ∈F .
Obviously, the net (xF )F∈F ⊂ G+ is increasing. Since xδ � xF � x whenever
{δ} ⊂ F ∈ F , it follows that (τ )- limF∈F xF = x. We thus conclude that the condition
(a+) holds. �

We can now give some concrete examples of monotonically (τ )-dense subspaces.

Example 10 (Top-dense subspaces). On the following vector spaces we consider
the usual ordering.

(i) In (C([0,1]),‖‖∞), the vector subspace of all polynomial functions restricted
to [0,1] is σ -monotonically top-dense.

(ii) If T is a locally compact space, then the ideal Cc(T ) is σ -monotonically top-
dense in (C∞(T ),‖‖∞). In particular, so is c00(T ) in (c0(T ),‖‖∞) for any set
T �= ∅.

(iii) Let (T ,T ,μ) be a measurable space and let p ∈ [1,∞[. Then in (Lp(μ),‖‖p),
the vector sublattice of all classes of μ-integrable step functions is σ -
monotonically top-dense. In particular, so is the ideal c00(T ) in (lp(T ),‖‖p)

for any set T �= ∅.
(iv) For a measurable space (T ,T ,μ) with μ(T ) < ∞, let us consider the space

M(μ) of all classes of μ-measurable functions, endowed with the quasinorm
q(x̂ ) = ∫

T
|x(t)|

1+|x(t)| dμ(t). Then the vector sublattice of all classes (with respect
to the equality a.e.) of μ-measurable step functions is σ -monotonically top-
dense in (M(μ), q).

(v) For any set T �= ∅, the ideal c00(T ) ⊂ R
T is monotonically top-dense with

respect to the product topology on R
T .

For all five above monotonic top-densities at least one of the conditions (a±) (or
the sequential versions) from Proposition 8 holds. Nonetheless, even for a vector
sublattice of a normed lattice it is possible that both conditions (a±) fail, but the
sequential version of (b) holds:

Example 11. On the vector lattice X = C([0,1]), let us consider the topology τ

defined by the solid (M)-norm ‖x‖ = maxt∈[0,1] |tx(t)|. Then the vector sublattice
G := {x ∈ X |x(0) = x(1)} is σ -monotonically top-dense in (X,‖‖). More precisely,
for every x ∈ X we have:
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(i) If x(1) < x(0), then no decreasing net in G is (τ )-convergent to x, but
(τ )- limn→∞ xn = x for the increasing sequence (xn)n∈N ⊂ G defined by
xn(t) = x(t) ∧ (x(1) + nt).

(ii) If x(1) > x(0), then no increasing net in G is (τ )-convergent to x, but
(τ )- limn→∞ xn = x for the decreasing sequence (xn)n∈N ⊂ G defined by
xn(t) = x(t) ∨ (x(1) − nt).

Theorem 12 (Isomorphism). Let Xτ and Yη be directed OTVS*, with closed
positive cones and monotonically complete topologies. If Gτ � Hη for some
monotonically top-dense vector subspaces G ⊂ X and H ⊂ Y , then Xτ � Yη.

Proof. According to the hypothesis, there exists an isomorphism U : Gτ → Hη of
OTVS*. Let Ỹη denote the completion of the topological vector space Yη. As G is
(τ )-dense in X, the isomorphism U extends uniquely to a continuous linear operator
Ũ : X → Ỹ . We claim that Ũ (X) ⊂ Y , and that Ũ : X → Y is a positive operator. We
have

Ũ(X+) = Ũ
(
G+

) ⊂ Ũ(G+) = U(G+) = H+,

where the last three closures are considered in Ỹη. Since H+ is (η)-dense in Y+ and
Y has a closed positive cone, it follows that

Ũ(X+) ∩ Y ⊂ H+ ∩ Y = Y+.(2)

Obviously, G ⊂ Ũ−1(Y ) ⊂ X. Let (xδ)δ∈	 ⊂ Ũ−1(Y ) be a (τ )-convergent monotonic
net, and let x := (τ )- limδ∈	 xδ ∈ X. By (2) we see that (Ũxδ)δ∈	 is a monotonic
(η)-Cauchy net in Y . As η is monotonically complete, this net (η)-converges to
some y ∈ Y . It follows that

Ũx = (η)- lim
δ∈	

Ũxδ = y ∈ Y,

hence that x ∈ Ũ−1(Y ). Since the subspace G is top-dense in X, we conclude that
Ũ−1(Y ) = X, that is, Ũ (X) ⊂ Y . Hence Ũ (X+) ⊂ Y+, by (2). Our claim is proved.
Applying all these arguments again for V = U−1 : Hη → Gτ shows that V extends
uniquely to a positive continuous linear operator Ṽ : Y → X. For ξ ∈ G we have
Ṽ Ũξ = V Uξ = ξ , that is, (IX − Ṽ Ũ )|G ≡ 0. But G is (τ )-dense in X, and so
Ṽ Ũ = IX . Since in exactly the same way we get Ũ Ṽ = IY , we conclude that Ũ

is an isomorphism of ordered topological vector spaces. �
Remark 13. The above theorem still holds if we replace monotonic completeness
and top-density by the corresponding sequential conditions.

Remark 14. Let Xτ be a directed OTVS*, and let G ⊂ X be a vector subspace.
If X is a lattice and G a sublattice of X, or if X satisfies the Riesz decomposition
property and G+ is a full subset of X, then the set Gx := G ∩ [0, x] is directed
upwards for every x ∈ X+. In this case, Gx can be viewed as a net in X. Thus, Gx

may be (τ )-convergent to x.
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Corollary 15. Let Xτ and Yη be OTVS*, which are lattices with closed positive
cones and monotonically complete topologies. Assume that Gτ � Hη for some
vector sublattices G ⊂ X and H ⊂ Y , such that

x = (τ )- limGx, y = (η)- limHy, for all x ∈ X+, y ∈ Y+.

Then Xτ � Yη.

Proof. The proof is immediate, by Proposition 8(a), Theorem 12, and Re-
mark 14. �
Remark 16. The above corollary still holds if for one/both of the inclusions G ⊂ X

and H ⊂ Y , say M ⊂ Z, we replace the condition “M sublattice of Z” by the
alternative condition “M is an ideal in Z, which is directed upwards and has the
Riesz decomposition property”.

4. REPRESENTATION THEOREM

For the convenience of the reader we first repeat a needed theorem from [6]
(a variant of it may be found in [1]).

Theorem 17. Let Cc(T ) denote the vector lattice of all real continuous functions
with compact support, defined on a locally compact space T . Let us consider the
sets

ST := {a : T → R+ |a is upper semicontinuous},
MT := {

p : Cc(T ) → R+ |p is a solid (M)-seminorm
}
,

endowed with the pointwise ordering. For every a ∈ ST , define on Cc(T ) the solid
(M)-seminorm

pa ∈ MT , pa(f ) = ‖af ‖∞ = sup
t∈T

|a(t)f (t)|.

We have the isomorphism of ordered sets

� : ST →MT , �(a) = pa.

We can now state and prove our main results. The following two theorems
characterize a class of locally convex (M)-lattices, with or without weak order unit.
The known representation of Banach (M)-lattices with order continuous norm will
follow as a particular case (Corollary 23).

Theorem 18 (Representation, the “unit” case). Let Xτ be a Hausdorff locally
convex (M)-lattice. Assume that

(a) the lattice X is Dedekind σ -complete, with weak order unit,
(b) the topology τ is order σ -continuous and monotonically complete.

Then Xτ � c0(T ,H)θ , for some set T and some H ⊂ c0(T )+ satisfying (1).
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Proof. By Proposition 6, the lattice X is Dedekind complete, with order continuous
topology. Let P be a family of solid (M)-seminorms defining the topology τ of X,
and let u ∈ X be a weak order unit. Let us consider the ideal (hence, Dedekind
complete sublattice of X)

G := I
({u}) = {

x ∈ X | |x| � λu for some λ ∈ R+
}
,

endowed with the strong order unit norm ‖x‖u = inf{λ ∈ R+ | |x| � λu}. Applying
the well known representation theorem of Kakutani (see [3, Theorem 4, p. 59], or
[5, Theorem 7.4, p. 104]) to the Banach lattice (G,‖‖u), shows the existence of an
isomorphism U : (G,‖‖u) → (C(K),‖‖∞) of normed lattices, for some compact
topological space K . In particular, C(K) is Dedekind complete and Uu = 1 ∈
C(K). For every p ∈ P , let us define

p̃ = p ◦ U−1 : C(K) → R+.

Each p̃ is a solid (M)-seminorm. By Theorem 17, there exists an upper semicon-
tinuous function gp ∈ SK , such that p̃(ϕ) = ‖ϕgp‖∞ for every ϕ ∈ C(K). We thus
get

p(x) = p̃(Ux) = ‖Ux · gp‖∞ for every x ∈ G.(3)

Let us consider

P̃ := (p̃)p∈P , G := {gp |p ∈P}, T := K
∖ ⋂

p∈P
g−1

p

({0}),

and the locally convex topology τ̃ defined on C(K) by the family P̃ of seminorms.
Since by (3), U : Gτ → C(K)τ̃ is an isomorphism of locally convex lattices, τ̃ is
order continuous.

Claim 1. T is a discrete dense subspace of K , and G ⊂ c0(K)+.
We first prove that T is discrete. For fixed upper semicontinuous ω ∈ SK , choose

a decreasing net (ϕδ)δ∈	 ⊂ C(K)+, such that ω(t) = infδ∈	 ϕδ(t) for every t ∈ K

(pointwise infimum). Thus,

lim
δ∈	

(ϕδgp)(t) = (ωgp)(t) for all p ∈P, t ∈ K.(4)

Since C(K)τ̃ is a Dedekind complete vector lattice with order continuous topology,
for ϕ := ∧

δ∈	 ϕδ ∈ C(K) we have (̃τ )-limδ∈	 ϕδ = ϕ, that is,

ϕδgp
unif.−→ ϕgp for every p ∈P .

This and (4) yield ωgp = ϕgp for every p ∈ P , that is, ω|T = ϕ|T . We also have
0 � ϕ � ω in R

K . In particular, if ω|K\T ≡ 0, then ω = ϕ ∈ C(K). We thus have
proved that

SK,T := {
ω ∈ SK |ω(t) = 0 for every t ∈ K \ T

} ⊂ C(K),
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hence that G ⊂ SK,T ⊂ C(K). For the characteristic function of any t ∈ T , we have
χ{t} ∈ SK,T ⊂ C(K), and so {t} = χ−1

{t} (]0,∞[) is an open subset of K . Therefore,
T is a discrete subspace of K .

We next show that G ⊂ c0(K)+. For all gp ∈ G and ε > 0, the subset g−1
p ([ε,∞[) ⊂

T ⊂ K is compact (closed in K), and hence finite, since T is discrete. Therefore,
G ⊂ c0(K)+.

From our claim, it remains to prove that T is dense in K . On the contrary, suppose
that T �= K . By Urysohn’s theorem, choose ϕ ∈ C(K)+ \ {0}, such that ϕ|T ≡ 0. As
p̃(ϕ) = ‖ϕgp‖∞ = 0 for every p ∈P , we get ϕ = 0, a contradiction. Hence, T = K .
Our claim is proved.

Let us consider

hp := gp|T for every p ∈P, H := {hp |p ∈ P}.

Obviously, H satisfies (1) and H ⊂ c0(T )+.

Claim 2. We have Xτ � c0(T ,H)θ . We will prove this by applying Theorem 12.
Let us consider the vector space H := C(K)|T consisting of all restrictions to

T of functions from C(K). We have H · H ⊂ l∞(T ) · c0(T ) ⊂ c0(T ), and so H ⊂
c0(T ,H). Define the linear operator

U0 : Gτ → Hθ, U0x = (Ux)|T .

That U0 is onto follows from U(G) = C(K). Since for all p ∈ P and x, y ∈ G, we
have

‖U0x‖hp = ‖U0x · hp‖∞ = ‖Ux · gp‖∞ = p(x),

U0(x ∨ y) = (
U(x ∨ y)

)∣∣
T

= (Ux ∨ Uy)|T = U0x ∨ U0y,

we deduce that U0 is an isomorphism of locally convex lattices. As T is a
discrete topological space, we see that c00(T ) ⊂ C(K)|T = H . It follows that H

is monotonically (θ)-dense in c0(T ,H), since so is c00(T ), by Proposition 2(iii).
It remains to prove that G is monotonically (τ )-dense in X. For fixed x ∈ X+, the

sequence (x ∧ nu)n∈N ⊂ G+ is increasing. As u is a weak order unit in X (which is
Dedekind (σ )-complete), we have

∨
n∈N

(x ∧ nu) = x. This yields (τ )-limn→∞(x ∧
nu) = x, since τ is order σ -continuous. Hence G is monotonically (τ )-dense in X.
Applying Theorem 12 finally shows that Xτ � c0(T ,H)θ . �
Remark 19. In the above theorem, for a family P of solid (M)-seminorms defin-
ing the topology of X, we obtain H = {hp |p ∈ P} ⊂ c0(T )+ and an isomorphism
U : Xτ → c0(T ,H)θ , such that

p(x) = ‖Ux‖hp = ‖Ux · hp‖∞ for all x ∈ X, p ∈P .

Similar comments will apply to Theorem 20, with H ⊂ R
T+.
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Theorem 20 (Representation, general case). Let Xτ be a Hausdorff locally
convex (M)-lattice. Assume that

(a) the lattice X is Dedekind σ -complete,
(b) the topology τ is order σ -continuous and monotonically complete.

Then Xτ � c0(T ,H)θ , for some set T and some H ⊂ R
T+ satisfying (1).

Proof. By Proposition 6, the lattice X is Dedekind complete, with order continuous
topology. Let P be a family of solid (M)-seminorms defining the topology τ of X.
By Zorn’s lemma, choose a maximal orthogonal subset E ⊂ X+ \ {0}. For each
e ∈ E, the projection band Xe := e⊥⊥ is a closed subspace of X, since the topology
τ is locally solid. Thus, Xe satisfies the hypothesis of Theorem 18. Hence there is
an isomorphism

Ue : Xe → c0(Te,He),

for some set Te and some He = {hp,e |p ∈ P} ⊂ c0(Te)+ satisfying (1), such that

p(x) = ‖Uex · hp,e‖∞ for all x ∈ Xe, p ∈P .

(see also Remark 19). We can assume that all Te (e ∈ E) are mutually disjoint sets
(otherwise, we may replace each Te by Te × {e}). Set

T =
⋃

e∈E

Te, H = {
hp ∈ R

T+ |p ∈P
}
,

where each function hp is defined by its restrictions: hp|Te = hp,e for every e ∈ E.

Claim. We have Xτ � c0(T ,H)θ . We will prove this by applying Theorem 12.
For function g ∈ R

Te , we may define the extension g ∈ R
T , by g|Te = g and

g|T \Te ≡ 0. Set

c0(T ,H)e := {
ψ |ψ ∈ c0(Te,He)

} = {
ψ ∈ c0(T ,H) |ψ |T \Te ≡ 0

}

(e ∈ E),

G :=
⊕

e∈E

Xe, H :=
⊕

e∈E

c0(T ,H)e.

Note that G and H are sublattices of X and c0(T ,H), respectively. Define the linear
operator

U : Gτ → Hθ, Ux = Uex for all e ∈ E, x ∈ Xe.

It is easily seen that U is an isomorphism of ordered vector spaces. Fix x ∈ G. We
have x = ∑

e∈F xe for some finite subset F ⊂ E and some xe ∈ Xe (e ∈ F). Thus,

|x| =
∑

e∈F

|xe| =
∨

e∈F

|xe|, Ux =
∑

e∈F

Uexe, |Ux| =
∨

e∈F

Ue(|xe|).
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Consequently, for every p ∈ P we have

‖Ux‖hp = ‖Ux · hp‖∞ = ‖|Ux| · hp‖∞ =
∥∥∥∥hp ·

∨

e∈F

Ue

(|xe|
)
∥∥∥∥∞

=
∨

e∈F

∥∥hp · Ue

(|xe|
)∥∥∞ =

∨

e∈F

∥∥hp,e · Ue

(|xe|
)∥∥∞

=
∨

e∈F

p
(|xe|

) = p

(∨

e∈F

|xe|
)

= p
(|x|) = p(x).

It follows that U is an isomorphism of locally convex lattices. As c00(Te) ⊂
c0(T ,H)e for every e ∈ E, we have c00(T ) ⊂ H . Hence, H is monotonically
(θ)-dense in c0(T ,H), since so is c00(T ).

It remains to prove that G is monotonically (τ )-dense in X. Fix x ∈ X+. Let
us consider the set F consisting of all nonempty finite subsets of E. For every
F ∈ F , set xF := ∨

e∈F [e]x ∈ G+. We thus get the increasing net (xF )F∈F ⊂ G+.
As X is Dedekind complete and the orthogonal subset E is maximal, we have∨

F∈F xF = x. This yields (τ )-limF∈F xF = x, since τ is order continuous. Hence,
G is monotonically (τ )-dense in X. Applying Theorem 12 finally shows that
Xτ � c0(T ,H)θ . �
Corollary 21 (Representation, normed case). Let (X,‖‖) be a normed (M)-
lattice. Assume that

(a) the lattice X is Dedekind σ -complete,
(b) the norm of X is order σ -continuous and monotonically σ -complete.

Then (X,‖‖) � (c0(T ),‖‖∞) as normed lattices, for some set T and some H ⊂ R
T+

satisfying (1).

Proof. By Proposition 5, the norm of X is monotonically complete. By Theo-
rem 20 and Remark 19, we have the isomorphism of normed lattices (X,‖‖) �
(c0(T , {h}),‖‖h), for some set T and some h ∈ R

T+, with h−1({0}) = ∅. Since

Uh : (c0
(
T , {h}),‖ ‖h

) → (
c0(T ),‖‖∞

)
, Uhψ = ψh

is an isomorphism of normed lattices, the conclusion follows. �
Proposition 22. Let Xτ be an OTVS* with closed positive cone. Assume the
topology τ is order continuous and monotonically complete. If a nonempty subset
A ⊂ X is upper bounded and directed upwards, and if the set of its upper bounds is
directed downwards, then A converges and

(τ )- limA = supA.

In particular, if X is a vector lattice, then it is Dedekind complete.
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Proof. For subsets E,F ⊂ X, we may write E � F , if x � y for all x ∈ E and
y ∈ F . We shall use notations such as z � E or E � z (for z ∈ X), with an obvious
meaning.

For A ⊂ X as in the hypothesis, let B denote the set of its upper bounds. Recall
that upwards directed subsets of X may be considered as increasing nets. We claim
that A is a (τ )-Cauchy net.

Fix a neighborhood W ∈ V(0), and choose W0 ∈ V(0), such that W0 − W0 ⊂
W . Let z � A − B . We have A � B + z, which yields B + z ⊂ B . An obvious
induction shows that for every n ∈ N we have B + nz ⊂ B , that is, A � B + nz, or
equivalent, n(−z) � B −A ⊂ X+. Since X is Archimedean, we must have z � 0. We
thus have proved that sup(A − B) = 0. The set A − B is directed upwards. As τ is
order continuous, we have (τ )-lim(A−B) = 0. Therefore, there exist a ∈ A, b ∈ B ,
such that (A − B) ∩ [a − b,0] ⊂ W0. For all a1, a2 ∈ A, with a1, a2 � a, we have
a1 −b, a2 −b ∈ (A−B)∩[a−b,0] ⊂ W0, and so a1 −a2 ∈ W0 −W0 ⊂ W . Our claim
is proved. Since the net A is increasing and (τ )-Cauchy, and τ is monotonically
complete, there exists x = (τ )-limA ∈ A. As X+ is closed, we conclude that x =
supA. �

The following corollary is a slight improvement of the known representation
theorem for Banach (M)-lattices with order continuous norm, since monotonic
σ -completeness is required instead of the stronger classical (Banach) completeness.

Corollary 23. Let (X,‖‖) be a normed (M)-lattice. Assume the norm of X is
order continuous and monotonically σ -complete. Then (X,‖‖) � (c0(T ),‖‖∞) as
normed lattices, for some set T .

Proof. The proof is immediate, by Propositions 5 and 22, and Corollary 21. �
5. THE DUAL OF C0(T ,H)θ

Let us consider T �= ∅ and an upwards directed subset H ⊂ R
T+ satisfying (1). Set

l1(T ,H) := l1(T ) ·H = {
vh |v ∈ l1(T ), h ∈ H

}
.

Remark 24. l1(T ,H) is an ideal in R
T , and a l∞(T )-module containing c00(T ).

It is less obvious that l1(T ,H) is a vector space (the other properties are
immediate). Let us show that γ := αuh + βvk ∈ l1(T ,H) for α,β ∈ R, u, v ∈
l1(T ), h, k ∈ H. Choose g ∈ H, with h, k � g. There exist r, s ∈ l∞(T ), such that
h = rg, k = sg. Hence, γ = (αur + βvs)g ∈ l1(T ) ·H = l1(T ,H).

Theorem 25. We have the lattice isomorphism U : l1(T ,H) → c0(T ,H)∗θ , defined
by

(Uγ )ψ =
∫

T

(γψ)dμc for all γ ∈ l1(T ,H),ψ ∈ c0(T ,H),
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where μc : 2T → [0,∞] denotes the cardinal measure on T .

Proof. We have divided the proof into two steps.
Step 1. We first show that U is well defined and injective. Fix γ = vh ∈ l1(T ,H),

with v ∈ l1(T ) and h ∈ H. For every ψ ∈ c0(T ,H), we have γψ = v(hψ) ∈ l1(T ) ·
c0(T ) ⊂ l1(T ). Hence the integral exists and

∣∣(Uγ )ψ
∣∣ =

∣∣∣
∣

∫

T

(γψ)dμc

∣∣∣
∣ =

∣∣∣
∣

∫

T

(vhψ)dμc

∣∣∣
∣ � ‖v‖l1(T )‖ψh‖∞

= ‖v‖l1(T )‖ψ‖h.

It follows that Uγ ∈ c0(T ,H)∗θ for every γ ∈ l1(T ,H), that is, U is well defined. We
see that U is linear. As c00(T ) ⊂ c0(T ,H), we have the equivalence

γ � 0 in l1(T ,H) ⇐⇒ Uγ � 0 in c0(T ,H)∗θ .(5)

This shows that U is injective.
Step 2. We next show that U is onto. To prove this, fix f ∈ c0(T ,H)∗θ . There exist

α ∈ R+ and h ∈ H, such that |f (ψ)| � α‖ψ‖h for every ψ ∈ c0(T ,H). Define the
map

γ : T → R, γ (t) = f (χ{t}).

Let us observe that

f (ϕ) =
∫

T

(γ ϕ)dμc for every ϕ ∈ c00(T ),(6)

since for F = suppϕ, we have f (ϕ) = f (
∑

s∈F ϕ(s)χ{s}) = ∑
s∈F γ (s)ϕ(s) =∫

T
(γ ϕ)dμc.
We now claim that γ ∈ l1(T ,H) and Uγ = f . On T we have |γ (t)| = |f (χ{t})| �

α‖χ{t}‖h = αh(t), and so suppγ ⊂ supph. Therefore, there exists v ∈ R
T , such

that γ = vh and suppv = suppγ . Our claim will follow by (6), if we prove that v ∈
l1(T ). As suppv = suppγ , we have |v| = γw for some w ∈ R

T . For every nonempty
finite subset F ⊂ suppv ⊂ supph, by (6) we get

∫

F

|v|dμc =
∫

T

(γwχF )dμc = f (wχF ) � α‖wχF ‖h

= α‖(h|w|)χF ‖∞ = α‖χF ‖∞ = α.

This yields
∫

suppv
|v|dμc � α, that is, v ∈ l1(T ). We thus get γ = vh ∈ l1(T ,H).

As by (6), the functionals f,Uγ ∈ c0(T ,H)∗θ coincide on c00(T ), which is (θ)-
dense in c0(T ,H), we conclude that f = Uγ . That U is also an isomorphism of
ordered vector spaces follows from (5). �
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Example 26. Let T �= ∅. Then

(i) For H = c00(T )+, we have

c0(T ,H) = R
T , l1(T ,H) = c00(T ),

and θ is the pointwise convergence topology on R
T .

(ii) For H = R
T+, we have

c0(T ,H) = c00(T ),

l1(T ,H) = {
ϕ ∈ R

T |ϕ−1(R \ {0}) is at most countable
}
.

(iii) For H = c0(T )+, we have

c0(T ,H) = l∞(T ), l1(T ,H) = l1(T ).

(iv) For H = l∞(T )+, we have

c0(T ,H) = c0(T ), l1(T ,H) = l1(T ),

and θ is the uniform convergence topology on c0(T ).
(v) For H = lp(T )+ (p > 0), we have

c0(T ,H) = l∞(T ), l1(T ,H) = l
p

p+1 (T ).
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